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Abstract

Non-invasive fetal electrocardiography (NI-FECG) plays an important role in fetal heart rate

(FHR) measurement during the pregnancy. However, despite the large number of methods

that have been proposed for adult ECG signal processing, the analysis of NI-FECG remains

challenging and largely unexplored. In this study, we propose a prefix tree-based frame-

work, called QRStree, for FHR measurement directly from the abdominal ECG (AECG).

The procedure is composed of three stages: Firstly, a preprocessing stage is employed for

noise elimination. Secondly, the proposed prefix tree-based method is used for fetal QRS

complexes (FQRS) detection. Finally, a correction stage is applied for false positive and

false negative correction. The novelty of the framework relies on using the range of FHR to

establish the connections between the FQRS. The consecutive FQRS can be considered

as strings composed of alphabet items, thus we can use the prefix tree to store them. A

vertex of the tree contains an alphabet, thus a path of the tree gives a string. Such that, by

storing the connections of the FQRS into the prefix tree structure, the problem of FQRS

detection converts to a problem of optimal path selection. Specifically, after selecting the

optimal path of the tree, the nodes in the optimal path are collected as detected FQRS.

Since the prefix tree can cover every possible combination of the FQRS candidates, it has

the potential to reduce the occurrence of miss detections. Results on two different data-

bases show that the proposed method is effective in FHR measurement from single-channel

AECG. The focus on single-channel FHR measurement facilitates the long-term monitoring

for healthcare at home.

Introduction

Non-invasive fetal electrocardiography (NI-FECG) can be used for fetal heart rate (FHR) mea-

surement throughout the pregnancy [1–4]. However, extracting the FHR information from

the abdominal ECG (AECG) remains a challenging task [5–7]. On the one hand, the AECG

collected from the abdomen is inevitably affected by a variety of noise interferences [8]. On the

other hand, the maternal ECG (MECG) component of the AECG is the predominant interfer-

ence source, which has a much larger amplitude than the fetal ECG (FECG) (see Fig 1) [9–11].
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This paper addresses the issue of detecting the location of fetal QRS complexes (FQRS) for

FHR measurement.

In order to obtain a reliable FHR measurement, the location of FQRS is the primary feature

that any approach must achieve from the AECG [1, 12, 13]. However, despite the significant

advances in the field of adult QRS detection, the analysis of FQRS detection remains largely

unexplored [14–16]. Unlike the adult QRS which can be directly detected from the AECG, the

FQRS is usually detected after a procedure of MECG elimination [17, 18]. For this purpose, a

considerable amount of literature has been published to remove the MECG from the AECG

for FHR monitoring [1, 19], such as the blind source separation (BSS) methods [17, 20, 21],

the adaptive noise cancelling (ANC) methods [22–24], and the template subtraction (TS)

methods [25–27]. Although the techniques based on the separation or cancellation of MECG

make FHR measurement possible, the FHR outcome highly depends on the performance

of MECG elimination, that is, a reliable FHR is hard to be obtained when the MECG is not

completely removed, what is more, the FECG signal is significantly distorted after suppressing

the MECG [23, 28]. As discussed in [29], the morphology of cardiac electrical signals contains

a lot of information related to cardiac defects. Recently, the work of [30] presents a segmenta-

tion-based method to detect the FQRS from single-channel AECG. It uses a convolutional

neural network to distinguish whether the segmented AECG contains FQRS. In this work,

after analyzing graphical representation of the FQRS, we propose a prefix tree-based frame-

work, called QRStree, for FHR measurement without separation of FECG.

As shown in Fig 2, the heart beats of the fetus are inherently sequential, and the fetal R

peaks exist in the local maxima. We can use the range of the FHR to obtain the distance range

Fig 1. Illustration of AECG. On the AECG, the maternal QRS and fetal QRS are marked with rectangles. It is noted

that the MECG has a much larger amplitude than the FECG.

https://doi.org/10.1371/journal.pone.0223057.g001

Fig 2. Illustration of the connections between two adjacent FQRS on the AECG. Given the range of FHR, the distance range of the next

FQRS can be determined. For the first FQRS, three local maxima are within the distance range, such that these local maxima are connected with

the first FQRS (one red line and two blue lines). The red line indicates the connection between two real FQRS.

https://doi.org/10.1371/journal.pone.0223057.g002
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between the fetal R peaks (defined in Eq (2)). Such that the consecutive FQRS can be con-

nected by the distance range. For the purpose of illustration, an example of connected FQRS is

shown in Fig 2. Here, we use a prefix tree structure to store these sequential connections. The

prefix tree, also called trie, is a useful data structure to store dynamic sets such as strings and

sequences [31–33]. It is widely used in the field of analyzing data characteristics or gaining

information needed for decision-making [34–36]. The consecutive FQRS can be considered as

strings composed of alphabet items, thus we can use the prefix tree to store them. A vertex of

the tree contains an alphabet, thus a path of the tree gives a string. Each string is represented as

the path from a representative vertex to the root. Such that, after storing the sequential connec-

tions into the prefix tree structure, the problem of FQRS detection converts to a problem of

optimal path selection. Specifically, by analyzing the graphical representation of the paths,

the optimal path of the tree can be selected, and the nodes in the optimal path are collected as

detected FQRS.

