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Background: Human papillomavirus-positive (HPV+) cervical cancers are

highly heterogeneous in clinical and molecular characteristics. Thus, an

investigation into their heterogeneous immunological profiles is meaningful

in providing both biological and clinical insights into this disease.

Methods: Based on the enrichment of 29 immune signatures, we discovered

immune subtypes of HPV+ cervical cancers by hierarchical clustering. To

explore whether this subtyping method is reproducible, we analyzed three

bulk and one single cell transcriptomic datasets. We also compared clinical

and molecular characteristics between the immune subtypes.

Results: Clustering analysis identified two immune subtypes of HPV+

cervical cancers: Immunity-H and Immunity-L, consistent in the four

datasets. In comparisons with Immunity-L, Immunity-H displayed stronger

immunity, more stromal contents, lower tumor purity, proliferation potential,

intratumor heterogeneity and stemness, higher tumor mutation burden,

more neoantigens, lower levels of copy number alterations, lower DNA

repair activity, as well as better overall survival prognosis. Certain genes,

such as MUC17, PCLO, and GOLGB1, showed significantly higher mutation

rates in Immunity-L than in Immunity-H. 16 proteins were significantly

upregulated in Immunity-H vs. Immunity-L, including Caspase-7, PREX1,

Lck, C-Raf, PI3K-p85, Syk, 14-3-3_epsilon, STAT5-α, GATA3, Src_pY416,

NDRG1_pT346, Notch1, PDK1_pS241, Bim, NF-kB-p65_pS536, and p53.

Pathway analysis identified numerous immune-related pathways more

highly enriched in Immunity-H vs. Immunity-L, including cytokine-cytokine

receptor interaction, natural killer cell-mediated cytotoxicity, antigen

processing and presentation, T/B cell receptor signaling, chemokine signaling,

supporting the stronger antitumor immunity in Immunity-H vs. Immunity-L.
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Conclusion: HPV+ cervical cancers are divided into two subgroups based

on their immune signatures’ enrichment. Both subgroups have markedly

di�erent tumor immunity, progression phenotypes, genomic features, and

clinical outcomes. Our data o�er novel perception in the tumor biology as

well as clinical implications for HPV+ cervical cancer.
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Introduction

The human papillomavirus (HPV) infection is a

leading etiology for cervical cancer, the most common

gynecological malignancy (1). Among 15 high-risk HPV strains,

HPV16 and HPV18 infection are associated with 70% of

HPV-related cervical cancers (2). Squamous cell carcinomas

and adenocarcinomas constitute 90 and 10% of cervical cancers,

respectively. Furthermore, cervical squamous cell carcinomas

are predominantly HPV-positive (HPV+), compared to 25%

of cervical adenocarcinomas being HPV-negative (HPV-) (3).

Prior investigations have demonstrated the high heterogeneity

of cervical cancer (4). For example, The Cancer Genome Atlas

(TCGA) network classified cervical cancers into four subtypes,

namely HPV clade A9, A7, HPV-negative, and other, based

on the HPV status (4). TCGA also identified three subtypes of

cervical cancers: hormone, epithelial-mesenchymal transition

(EMT), and PI3K-AKT, based on protein expression profiles

(4). By an integrative analysis of multi-omics profiles, including

mRNA and microRNA expression, copy number alterations

(CNAs), and DNA methylation, TCGA uncovered three

subtypes of cervical cancer: keratin-high squamous, keratin-low

squamous, and adenocarcinoma-rich (4). Li et al. (5) identified

six cervical cancer subtypes by consensus clustering, of which

two immune clusters-associated gene signatures were valuable

prognostic factors.

Surgery, radiotherapy, and chemotherapy are the major

therapeutic approaches for cervical cancer to date. However,

these approaches often provide only limited efficiency

for late stage of cervical cancers (6). Immunotherapies,

particularly immune checkpoint inhibitors (ICIs), have recently

demonstrated successes in treating various malignancies,

including melanoma, lung cancer, bladder cancer, head and

neck cancer, kidney cancer, liver cancer, breast cancer, cervical

cancer, prostate cancer, and the cancers with high tumor

mutation loads or mismatch repair deficiency (dMMR).