In this work, the proposed method is compared with five single-channel methods. These

methods include four TS methods [25–27, 37] and one segmentation-based method [30]. The

experimental results show that the proposed method is effective in FQRS detection. The prefix

tree-based framework has the following advantages:

• Firstly, since the prefix tree can cover every possible combination of the FQRS candidates, it

has the potential to reduce the occurrence of miss detections.

• Secondly, since the tree structure is built on the range of FHR, it will not be affected by the

large amplitude of MECG.

• Finally, although the FECG and MECG overlap in both time and frequency domains [23],

only the local maxima satisfied the range of FHR are collected to construct the tree. And the

model can skip the maternal R peaks which dissatisfy the range of FHR. Such that the FQRS

and MQRS are ‘heart rate separable’.

The details of the proposed method are described in the following sections.

Materials and methods

Basic structure

Unlike the TS methods which are based on the elimination of MECG, we propose a novel

method to detect the location of FQRS directly from the AECG. As shown in Fig 3, the proce-

dure of the proposed method mainly consists of three stages. Stage 1: Noise elimination; Stage

2: The prefix tree-based method for FQRS detection; Stage 3: False positive (FP) and false nega-

tive (FN) correction. The details of each stage are described in the following subsections.

Stage 1: Noise elimination

The AECG is inevitably affected by noise. In order to remove the noise, a preprocessing stage

is widely used in the previous approaches such as the TS methods. In stage 1, inspired by the

work of [30], a band-pass Butterworth filter (between 0.5 Hz and 100 Hz) is applied to remove

the baseline wander and the high-frequency noise above 100 Hz.

Stage 2: The prefix tree-based method for FQRS detection

After the stage of noise elimination, a new method based on the prefix tree structure is imple-

mented to carry out the FQRS detection. This method contains three steps. In step 1, consider-

ing the range of the FHR, the tree contained the location of candidate FQRS is structured. In

Fetal QRS complexes detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0223057 October 1, 2019 3 / 20

https://doi.org/10.1371/journal.pone.0223057


step 2, the features of the nodes (single FQRS candidate) and the features of the paths (conse-

cutive FQRS candidates) are extracted. In step 3, the optimal path of the tree is selected, then

the location of the FQRS can be detected. In this study, each FQRS candidate can be consid-

ered as an alphabet, thus the consecutive FQRS is considered as strings composed of alphabet

items. The prefix tree is a tree shaped data structure widely used in storing strings. Here, three

characteristics of the prefix tree are listed:

• A vertex of the tree has an alphabet, thus a path of the tree gives a string.

• Each string is represented as the path from a representative vertex to the root.

Fig 3. The procedure of the proposed method for FHR monitoring. Among the three stages, the prefix tree is

constructed in stage 2.

https://doi.org/10.1371/journal.pone.0223057.g003
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• Every string in the tree is unique.

These characteristics are used in the construction of the prefix tree.

Step 1: Tree construction. Fig 4 shows the procedure of tree construction. As shown

in Fig 4A, the real fetal R peaks are scattered in the local maxima. The goal of the proposed

method is to find out the real fetal R peaks from the candidate peaks. In this step, the prefix

tree based on the limit of the timed distance between the FQRS is structured.

The timed distance of two detected R peaks RR is defined as

RRi ¼ Riþ1 � Ri ð1Þ

where Ri is the timed position of the i-th detected R peak.

Given the range of FHR f 2 (fL, fH) bpm, the range of the distance between two fetal R peaks

d 2 (dL, dH) s could be defined by

d ¼ 60=f � fs ð2Þ

where f is the FHR, where fs is the sampling frequency.

The prefix tree is constructed layer by layer. As shown in Fig 4B, the prefix tree starts with

the root at layer 0 and with a null value. In order to construct the layer 1 of the tree (see Fig 4A

and 4B), the local maxima at the beginning of AECG are evaluated by

pj < dH ð3Þ

Fig 4. The procedure of tree construction. The prefix tree is constructed layer by layer.

https://doi.org/10.1371/journal.pone.0223057.g004
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where pj is the timed position of the j-th local maximum. Then the local maxima satisfied the

Eq (3) are collected to use as the nodes in the layer 1. As shown in Fig 4B, the p1, p2, . . ., p10 are

used as the nodes in the layer 1. Every node contains one FQRS candidate.

In order to construct the layer k (k� 2) of the tree (see Fig 4A, 4C and 4D), the limit of RR

distance based on the FHR is employed. Specifically, the local maxima are evaluated by

dL < RRk� 1 < dH ð4Þ

then the local maxima satisfied the Eq (4) can be saved as the fetal R peak candidates for layer

k (k� 2). As shown in Fig 4C, the p8, p9, . . ., p11 are used as the nodes in the layer 2 of p1. After

the node p1, the p14, p15, p16 are used as the nodes in the layer 3 of p8 (see Fig 4D). By using

these strategies, a multilayer tree could be structured.

Step 2: Feature extraction. In this step, the features of the nodes (single FQRS candidate)

and the features of the paths (consecutive FQRS candidates) are extracted. In a β-layer tree

(structured in step 1 of stage 2), each path includes β fetal R peak candidates. As shown in Fig

4D, besides the root, the path1,8,14 contains three fetal R peak candidates (p1, p8, p14).

A fetal R peak candidate is composed of a local minimum (Q-peak candidate), a local maxi-

mum (R-peak candidate) and a local minimum (S-peak candidate). As shown in Fig 5, three

features of the single FQRS candidate are collected, namely the ratio of RS amplitude to RS dis-

tance RRS (RRS = ARS/DRS), amplitude of RS (ARS), the ratio of QR amplitude to QR distance

RQR (RQR = AQR/DQR).