Studies have shown that ICIs may result in the remission

of virus infection-associated malignancies, including HPV

infection-associated cervical (7) and head and neck (8) cancers.

Nevertheless, the response rates to ICIs are relatively low, with

currently only around 20% of cancer patients responding to

ICIs (9). Thus, identifying the determinants of immunotherapy

responses may aid in improving the cancer immunotherapeutic

efficiency. Accumulating evidence has demonstrated that,

certain molecular features, e.g., PD-L1 expression (10), high

tumor mutation burden (TMB) (11), and dMMR (12), are

associated with better immunotherapeutic responsiveness. In

addition, the “hot” tumors with strong immune infiltration

likely respond better to immunotherapy than the “cold” tumors

with weak immune infiltration (13). Thus, differentiating

“hot” tumors from “cold” tumors may facilitate the optimal

selection of cancer patients for immunotherapy. With the recent

emergence of massive multi-omics data in cancer research,

many algorithms have been developed to uncover “hot” and

“cold” tumor subtypes, such as unsupervised machine learning

algorithms (14–16).

In the present study, we identified immune-related subtypes

of HPV+ cervical cancers based on the enrichment of

29 immune signatures by unsupervised machine learning.

This analysis identified two subtypes of HPV+ cervical

cancers, which exhibited high and low enrichment of immune

signatures, respectively, reproducibly in four different cohorts.

Furthermore, we comprehensively compared clinical and

molecular characteristics between both subtypes of HPV+

cervical cancers. This study could offer new understanding

of the tumor biology as well as clinical implications for the

management of HPV+ cervical cancer.

Methods

Datasets

We downloaded multi-omics data for cervical squamous

cell carcinoma and endocervical adenocarcinoma (CESC)

in TCGA, termed TCGA-CESC (4), from the genomic

data commons (GDC) data portal (https://portal.gdc.

cancer.gov/). These multi-omics data included mRNA

gene expression profiles (normalized by RSEM), somatic

mutations (“maf” file), somatic copy number alterations
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(SCNAs) (“SNP6” files), protein expression profiles

(Reverse Phase Protein Array (RPPA), normalized),

and clinical data. We obtained a CESC transcriptomic

dataset (SGCX) from a prior publication (17), and a

CESC transcriptomic dataset (GSE29570) (18) from the

NCBI gene expression omnibus (GEO) (https://www.

ncbi.nlm.nih.gov/geo/). We also downloaded a single-cell

transcriptomic dataset (GSE171894) for CESC from the

NCBI GEO. A description of these datasets is shown in

Supplementary Table S1.

Single-sample gene set enrichment
analysis

We employed the single-sample gene set enrichment

analysis (ssGSEA) (19) to assess the enrichment levels of

immune signatures, biological processes, and pathways in

tumors. The ssGSEA evaluates the enrichment score of a

gene set in a sample based on the expression profiles of

their marker or pathway genes (19). The marker or pathway

genes of immune signatures, pathways, and biological

processes we analyzed are listed in Supplementary Table S2.

The “GSVA” R package (19) was utilized to perform

the ssGSEA.

Clustering analysis

We identified immune-related subtypes of HPV+ cervical

cancers by hierarchical clustering based on the enrichment

scores of 29 immune signatures. These immune signatures

included antigen presenting cell (APC) co-inhibition, APC

co-stimulation, B cells, cytokine and cytokine receptor (CCR),

CD8+ T cells, immune checkpoint, cytolytic activity, dendritic

cells (DCs), activated DCs (aDCs), immature DCs (iDCs),

plasmacytoid dendritic cells (pDCs), human leukocyte antigen

(HLA), inflammation-promoting, macrophages, mast cells,

major histocompatibility complex (MHC) class I, neutrophils,

natural killer (NK) cells, parainflammation, T cell co-inhibition,

T cell co-stimulation, T helper cells, T follicular helper

(Tfh), T helper 1 (Th1) cells, T helper 2 (Th2) cells,

tumor infiltrating lymphocytes (TILs), regulatory T (Treg)

cells, Type I interferon (IFN) response, and Type II IFN

response. Before clustering, we performed normalization

of the ssGSEA scores by Z-score and transformed them

into distance matrices by the R function “dist” with the

parameter: method = “euclidean.” The hierarchical clustering

was implemented with the function “hclust” in the R package

“Stats” with the parameters: method= “ward.D2” and members

= NULL.

Class prediction

We employed the Random Forest (RF) algorithm to predict

the immune-related subtypes of HPV+ cervical cancers based

on the ssGSEA scores of immune signatures. The number of

trees was 500 and the predictors were the 29 immune signatures

in the RF. The accuracy and weighted F-score were reported as

the prediction performance. The RF algorithmwas implemented

by using the “randomForest” R package (20).

Survival analysis

We utilized the Kaplan-Meier (K-M) model (21) to compare

overall survival (OS) and disease-free survival (DFS) time

between the immune subtypes of HPV+ cervical cancers. K-M

curves were plotted to display the survival time differences, and

the log-rank test was utilized to assess whether the survival time

differences were significant with a threshold of P < 0.05.

Calculation of TMB, SCNA, intratumor
heterogeneity, immune scores, stromal
content, and tumor purity in tumors

We determined a tumor’s TMB as the total number of

its somatic mutations. With the input of “SNP6” files, we

employed GISTIC2 (22) to calculate G-scores in tumors. The G-

score represents the amplitude of the SCNA and the frequency

of its occurrence across a class of samples (22). We utilized

the DITHER algorithm (23) to score ITH, which measures

ITH based on both somatic mutation and SCNA profiles.

The ESTIMATE algorithm (24) was used to calculate immune

scores, stromal scores, and tumor purity for bulk tumors,

which represent immune infiltration levels, stromal contents,

and proportions of tumor cells in bulk tumors.

Pathway analysis

To identify pathways more enriched in one subgroup

relative to another subgroup, we first identified upregulated

genes in the subgroup vs. another subgroup by Student’s t-test

with a threshold of false discovery rate (FDR) < 0.05 and fold

change (FC) > 1.5. By inputting the upregulated genes into the

GSEA web tool (25), we obtained the KEGG (26) pathways more

enriched in the subgroup with a threshold of FDR < 0.05.

Single-cell RNA sequencing data analysis

We analyzed a scRNA-seq transcriptomic dataset

(GSE171894) for HPV+ cervical cancers. The gene expression
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values in single cells were normalized by transcripts per million

(TPM). We performed hierarchical clustering of HPV+ cervical

cancer single cells based on immune signatures’ scores to

identify their subtypes. In addition, the single-cell consensus

clustering (SC3) method (27) were utilized to cluster single cells

in each immune subtype, respectively.

Statistical analysis

We used the two-tailed Student’s t-test to compare two

classes of normally-distributed data, including gene expression

values, protein expression values, and the enrichment ratios of

two immune signatures. The ratios were the log2-transformed

values of the average expression levels of all marker genes

in an immune signature over those of all marker genes in

another immune signature. When comparing two classes of

non-normally distributed data, including ssGSEA scores, TMB,

neoantigens, ITH, immune scores, stromal scores, and tumor

purity, we used the one-tailed Mann–Whitney U-test. We used

the Spearman method to assess the correlation between pathway

enrichment scores (ssGSEA scores) and immune scores. The

Fisher’s exact test was utilized to analyze contingency tables. To

adjust for P-values in multiple tests, we calculated FDR by using

the Benjamini and Hochberg method (28). We performed all

statistical analyses and visualizations with the R programming

(version 3.6.1).