By analyzing the path-wise representation of FQRS candidates in the tree, three regular pat-

terns of the inter-QRS correlation can be noted.

• In this work, we use the variances of RQR and RRS to represent the graphical similarities

between the local maxima in a path. It is noted that the graphical similarities between the

fetal R peaks are higher than the noise.

Fig 5. The feature representation of FQRS. Each FQRS is composed of a local minimum (Q-peak candidate), a local

maximum (R-peak candidate) and a local minimum (S-peak candidate).

https://doi.org/10.1371/journal.pone.0223057.g005
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• In some cases, the values of single noise peak are larger than the real fetal R peak in terms

of ARS, RQR and RRS. However, the overall values (e.g., median) of the real fetal R peaks in a

path are larger than the noise in these terms.

• The RR distances of the real fetal R peaks are relatively stable in a short time.

Therefore, six features of the paths (consecutive FQRS candidates) are retained to represent

the regular patterns.

• FQR: the variance of RQR.

• FRS: the variance of RRS.

• FAm: the median of ARS.

• FQRm: the median of RQR.

• FRSm: the median of RRS.

• FRR: the variance of RR distances.

The variance is given by

v2 ¼

PN
n¼1
ðxi � mÞ

2

N
ð5Þ

where N corresponds to the number of fetal R peak candidates in a path, where μ corresponds

to the mean value of the feature. The FQR and FRS represent the graphical similarity between

the fetal R peak candidates in a path. The lower variance value shows a higher graphical simi-

larity. And the greater median value shows a greater probability of being a path of real fetal R

peaks. In addition, the FRR represents the stability of the RR distances in a path.

Step 3: Optimal path selection. After extracting the six features of paths (FQR, FRS, FAm,

FQRm, FRSm and FRR), effective techniques are needed to select the optimal path for fetal QRS

detection.

In this step, a robust ranking approach is employed for the optimal path selection. Firstly,

the paths are ranked in these six features separately. Secondly, a total ranking S is given by

S ¼ SQR þ SRS þ SAm þ SQRm þ SRSm þ SRR ð6Þ

where SX is the ranking of the corresponding feature. The total ranking S fuses the perfor-

mance of the paths on all features. Thirdly, the optimal path of the tree can be selected by

I ¼ minðSÞ ð7Þ

where I is the index of the optimal path. In the optimal path with β FQRS candidates (β-layer

tree), the first λ (0 < λ� β) FQRS candidates can be saved as detected fetal R peaks. Then the

same procedure in stage 2 is employed to the subsequent signals (after the last detected fetal R

peak). As shown in Algorithm 1, the locations of the FQRS are obtained in each iteration, until

the entire AECG is detected.

Algorithm 1 Procedure of prefix tree-based method.
Require:
1: G  <input matrix> // Input a channel of AECG;
2: fL  = 110 // The lower limit of FHR;
3: fH  = 180 // The upper limit of FHR;
4: β  = 6 // The number of layers;
5: λ  = 2 // Number of detected FQRS to be saved;
6: U  = null // Vector for detected FQRS;

Fetal QRS complexes detection
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Ensure:
7: while NOT reaching the end of G do
8: for k = 1 to β // Tree construction
9: if k ¼¼ 1 then
10: Tk  < Getlayer1(fH)>; //construct the layer 1
11: else
12: Tk  < Getotherlayers(fL, fH)>; //construct other layers
13: end if
14: end for
15: F  < Getfeature(T)>; //Feature extraction
16: S  < Getranking(F)>; //Optimal path selection
17: Q  < GetFQRS(S, λ)>; //Detected FQRS
18: U  [U, Q]; //Update the results
19: end while
20: return U

Stage 3: FP and FN correction

In this work, the construction of the tree can ensure that the range of RR distances (see Eq (8))

is always satisfied within a tree. However, the length of the AECG channel is longer than the

tree. We need to construct multiple trees to cover the entire AECG channel. In such a situa-

tion, the RR distances between the trees cannot ensure that the range of RR distances is always

satisfied. Therefore, after the stage of FQRS detection, a procedure based on the RR distances

is implemented for false positive (FP) and false negative (FN) correction. The FP corresponds

to the wrongly detected FQRS, and the FN corresponds to the missed detected FQRS.

Specifically, the detected fetal R peaks are evaluated on the RR distances as:

dL < RRi < dH ð8Þ

Then the detected FQRS which satisfies the Eq (8) could be used to calculate the FHR directly.

However, when the Eq (8) is not satisfied, it means that wrong detection occurs within two

consecutive trees. Then the detected FQRS of two consecutive trees would be removed (see

Fig 6). And the considered interval would be inserted with m replicas of the previous detected

FQRS in an equal-interval manner. The number of replicas m is defined by

m ¼ b
2 � Dint

RRi� l� 1 þ RRiþlþ1

c ð9Þ

where Dint is the length of the considered interval, b�c is the round down operation.

Fig 6. Illustration of correction. After removing 2λ (e.g., λ = 2) detected fetal R peaks, several replicas of the previous

detected FQRS would be added in the middle of the considered interval.

https://doi.org/10.1371/journal.pone.0223057.g006
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Parameter settings

In this paper, a new method based on the prefix tree structure is introduced to FHR measure-

ment. The parameters are described as follows:

• fL and fH: fL and fH indicate the range of FHR. The FHR range should cover the FHR of inter-

est. As indicated in [38], the normal range of FHR is 120 to 160 bpm. In order to cover the

normal range of FHR, the fL and fH are set at 110 and 180, respectively.