Results

Unsupervised clustering identifies two
immune subtypes of HPV+ cervical
cancer

Based on the enrichment scores of 29 immune signatures,

we identified two immune subtypes of HPV+ cervical cancer,

consistently in three datasets (TCGA-CESC, GSE29570,

and SGCX) (Figure 1A). Both subtypes had high and

low enrichment of these immune signatures, termed

Immunity-H and Immunity-L, respectively. Of note, both

immunostimulatory signatures (such as CD8+ T cells, T

cell co-stimulation, APC co-stimulation, cytolytic activity,

and NK cells) and immunosuppressive signatures (such

as CD4+ regulatory T cells, APC co-inhibition, T cell co-

inhibition, and immune checkpoint molecules) showed

significantly higher enrichment levels in Immunity-H

than in Immunity-L (Figure 1A). Nevertheless, the ratios

of immunostimulatory to immunosuppressive signatures

(CD8+/CD4+ regulatory T cells, pro-/anti-inflammatory

cytokines, and M1/M2 macrophages) were significantly higher

in Immunity-H than in Immunity-L (two-tailed Student’s t-test,

P < 0.05) (Figure 1B). Collectively, these results supported that

Immunity-H had more active antitumor immune responses

than Immunity-L.

To explore whether this subtyping method is predictable,

we used one of the three datasets as the training set and

the other two datasets as test sets in turn to predict both

subtypes with RF. The 10-fold CV accuracies and weighted

F-scores in the training sets were >77%. The prediction

accuracies and weighted F-scores in test sets were all above

80% (Figure 1C). These results support that the subtyping is

predictable and robust.

The immune subtypes of HPV+ cervical
cancer have significantly di�erent clinical
and molecular characteristics

We compared 5-year OS and DFS prognosis between both

subtypes in TCGA-CESC, which had related data available.

Kaplan-Meier curves showed that Immunity-H had significantly

higher OS rates than Immunity-L (log-rank test, P < 0.05)

(Figure 2A). We found that the proportion of tumor-free

patients was significantly higher in Immunity-H than in

Immunity-L (Fisher’s exact test, P = 0.009; odds ratio (OR)

= 0.46) (Figure 2B). It confirmed that Immunity-H had a

better prognosis than Immunity-L. We further compared

several phenotypic or molecular features associated with tumor

progression, including tumor proliferation, stemness, and ITH.

Of note, these features were more enriched in Immunity-L than

in Immunity-H (P < 0.05) (Figure 2C). Furthermore, tumor

purity was likely higher in Immunity-L than in Immunity-H,

while stromal content was more enriched in Immunity-H than

in Immunity-L (Figure 2D).

Immunity-H had significantly higher TMB (P = 0.008)

and thus more predicted neoantigens (29) (P = 0.034)

than Immunity-L (Figure 3A). In contrast, Immunity-H had

significantly lower levels of tumor aneuploidy, also known

as CNA, than Immunity-L, as evidenced by markedly lower

CNA scores (30) and G-scores of copy number amplifications

and deletions (Figure 3B). These results conform to previous

findings that TMB and tumor aneuploidy correlate positively

and negatively with antitumor immune responses, respectively

(31). Furthermore, we compared the enrichment of nine major

DNA damage response (DDR) pathways between both subtypes.