• β and λ: β is the number of layers in the tree. After the optimal path is selected, only the first

λ FQRS candidates would be saved as detected FQRS. A deeper tree needs more computa-

tional resources to build. In consideration of the limited computational resources, β is set at

6. And we have not found significant performance improvement when using deeper trees.

For the parameter λ, large value is not recommended. When the fetal R peaks are wrongly

detected, it is likely that all of the detected FQRS in the selected path are wrongly detected

FQRS. In this situation, setting λ with a large value (e.g., six) would increase the number of

wrong detections. In this work, after optimizing by grid search within the range of 1 to 6, λ is

set at 2. We build a six-layer tree in 0.09 s on Matlab 2017 using a PC with 8 GB RAM and an

Intel 2.20 GHz CPU.

NI-FECG databases

The real AECG records from two public databases are collected to illustrate the efficiency of

the proposed method. These databases include the abdominal and direct fetal electrocardio-

gram database (ADFECGDB) [39] and the Set A of 2013 PhysioNet/Computing in cardiology

challenge database (PCDB) [40]. Both databases are available on PhysioNet (https://physionet.

org/physiobank/database/adfecgdb/, https://physionet.org/physiobank/database/challenge/

2013/). The details of the databases are summarized as follows:

• The abdominal and direct fetal electrocardiogram database (ADFECGDB) contains five rec-

ords collected from five pregnant women. Each record has 4 abdominal channels and one

scalp ECG. The signal lasts for 5 min and is sampled at fs = 1 kHz. The reference FQRS anno-

tation derived from the scalp ECG is available [39].

• Set A of 2013 PhysioNet/Computing in cardiology challenge database (PCDB) consists of

75 one-minute abdominal records. Data is sampled at fs = 1 kHz. Each record contains four

abdominal channels and the FQRS reference is available. To date, this database is the largest

publicly available dataset [40].

As indicated in [19], seven AECG records (a33, a38, a47, a52, a54, a71 and a74) are dis-

carded from the PCDB because of inaccurate reference annotations. In addition, the r04 Ab-1,

r07 Ab-1 and r10 Ab-3 are excluded from the ADFECGDB because of severe noise. All records

are resampled with fs = 250 Hz.

Evaluation metrics

In the previous methods (e.g., the TS methods), the FQRS is detected on the residual signals

after the MECG is removed. The comparisons between the detected beats and the reference

beats are usually used to assess the performances of FQRS detection. When the detected FQRS

is within 50 ms of the reference annotation, then the detected FQRS could be considered as a

true positive (correctly detected fetal QRS) [9]. Specifically, the sensitivity (SE), positive predic-

tive value (PPV) and F1 measure (F1) are the evaluation metrics typically used to assess the

Fetal QRS complexes detection
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error of FQRS detection [1]. The definitions of the three metrics are given by

SE ¼
TP

TP þ FN
ð10Þ

PPV ¼
TP

TP þ FP
ð11Þ

F1 ¼ 2�
SE� PPV
SEþ PPV

¼
2� TP

2� TPþ FN þ FP
ð12Þ

where TP corresponds to the number of true positives. As mentioned earlier, the FP and FN

correspond to the number of false positive (falsely detected non-FQRS peaks) and false nega-

tive (missed FQRS detections), respectively.

Results

In this study, the real AECG records from the PCDB and ADFECGDB are collected to evalu-

ate the efficiency of the proposed method. Results of the proposed method on PCDB are

shown in Tables 1 and 2. Results of the proposed method on ADFECGDB are shown in

Table 3. In order to obtain the overall distribution of the metrics, the results on these two

databases are visually summarized in Fig 7. It is noted that the results of the proposed

method on PCDB are 61.52 ± 30.34 SE(%), 61.66 ± 30.06 PPV (%) and 61.55 ± 30.20 F1 (%).

And the results of the proposed method on ADFECGDB are 94.72 ± 4.12 SE(%), 96.38 ± 2.45

PPV (%) and 95.54 ± 3.28 F1 (%).

Results of the proposed method are compared with four TS methods [25–27, 37] in Figs 8

and 9. These methods include the Cerutti method (Cerutti), the Vullings method (Vullings),

the TSPCA and the EKF [25–27, 37]. The work of [9] has shown that the TS methods are able to

extract the location of FQRS. Within the TS category, the TSPCA performs the best [9]. These

compared methods are implemented on the FECGSYN toolbox [9]. As shown in Figs 8 and

9, among four compared methods, the TSPCA outperforms other methods. and the result of

QRStree is comparable with the state-of-art result reported in the field.

In this work, we also compare the proposed method with the segmentation-based method

[30] (see Fig 10). As indicated in [30], seven records (a01, a02, a03, a04, a05, a06 and a07)

from the PCDB are used as the test data, and the result of the best channel is used as the result

of the corresponding record. Results show that the QRStree achieves better performance with

85.68 ± 17.48 SE (%), 85.57 ± 16.71 PPV (%) and 85.61 ± 17.05 F1 (%).

Discussions

In this study, a new prefix tree-based method is proposed for FHR measurement from single-

channel AECG recording. Tree structure is a good method used to describe the FQRS candi-

date which will be stored in one node in the tree. In the field of NI-FECG signal processing,

the frequency and temporal overlap of the MECG and FECG signals makes the FHR measure-

ment challenging. However, since the tree structure is built on the range of FHR, only the local

maxima satisfied the range will be collected for use, that is, it can skip the maternal R peaks

which are not satisfied the range of FHR. As a result, the FQRS and MQRS become ‘heart rate

separable’. It means that the proposed method will not be affected by the large amplitude of

MECG, which is the predominant interference source.

The prefix tree in this work is a complete prefix tree, which includes all the possible combi-

nation of the FQRS candidates. It is a highly compact tree structure that enables efficient
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Table 1. Evaluation results on the PCDB, part 1.

Recordings SE (%) PPV (%) F1 (%) Recordings SE (%) PPV (%) F1 (%)

a01 Ab-1 97.01 97.01 97.01 a02 Ab-1 48.99 51.40 50.17

a01 Ab-2 62.69 62.69 62.69 a02 Ab-2 22.30 28.74 25.11

a01 Ab-3 63.43 61.59 62.50 a02 Ab-3 31.65 35.48 33.46

a01 Ab-4 94.78 94.78 94.78 a02 Ab-4 35.57 42.74 38.83

a03 Ab-1 86.49 88.07 87.27 a04 Ab-1 87.50 86.23 86.86

a03 Ab-2 89.19 86.09 87.61 a04 Ab-2 95.00 92.26 93.61

a03 Ab-3 54.62 52.85 53.72 a04 Ab-3 87.50 83.55 85.48

a03 Ab-4 85.27 91.47 88.26 a04 Ab-4 90.83 88.23 89.51

a05 Ab-1 100 100 100 a06 Ab-1 89.93 93.98 91.91

a05 Ab-2 100 100 100 a06 Ab-2 33.09 38.98 35.80

a05 Ab-3 100 100 100 a06 Ab-3 45.22 50.59 47.75

a05 Ab-4 100 100 100 a06 Ab-4 63.31 66.17 64.71

a07 Ab-1 79.65 78.26 78.95 a08 Ab-1 100 100 100

a07 Ab-2 30.09 26.56 28.22 a08 Ab-2 100 100 100

a07 Ab-3 31.86 29.27 30.51 a08 Ab-3 100 100 100

a07 Ab-4 61.16 60.66 60.91 a08 Ab-4 100 100 100

a09 Ab-1 70.33 71.86 71.09 a10 Ab-1 74.88 83.79 79.08

a09 Ab-2 22.12 17.56 19.58 a10 Ab-2 39.01 45.07 41.82

a09 Ab-3 53.98 50.41 52.14 a10 Ab-3 30.92 37.01 33.69

a09 Ab-4 25.62 24.80 25.20 a10 Ab-4 75.56 84.75 79.89

a11 Ab-1 71.48 73.03 72.24 a12 Ab-1 98.44 98.44 98.44

a11 Ab-2 25.95 27.87 26.88 a12 Ab-2 97.66 97.66 97.66

a11 Ab-3 35.11 35.94 35.52 a12 Ab-3 86.44 85.71 86.08

a11 Ab-4 37.40 35.51 36.43 a12 Ab-4 96.88 96.88 96.88

a13 Ab-1 63.94 61.90 62.90 a14 Ab-1 84.48 84.48 84.48

a13 Ab-2 94.02 93.22 93.62 a14 Ab-2 77.59 75.63 76.60

a13 Ab-3 85.47 82.64 84.03 a14 Ab-3 52.59 48.80 50.62

a13 Ab-4 98.17 98.17 98.17 a14 Ab-4 84.48 84.48 84.48

a15 Ab-1 85.71 85.04 85.38 a16 Ab-1 62.89 60.79 61.83

a15 Ab-2 82.54 80.87 81.70 a16 Ab-2 27.43 26.96 27.19

a15 Ab-3 88.10 88.10 88.10 a16 Ab-3 25.66 24.37 25.00

a15 Ab-4 84.13 81.75 82.92 a16 Ab-4 26.55 27.27 26.91

a17 Ab-1 86.84 87.61 87.22 a18 Ab-1 38.46 44.25 41.15

a17 Ab-2 95.12 95.12 95.12 a18 Ab-2 25.00 30.70 27.56

a17 Ab-3 96.75 96.75 96.75 a18 Ab-3 32.31 38.18 35.00

a17 Ab-4 100 100 100 a18 Ab-4 23.08 26.79 24.79

a19 Ab-1 47.06 47.86 47.46 a20 Ab-1 60.16 58.89 59.52

a19 Ab-2 100 100 100 a20 Ab-2 90.16 87.30 88.71

a19 Ab-3 100 100 100 a20 Ab-3 82.13 83.33 82.73

a19 Ab-4 86.55 85.83 86.19 a20 Ab-4 96.72 95.93 96.33

a21 Ab-1 93.65 94.40 94.02 a22 Ab-1 95.73 95.73 95.73

a21 Ab-2 37.04 39.06 38.02 a22 Ab-2 100 100 100

a21 Ab-3 39.26 40.77 40.00 a22 Ab-3 100 100 100

a21 Ab-4 90.37 91.04 90.71 a22 Ab-4 100 100 100

a23 Ab-1 53.18 54.25 53.71 a24 Ab-1 75.79 72.24 73.98

a23 Ab-2 95.76 95.76 95.76 a24 Ab-2 93.46 93.46 93.46

a23 Ab-3 100 100 100 a24 Ab-3 93.91 93.91 93.91

(Continued)
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mining of the inter-QRS correlation between the FQRS. Specifically, all the real fetal R peaks

are laid in the tree structure, in which the path consisted of real fetal R peaks can be selected.