These pathways included base excision repair, mismatch repair,

nucleotide excision repair, the Fanconi anemia (FA) pathway,

homology-dependent recombination, non-homologous DNA

end joining, direct damage reversal/repair, translesion DNA

synthesis, and damage sensor (30). Of note, six of the

nine pathways displayed significantly higher enrichment in

Immunity-L than in Immunity-H (P < 0.05) (Figure 3C). It
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FIGURE 1

Clustering analysis identifies two immune subtypes of HPV+ cervical cancer. (A) Based on the enrichment levels of 29 immune signatures,

hierarchical clustering identifies two immune subtypes: Immunity-H and Immunity-L, which have high and low immunity, respectively,

consistently in three datasets. (B) Immunity-H has significantly higher ratios of immunostimulatory to immunosuppressive signatures than

Immunity-L. The two-tailed Student’s t-test P-values are shown. (C) Prediction of the immune subtypes of HPV+ cervical cancer by Random

Forest based on the enrichment scores of 29 immune signatures. The 10-fold cross-validation results in the training set and prediction results in

the other test sets are shown.
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FIGURE 2

Comparisons of clinical and molecular features between the immune subtypes of HPV+ cervical cancer. (A) Kaplan–Meier curves showing

5-year overall survival and disease-free survival time di�erences between the immune subtypes. The log-rank test P-values are shown. (B) The

proportion of tumor-free patients is significantly higher in Immunity-H than in Immunity-L The Fisher’s exact-test P-value is shown. (C)

Immunity-H displays significantly lower enrichment scores of tumor proliferation, stemness, and ITH than in Immunity-L. (D) Comparisons of

tumor purity and stromal content between the immune subtypes. The one-tailed Mann–Whitney U-test P-values are shown in (C,D). ITH,

intratumor heterogeneity.
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FIGURE 3

Comparisons of somatic mutation, copy number alteration, and protein expression profiles between the immune subtypes of HPV+ cervical

cancer. (A) Immunity-H has significantly higher tumor mutation burden (TMB) and more predicted neoantigens than Immunity-L. (B)

Immunity-H has significantly lower extent of copy number alterations than Immunity-L. (C) Six of the nine major DNA damage response (DDR)

pathways shows significantly higher enrichment scores in Immunity-L than in Immunity-H. BER, base excision repair. DR, direct damage

(Continued)
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FIGURE 3 (Continued)

reversal/repair. NER, nucleotide excision repair. MMR, mismatch repair. FA, Fanconi Anemia HR, homologous recomination. NHEJ,

non-homologous end joining. TLS, translesion synthesis. (D) The mutation profiles of the genes in HPV+ Cervical cancer, which have

significantly higher mutation rates in Immunity-L than in Immunity-H. (E) Heatmap shows 25 proteins di�erentially expressed between

Immunity-L and Immunity-H (two-tailed Student’s t-test, FDR < 0.05). The one-tailed Mann–Whitney U-test P-values are shown in (A–C). *, P <

0.05; **, P < 0.01; ***, P < 0.001; ns, P ≥ 0.05.

indicates that Immunity-L has a stronger DDR than Immunity-

H. It is justified since Immunity-L displays higher genomic

instability than Immunity-H.

We found 17 genes showing significantly higher mutation

rates in Immunity-L than in Immunity-H (Fisher’s exact

test, P < 0.05; OR > 2), but no gene having significantly

higher mutation rates in Immunity-H versus Immunity-

L (Figure 3D). These genes included PCLO, TTN, IGSF10,

MUC17, FAT3,APOB,MED1,ODZ2,UBR4, CREBBP,GOLGB1,

USH2A, ABCA12, HSPG2, SPEN, CELSR3, MDC1, PLXNB2,

MLL3, NAV3, BSN, and RYR3. CREBBP (CREB binding

protein) encodes a transcription factor that is involved in the

transcriptional coactivation of many transcription factors. This

gene had a mutation rate of 10% in Immunity-L vs. 2.8% in

Immunity-H (P = 0.01). Its mutations have been associated

with antitumor immunosuppression (32), consistent with our

result. MUC17 (mucin 17, cell surface associated) encodes a

member of membrane-bound mucins, which are involved in

tumor immunomodulation (33). This gene had a mutation rate

of 11.6% in Immunity-L vs. 2.1% in Immunity-H (P = 0.002).

PCLO (piccolo presynaptic cytomatrix protein) encodes a

protein which is part of the presynaptic cytoskeletal matrix.