Such that, it has potential to reduce the occurrence of miss detections.

In addition, the proposed method only requires single-channel AECG. Compared with the

algorithms which require multiple channels, it is a considerable advantage from the standpoint

of pregnant women. It is worth noting that focusing on one-lead FQRS detection techniques

facilitates the production of low-cost and easy-to-use devices for intrapartum and antepartum

monitoring.

Results show that the proposed method achieves a good performance. Key to the good

performance is that the proposed approach can effectively extract the inter-QRS correlation

between the FQRS. This work shows an interesting way for FHR measurement without

degrading the FECG signal. The location of FQRS is directly extracted from the AECG signal,

such that the proposed approach has the potential to provide information to extract the origi-

nal waveform of FQRS from the AECG.

By cancelling the MECG, numerous techniques make FHR extraction possible. However,

the TS methods require the accurate location of the MQRS for MECG elimination. Otherwise,

Table 1. (Continued)

Recordings SE (%) PPV (%) F1 (%) Recordings SE (%) PPV (%) F1 (%)

a23 Ab-4 94.92 94.92 94.92 a24 Ab-4 85.05 81.98 83.49

a25 Ab-1 55.56 53.28 54.39 a26 Ab-1 31.09 30.08 30.58

a25 Ab-2 96.58 95.76 96.17 a26 Ab-2 78.91 77.25 78.07

a25 Ab-3 100 100 100 a26 Ab-3 78.29 77.10 77.69

a25 Ab-4 94.02 93.22 93.62 a26 Ab-4 93.80 94.53 94.16

a27 Ab-1 36.98 36.05 36.51 a28 Ab-1 99.36 98.10 98.73

a27 Ab-2 32.22 30.59 31.38 a28 Ab-2 100 98.73 99.36

a27 Ab-3 39.37 35.87 37.54 a28 Ab-3 100 98.73 99.36

a27 Ab-4 32.22 29.18 30.62 a28 Ab-4 100 96.89 98.42

a29 Ab-1 29.30 30.56 29.92 a30 Ab-1 29.70 30.16 29.92

a29 Ab-2 41.49 40.80 41.14 a30 Ab-2 38.94 43.23 40.97

a29 Ab-3 27.19 28.04 27.61 a30 Ab-3 30.30 25.16 27.49

a29 Ab-4 28.42 28.42 28.42 a30 Ab-4 25.76 28.33 26.98

a31 Ab-1 29.13 27.01 28.03 a32 Ab-1 35.92 40.16 37.92

a31 Ab-2 86.61 85.94 86.27 a32 Ab-2 28.03 31.36 29.60

a31 Ab-3 83.46 82.17 82.81 a32 Ab-3 27.46 27.46 27.46

a31 Ab-4 32.20 34.23 33.19 a32 Ab-4 25.76 28.33 26.98

a34 Ab-1 31.90 31.90 31.90 a35 Ab-1 99.34 97.40 98.36

a34 Ab-2 84.43 81.75 83.06 a35 Ab-2 99.34 97.40 98.36

a34 Ab-3 77.05 74.60 75.81 a35 Ab-3 99.34 97.40 98.36

a34 Ab-4 55.17 52.89 54.01 a35 Ab-4 93.38 92.76 93.07

a36 Ab-1 100 100 100 a37 Ab-1 56.06 56.49 56.27

a36 Ab-2 99.36 100 99.68 a37 Ab-2 39.02 42.48 40.68

a36 Ab-3 99.36 100 99.68 a37 Ab-3 20.33 21.14 20.72

a36 Ab-4 96.15 97.40 96.77 a37 Ab-4 79.55 80.77 80.15

a39 Ab-1 55.56 56.92 56.22 a40 Ab-1 23.19 24.24 23.70

a39 Ab-2 53.39 64.95 58.60 a40 Ab-2 87.60 87.60 87.60

a39 Ab-3 25.42 23.26 24.29 a40 Ab-3 26.81 30.58 28.57

a39 Ab-4 88.98 88.24 88.61 a40 Ab-4 97.10 97.10 97.10

https://doi.org/10.1371/journal.pone.0223057.t001
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Table 2. Evaluation results on the PCDB, part 2. At the end of the table, mean scores and the standard deviations (mean ± std) are reported.

Recordings SE (%) PPV (%) F1 (%) Recordings SE (%) PPV (%) F1 (%)

a41 Ab-1 47.24 50.42 48.78 a42 Ab-1 22.14 21.98 22.05

a41 Ab-2 73.23 74.40 73.81 a42 Ab-2 96.45 96.45 96.45

a41 Ab-3 26.77 25.76 26.25 a42 Ab-3 25.95 32.08 28.69

a41 Ab-4 24.58 30.21 27.10 a42 Ab-4 97.87 97.87 97.87

a43 Ab-1 31.39 37.37 34.13 a44 Ab-1 100 100 100

a43 Ab-2 34.01 38.17 35.97 a44 Ab-2 100 100 100

a43 Ab-3 19.73 21.48 20.57 a44 Ab-3 100 100 100

a43 Ab-4 26.28 28.13 27.17 a44 Ab-4 100 100 100

a45 Ab-1 22.31 23.20 22.75 a46 Ab-1 50.88 46.03 48.33

a45 Ab-2 62.31 61.36 61.83 a46 Ab-2 47.15 45.67 46.40

a45 Ab-3 56.15 53.68 54.89 a46 Ab-3 23.58 22.48 23.02

a45 Ab-4 62.31 62.79 62.55 a46 Ab-4 24.39 21.58 22.90

a48 Ab-1 23.73 24.35 24.03 a49 Ab-1 100 100 100

a48 Ab-2 81.36 81.36 81.36 a49 Ab-2 100 100 100

a48 Ab-3 78.23 74.05 76.08 a49 Ab-3 99.22 99.22 99.22

a48 Ab-4 92.37 90.83 91.60 a49 Ab-4 100 100 100

a50 Ab-1 23.77 22.31 23.02 a51 Ab-1 42.97 41.98 42.47

a50 Ab-2 25.76 25.95 25.86 a51 Ab-2 27.34 26.72 27.03

a50 Ab-3 29.55 29.77 29.66 a51 Ab-3 64.06 61.65 62.84

a50 Ab-4 28.03 27.82 27.92 a51 Ab-4 43.75 44.09 43.92

a53 Ab-1 23.78 27.64 25.56 a55 Ab-1 24.39 24.79 24.59

a53 Ab-2 79.72 84.44 82.01 a55 Ab-2 87.97 88.64 88.30

a53 Ab-3 22.56 25.84 24.10 a55 Ab-3 84.21 85.50 84.85

a53 Ab-4 100 100 100 a55 Ab-4 38.35 40.16 39.23

a56 Ab-1 29.37 29.84 29.60 a57 Ab-1 54.35 52.82 53.57

a56 Ab-2 29.91 33.02 31.39 a57 Ab-2 37.68 36.11 36.88

a56 Ab-3 34.19 36.70 35.40 a57 Ab-3 30.43 26.92 28.57

a56 Ab-4 25.40 25.00 25.20 a57 Ab-4 21.01 21.10 21.06

a58 Ab-1 35.16 36.29 35.71 a59 Ab-1 23.78 25.00 24.37

a58 Ab-2 66.41 66.67 66.54 a59 Ab-2 20.28 21.64 20.94

a58 Ab-3 40.34 46.15 43.05 a59 Ab-3 27.97 27.78 27.87

a58 Ab-4 28.13 29.27 28.69 a59 Ab-4 22.56 24.79 23.62

a60 Ab-1 28.78 27.21 27.97 a61 Ab-1 26.23 26.89 26.56

a60 Ab-2 26.62 25.52 26.06 a61 Ab-2 97.71 96.24 96.97

a60 Ab-3 22.14 22.14 22.14 a61 Ab-3 49.62 47.79 48.69

a60 Ab-4 25.95 26.15 26.05 a61 Ab-4 96.18 94.74 95.45

a62 Ab-1 25.93 27.34 26.62 a63 Ab-1 26.67 25.81 26.23

a62 Ab-2 100 100 100 a63 Ab-2 33.33 33.59 33.46

a62 Ab-3 100 100 100 a63 Ab-3 30.00 30.25 30.13

a62 Ab-4 94.07 94.07 94.07 a63 Ab-4 34.17 32.28 33.20

a64 Ab-1 28.35 25.35 26.77 a65 Ab-1 24.39 26.32 25.32

a64 Ab-2 31.50 29.41 30.42 a65 Ab-2 78.95 77.21 78.07

a64 Ab-3 26.77 22.08 24.20 a65 Ab-3 18.05 19.67 18.82

a64 Ab-4 27.56 23.49 25.36 a65 Ab-4 80.45 80.45 80.45

a66 Ab-1 26.45 24.81 25.60 a67 Ab-1 68.18 65.22 66.67

a66 Ab-2 95.87 95.08 95.47 a67 Ab-2 67.83 67.83 67.83

a66 Ab-3 98.35 98.35 98.35 a67 Ab-3 85.31 82.43 83.85

(Continued)
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the MQRS waveform can not be sliced and aligned. It should be noted that obtaining the loca-

tion of the MQRS is not always easy. As shown in Fig 11, it is difficult to access the location

of the MQRS when the FECG and MECG amplitudes are comparable. Consequently, the

performance in MECG elimination is reduced, and a reliable FHR measurement can not be

obtained. In the proposed QRStree, there is no need for such prior information. Such that the

FHR measurement can be achieved directly from the abdominal channel without eliminating

the MECG waveform, so the proposed QRStree avoids the problems related to MECG elimina-

tion such as MQRS slicing and alignment.

In order to evaluate the influence of FHR range (fL and fH) on FQRS detection, we imple-

ment a series of contrast experiments with different parameter sets (see Fig 12). Firstly, the

FHR range is set at 130-140 bpm. Then we broaden the FHR range in steps of 20 bpm. It is

noted that the FQRS can not be detected by narrow FHR range (e.g., 130-140 bpm), since the

FHR range has not covered the FHR of interest. As the FHR range becomes broader, the per-

formance has been improved accordingly (e.g., 100-170 bpm). However, after the FHR of

Table 2. (Continued)