This gene’s mutations have been associated with alterations of

tumor immunity (34). GOLGB1 (golgin B1) encodes a protein

located in Golgi apparatus and endoplasmic reticulum-Golgi

intermediate compartment. Previous studies have shown that

GOLGB1 mutations were more prevalent in “cold” tumors (35),

consistent with our analysis revealing its higher mutation rate in

Immunity-L vs. Immunity-H (10.1 vs. 2.8%; P = 0.014).

We compared the expression levels of 226 proteins between

both subtypes and found 25 differentially expressed proteins

(DEPs) (two-tailed Student’s t-test, P < 0.05) (Figure 3E).

Among the DEPs, 16 were upregulated in Immunity-H,

including Caspase-7, PREX1, Lck, C-Raf, PI3K-p85, Syk,

14-3-3_epsilon, STAT5-α, GATA3, Src_pY416, NDRG1_pT346,

Notch1, PDK1_pS241, Bim, NF-kB-p65_pS536, and p53. Of

note, many of these proteins play a role in the positive regulation

of antitumor immune responses. For example, Caspase-7 is

positively associated with antitumor immune responses by the

regulation of apoptosis (36). PREX1 acts as a guanine nucleotide

exchange factor for the RHO family of small GTP-binding

proteins (RACs) to promote antitumor immune responses (37).

Lck incites antitumor immune responses by regulating T cell

development (38). Syk as a tumor suppressor has a role in

driving antitumor immune responses (39). STAT5 has also been

shown to promote antitumor immunity (40). Among the DEPs,

nine were downregulated in Immunity-H, including IGFBP2,

Rab25, AMPK-α, TAZ, XRCC1, AMPK_pT172, Src_pY527,

PKC-alpha, and YB-1. It suggests that these proteins have a

negative association with antitumor responses. Previous studies

have shown that IGFBP2 upregulation can drive the growth

of tumors and promote antitumor immunosuppression (41),

supporting our result. TAZ is a component of the Hippo

signaling pathway, which may promote tumor immune evasion

(15, 42). It is in agreement with our finding that this protein is

downregulated in Immunity-H. YB-1 is a cold shock domain

protein implicated in numerous cellular processes, whose

upregulation drives cancer proliferation and immune evasion

(43). Again, it is consistent with our finding. XRCC1 is involved

in DNA repair, whose upregulation indicates a stronger DNA

repair capacity. It is in line with the previous finding that

the DDR pathways are more enriched in Immunity-L than in

Immunity-H. A previous study revealed that AMP-activated

protein kinase (AMPK) plays a pivotal role in regulating

the response to immune-checkpoint blockade, indicating that

AMPK agonists may promote the efficacy of immunotherapy

(44). This previous finding supports our result that AMPK is

upregulated in “cold” tumors.

Identification of pathways enriched in the
immune subtypes of HPV+ cervical
cancer

GSEA (25) identified numerous KEGG pathways more

enriched in Immunity-H vs. Immunity-L. As expected, many

immune-relevant pathways were included in the list, including

cytokine-cytokine receptor interaction, natural killer cell-

mediated cytotoxicity, antigen processing and presentation, T

cell receptor signaling, Toll-like receptor signaling, Fc gamma

R-mediated phagocytosis, Jak-STAT signaling pathway, B cell

receptor signaling, Fc epsilon RI signaling, NOD-like receptor

signaling, cytosolic DNA-sensing, cell adhesion molecules

(CAMs), chemokine signaling, RIG-I-like receptor signaling,

and complement and coagulation cascades (Figure 4A). Besides,

some stromal pathways were also included in the list, such

as regulation of actin cytoskeleton and focal adhesion. It is

consistent with the previous finding that Immunity-H has

higher stromal content than Immunity-L. In addition, several
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FIGURE 4