Recordings SE (%) PPV (%) F1 (%) Recordings SE (%) PPV (%) F1 (%)

a66 Ab-4 97.52 98.33 97.93 a67 Ab-4 82.52 83.10 82.81

a68 Ab-1 28.33 28.10 28.22 a69 Ab-1 87.77 89.71 88.73

a68 Ab-2 27.50 23.40 25.29 a69 Ab-2 99.28 99.28 99.28

a68 Ab-3 26.67 26.02 26.34 a69 Ab-3 90.65 91.30 90.97

a68 Ab-4 31.67 31.15 31.40 a69 Ab-4 92.81 94.16 93.48

a70 Ab-1 66.67 69.57 68.09 a72 Ab-1 98.71 96.75 97.72

a70 Ab-2 90.83 90.08 90.46 a72 Ab-2 99.35 100 99.68

a70 Ab-3 45.83 46.61 46.22 a72 Ab-3 99.35 100 99.68

a70 Ab-4 34.17 32.54 33.33 a72 Ab-4 96.13 97.39 96.75

a73 Ab-1 24.59 26.55 25.53 a75 Ab-1 32.00 27.59 29.63

a73 Ab-2 31.97 33.62 32.77 a75 Ab-2 25.86 21.58 23.53

a73 Ab-3 25.41 24.80 25.10 a75 Ab-3 37.60 33.10 35.21

a73 Ab-4 33.08 34.13 33.59 a75 Ab-4 32.00 29.85 30.89

SE(%) PPV(%) F1 (%)

Overall 61.52 ± 30.34 61.66 ± 30.06 61.55 ± 30.20

https://doi.org/10.1371/journal.pone.0223057.t002

Table 3. Evaluation results on the ADFECGDB. At the end of the table, mean scores and the standard deviations (mean ± std) are reported.

Recordings SE(%) PPV(%) F1 (%) Recordings SE(%) PPV(%) F1 (%)

r01 Ab-1 98.12 98.27 98.20 r04 Ab-1 - - -

r01 Ab-2 98.43 98.59 98.51 r04 Ab-2 91.84 94.45 93.13

r01 Ab-3 99.06 99.37 99.22 r04 Ab-3 90.89 94.49 92.66

r01 Ab-4 98.90 99.22 99.06 r04 Ab-4 89.18 92.89 90.99

r07 Ab-1 - - - r08 Ab-1 97.52 97.83 97.67

r07 Ab-2 95.68 96.30 95.99 r08 Ab-2 97.23 98.14 97.68

r07 Ab-3 95.98 96.14 96.06 r08 Ab-3 96.46 97.20 96.83

r07 Ab-4 98.23 98.07 98.15 r08 Ab-4 96.46 97.20 96.83

r10 Ab-1 90.49 95.25 92.81 r10 Ab-3 - - -

r10 Ab-2 90.18 94.93 92.49 r10 Ab-4 85.60 90.19 87.84

SE(%) PPV(%) F1 (%)

Overall 94.72 ± 4.12 96.38 ±2.45 95.54 ± 3.28

https://doi.org/10.1371/journal.pone.0223057.t003
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Fig 7. Summary of the results on two databases: A PCDB (Tables 1 and 2), B ADFECGDB (Table 3).

https://doi.org/10.1371/journal.pone.0223057.g007

Fig 8. Comparison between the QRStree and four TS methods on PCDB. The results from the Tables 1 and 2 are used. The

bars correspond to the mean scores of the corresponding metrics.

https://doi.org/10.1371/journal.pone.0223057.g008
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Fig 9. Comparison between the QRStree and four TS methods on ADFECGDB. The results from the Table 3 are used. The

bars correspond to the mean scores of the corresponding metrics.

https://doi.org/10.1371/journal.pone.0223057.g009

Fig 10. Comparison between the QRStree and the segmentation-based method on seven records of PCDB. The

bars correspond to the mean scores of the corresponding metrics.

https://doi.org/10.1371/journal.pone.0223057.g010
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Fig 11. Examples of results with different methods when the FECG and MECG amplitudes are comparable. The performance of TS

methods in FQRS detection is reduced (see the FP and FN). However, the QRStree still detects the FQRS effectively. Data is collected from the

r01 Ab-2 of ADFECGDB.

https://doi.org/10.1371/journal.pone.0223057.g011

Fig 12. Mean scores of SE, PPV and F1 with different FHR ranges. Data is collected from the ADFECGDB. In order

to obtain a satisfied result on FHR measurement, the FHR range should cover the FHR of interest.

https://doi.org/10.1371/journal.pone.0223057.g012
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interest is covered, the performance degrades slowly as the FHR range broadens, since the

number of paths is increased and it would raise the risk of misdetections (e.g., 70-200 bpm).

In this work, the main objective is to provide a novel method for FQRS detection directly

from the AECG without canceling the MECG. And the results show that the proposed method

is effective in the task of FQRS detection. However, one limitation of the propose method is

that the performance is reduced when the AECG signal is affected by severe noise. In this situ-

ation, the methods based on MECG elimination (e.g., the TS methods) can obtain better per-

formance. It is expected that some noise components are removed in the process of MECG

elimination. In the future, it is worth to investigate the potential of the proposed method on

different noise levels by using synthetic data.

Conclusions

In this study, a novel framework is presented to FQRS detection from single-channel AECG.

Unlike the previous studies based on the elimination or separation of MECG, the proposed

QRStree detects the location of FQRS directly from the AECG. Specifically, the FQRS is con-

nected by the range of FHR. And these connections are organized and stored in a simple, but

yet powerful tree structure. The results show that the proposed method exhibits a good perfor-

mance on the task of FQRS detection. This work provides a new perspective for the develop-

ment of FHR measurement.
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