KEGG pathways more enriched in Immunity-H vs. Immunity-L. (A) The cancer, immune, and stroma-associated pathways showing significantly

higher enrichment in Immunity-H (FDR < 0.05). FDR, false discovery rate. (B) Spearman correlations between the enrichment scores of the

cancer-associated pathways upregulated in Immunity-H and immune scores in HPV+ cervical cancer.

cancer-associated pathways were more enriched in Immunity-H

vs. Immunity-L, including apoptosis, VEGF signaling, calcium

signaling, MAPK signaling, and Wnt signaling pathways. It

indicates a positive association between the enrichment of

these pathways and antitumor immune responses. Indeed, we

found that the enrichment scores of most these pathways

were positively correlated with immune scores in HPV+

cervical cancer (Spearman correlation, P < 0.05) (Figure 4B).

These results conform to previous findings of the significant

positive association between these pathways’ enrichment

and antitumor immunity (45). We also identified certain

pathways more enriched in Immunity-L vs. Immunity-H,

most of which were metabolism relevant, such as maturity

onset diabetes of the young, metabolism of xenobiotics

by cytochrome P450, drug metabolism - cytochrome P450,

retinol metabolism, O-Glycan biosynthesis, starch and sucrose

metabolism, and glycosphingolipid biosynthesis - lacto and

neolacto series.

Frontiers in PublicHealth 09 frontiersin.org

https://doi.org/10.3389/fpubh.2022.979933
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Song et al. 10.3389/fpubh.2022.979933

FIGURE 5

Validation of the immune-specific subtyping method in HPV+ cervical cancer single cells. (A) Hierarchical clustering of 3,356 cancer cells from

2 HPV+ cervical cancer patients based on the enrichment scores of four immune-related pathways. (B) The expression levels of PD-L1 and

many HLA genes are significantly higher in Immunity-H than in Immunity-L cancer single cells, while tumor stemness and proliferation scores

are significantly lower in Immunity-H cancer single cells. (C) Consensus clustering of single cells in Immunity-H and Immunity-L by

(Continued)
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FIGURE 5 (Continued)

SC3 (27) identifying 37 and 40 cell clusters, respectively. (D) Seven of the nine major DNA damage response pathways shows significantly higher

enrichment scores in Immunity-L than in Immunity-H. BER, base excision repair. DR, direct damage reversal/repair. NER, nucleotide excision

repair. MMR, mismatch repair. FA, Fanconi Anemia. HR, homologous recomination. NHEJ, non-homologous end joining. TLS, translesion

synthesis.

Unsupervised clustering identifies two
immune subtypes of HPV+ cervical
cancer single cells

Likewise, we performed a hierarchical clustering of HPV+

cervical cancer single cells in a scRNA-seq dataset (GSE171894),

which was a gene expression profiling in 3,356 cancer cells from

2HPV+ cervical cancer patients. Because this clustering analysis

was performed in cancer single cells, we used four immune-

related pathways which are expressed in cancer cells themselves.

These pathways included antigen processing and presentation,

JAK-STAT signaling, apoptosis, and PD-L1 expression pathway

in cancer. Similarly, we identified two clusters of these

cancer single cells, also termed Immunity-H and Immunity-

L, respectively. Immunity-H and Immunity-L displayed high

and low enrichment scores of these pathways (Figure 5A).

As expected, Immunity-H had significantly higher PD-L1

expression levels than Immunity-L (P < 0.001); Immunity-H

also showed significantly higher expression levels of many HLA

genes than Immunity-L (P < 0.001); Immunity-L displayed

significantly stronger proliferation and stemness signatures than

Immunity-H (P < 0.001) (Figure 5B). We further performed

the consensus clustering of Immunity-H and Immunity-L single

cells by SC3 (27), respectively. The clustering identified 37

and 40 cell clusters in Immunity-H and Immunity-L single

cells, respectively (Figure 5C). It suggests a higher heterogeneity

of cancer cells in Immunity-L compared to Immunity-H,

consistent with the result from bulk tumors. Immunity-L had

significantly higher enrichment of the DDR pathways than

Immunity-H (Figure 5D). These results are consistent with those

in bulk tumors.

Discussion

The tumor immunemicroenvironment (TIME) plays crucial

roles in determining cancer prognosis and therapy responses

(46). Meanwhile, the TIME heterogeneity is prevalent across

tumors (47). Hence, a classification of HPV+ cervical cancer

based on the TIME would have potential clincal values in risk

stratification and effective treatment of this disease. To this

end, we identified two immune subtypes of HPV+ cervical

cancer based on the enrichment of 29 immune signatures by

unsupervised clustering. We demonstrated the reproducibility

and predictability of this subtyping method by analyzing four

different datasets, including three bulk tumor datasets and

FIGURE 6

A schematic illustration to summarize the molecular and clinical

features of both immune subtypes of HPV+ cervical cancer.

HPV+ cervical cancer can be classified into two subtypes with

high and low immunity, respectively. The low immunity is

associated with tumor progressive phenotypes, unfavorable

prognosis, and genomic instability in HPV+ cervical cancer. The

figure was created with BioRender.com.

one single cell dataset. Compared to Immunity-L, Immunity-

H showed higher immunity, more stromal contents, lower

tumor purity, lower tumor proliferation potential, stemness,

and ITH, higher TMB, more neoantigens, lower levels of

CNAs, lower DDR activity, as well as better overall survival

prognosis (Figure 6). Our analysis confirmed that “hot” tumors

have a stronger antitumor immunity and thus more favorable

prognosis vs. “cold” tumors (15, 45, 48). Previous studies have

shown that TMB and CNAs correlate positively and negatively

with antitumor immune response, respectively (31). This is

consistent with our results that Immunity-H had higher TMB

and lower levels of CNAs than Immunity-L. In addition, the

markedly lower ITH in Immunity-H vs. Immunity-L supports

the notion that ITH can contribute to tumor immune evasion

(23, 47).

In addition to immune pathways, Immunity-H was more

enriched in several cancer-associated pathways, including

apoptosis, VEGF signaling, calcium signaling, MAPK signaling,

and Wnt signaling pathways. We demonstrated that most of

these pathways has positive associations of their enrichment

with immune infiltration levels in HPV+ cervical cancer. In fact,
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the positive association between these pathway’ enrichment and

immune infiltration have been implicated inmany other cancers,

such as head and neck (45), gastric (48), and breast cancers [50].

Using the uncentered correlation and centroid linkage

method, the TCGA network performed mRNA clustering of

cervical cancers (4). There were three cervical cancer clusters

identified, termed C1, C2, and C3, respectively. We found that

39.74% of Immunity-L tumors belonged to C1, compared to

9.19% of Immunity-H tumors in C1 (P < 0.001). It is in line

with that C1 has the worst prognosis among the three clusters.

In contrast, 64.37 and 26.44% of Immunity-H tumors belonged

to C2 and C3, respectively, compared to 46.15 and 14.10% of

Immunity-L tumors in C2 and C3, respectively. These results

suggest that our immune-based subtyping method is reasonable

in terms of the prognostic relevance.

By analyzing multiple datasets using both unsupervised and

supervised machine learning approaches, we demonstrated that

this subtyping method for HPV+ cervical cancer was stable

and predictable. It suggests that this method has the application

potential in clinical practice. However, further experimental and

clinical validation is necessary to translate our findings into

clinical practice. It should be a priority in our future studies.

Conclusion

HPV+ cervical cancers are classified into two immune

subtypes based on their immune signatures’ enrichment

levels. The immune subtypes have significantly different

immunity, tumor proliferation potential, stemness, ITH,

TMB, neoantigens, CNAs, DDR activity, and overall survival

prognosis. Our data offer new understanding of tumor

immunity for HPV+ cervical cancer and clinical association

with its immunotherapy.
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