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A B S T R A C T   

Three-dimensional (3D) printing, as an emerging technology, is driving great progress in the food industry. In the 
meat field, 3D printing is expected to replace the traditional food industry and solve the problems of raw material 
waste and food contamination. Nevertheless, the application of 3D printing in meat still faces many challenges. 
The rheological properties of the ink, such as shear thinning behavior, viscosity, and yield stress, are critical in 
determining whether it can be printed smoothly and ensuring the quality of the product. Meat materials are 
complex multi-phase colloidal systems with unique fibrous structures that cannot be printed directly, and 
improving the printability of meat colloids mainly limits meat printing. The complexity of meat colloidal systems 
determines the different heat requirements. In addition, at this stage, the functionality of the printer and the 
formulation of a single nutritional and organoleptic properties limit the implementation and application of 3D 
printing. Moreover, the development of cultured meat, the full application of by-products, and the emergence of 
new technologies provides opportunities for the application of 3D printing in the meat industry. This review 
highlights the current challenges and opportunities for the application of 3D printing in meat to provide new 
ideas for the development of 3D printing.   

1. Introduction 

Meat is a nutrient-rich food containing many trace elements such as 
iron, zinc, and B vitamins and is the primary source of complete protein 
in most people’s diets. Throughout history, humans have consumed 
meat without interruption, and anthropologists believe that adequate 
meat intake leads to the evolution of larger brains. As the economy and 
population grew, human demand for meat continued to grow(Roser, 
2017). However, this development is considered environmentally un-
friendly and unsustainable, because many problems are encountered in 
raising livestock and meat production processes. First, livestock 
breeding requires large amounts of land and forage, which degrades 
pastures and drastically reduces forest cover. Moreover, the UN data 
show that global greenhouse gas emissions from livestock farming ac-
count for approximately 15% of total global emissions and are part of an 
extensive carbon emission system, which is not conducive to a benign 
global climate(K. Handral, Hua Tay, Wan Chan & Choudhury, 2022). In 
addition, during the production of raw materials, meat is cut and trim-
med to varying degrees to suit consumer preferences, and despite pos-
sessing the same nutritional value, at least 30% of the meat is usually 

sold as a low-value by-product or even discarded as waste, resulting in 
significant waste and food waste contamination(Dick, Bhandari & Pra-
kash, 2019a; Welin, 2013; Zhao et al., 2021). Therefore, the meat in-
dustry urgently needs new technologies to link these problems. 

3D printing, which is also known as additive manufacturing, is a 
technology-based on computer numerical technology, through three- 
dimensional modeling, model slicing, information processing, layer- 
by-layer printing, and other steps to form a 3D solid(Guo et al., 2019). 
Hull developed the first commercial 3D printer in 1986(Hull, 1986), and 
3D printing began to enter the public consciousness and gradually 
became widely used in industrial design, model making, automobile, 
and aviation(Kelly et al., 2019; Lu et al., 2018). The original 3D printing 
technology was developed based on photo-hardened polymers to 
manufacture complex metal and ceramic plastic parts rather than food 
materials. In 2007, an extrusion-based printer (Fab@home) designed by 
researchers at Cornell University introduced 3D printing to the food 
industry(Malone and Lipson, 2007). 

The 3D printing technology, as an emerging technology in the food 
industry, can be an excellent solution to the environmentally unfriendly 
and unsustainable challenges faced by the meat industry. The 3D 
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printing technology that produces cell-cultured meat can obtain similar 
nutrition and taste to the meat while eliminating the need for farming, 
thus reducing land occupation and waste emissions. Moreover, the raw 
materials for 3D printing are often powders or pastes, which can produce 
custom-shaped food products in a relatively short period without 
complicated pre-processing and cutting, thus significantly reducing raw 
material waste and food waste pollution. In addition, 3D printing is 
efficient, economical, innovative, and personalized to meet the unique 
needs of children, pregnant women, the elderly, soldiers, and other 
special populations nutritional need(Bulut and Candoğan, 2022; Pra-
kash et al., 2019).Accordingly, it has received wide attention. 

However, the meat materials used for 3D printing can be regarded as 
a polyphase colloid system with water as a continuous phase and pro-
tein, carbohydrate, and inorganic salt as the dispersed phase. This sys-
tem has a complex rheological properties and is not naturally printable, 
resulting in great challenges to 3D printing. Therefore, this paper first 
summarized the challenges faced by 3D printing in the meat industry, 
including printability, simultaneous precision cooking, 3D printer 
development, and product nutritional sensory limitations, and discussed 
the methods and research directions that can be used to deal with these 
challenges. Then, the application opportunities of 3D printing in the 
meat industry were introduced in detail, the research status of cell- 
cultured meat was reviewed, the feasibility of developing meat by- 
products by 3D printing was discussed, and the latest technology for 
evaluating meat printability was summarized. This review describes in 
detail the application of food 3D printing technology in meat materials 
in terms of challenges and opportunities and introduced some ideas for 
the reasonable design of printable materials and accelerating the 
development of meat printing materials. 

2. 3D printing of traditional meat materials 

The leading 3D printing methods include selective laser sintering, 
binder jetting, inkjet printing, and extrusion printing (Demei et al., 
2022). Extrusion 3D printing is the most appropriate technology for food 
materials and has been widely used compared with other technologies 
(Varvara et al., 2021). Extrusion-based 3D printing is performed via 
computer-controlled extrusion of ink from a nozzle and builds up layer 
by layer on the printer base (Fig. 1). During printing, the path of the 
nozzle motion is controlled by a preset 3D model, allowing the extruded 
print material to produce a specific shape after curing(Sun et al., 2015; 
Sun et al., 2018). According to the printing characteristics, the food can 
be divided into raw printable food materials (e.g., chocolate(Kim et al., 
2017), cheese, and mashed potatoes(He et al., 2020)) and non-raw 
printable food materials (e.g., meat, vegetables, and fruits). The 

unique fibrous structure of meat adds to the challenge of printing, thus 
requiring pre-treatment or additives to allow the ink to extrude 
smoothly from the nozzle and maintain good self-support and form-
ability. Limited studies have looked into the development of 3D printed 
meat products, and most of these studies have focused on surimi mate-
rials with good adhesion, gelation, and softness(Chen et al., 2021; 
Oyinloye and Yoon, 2022; Wang et al., 2018; Xie et al., 2022). A few 
studies have focused on meat with solid fiber structure and low viscosity 
(beef, chicken breast, etc.). Therefore, further development of printable 
raw materials and expansion of printable meat types are necessary for 
the application of 3D printing to meat products. 

3. Challenges of 3D printing in meat material 

3.1. Poor printability 

Improving the rheological properties of meat materials is a key 
challenge for meat printing. Meat is a complex polyphase colloidal 
system that exhibits complex rheology and is usually plastic or pseu-
doplastic (shear thinning). Complex structural units result from the in-
teractions between particles in the dispersed phase and with other 
colloidal molecules that are added to control the properties of the sys-
tem, such as the addition of gelatin to chicken, to improve its rheological 
properties and gelation ability(Bulut et al., 2022). For extrusion-based 
3D printing, the rheological properties of the material (e.g., shear 
thinning behavior, viscosity, and yield stress) are critical in determining 
whether it can be printed successfully and ensuring product quality 
(Jiang et al., 2019). The control of rheology is very important for pro-
cessing and the control of texture and sensory perception. The 3D 
printing process is divided into four stages, namely, start-up flow, 
continuous extrusion, recovery stage, and deposition stage. Generally, 
the 3D printing ink must have good extrusion, recovery, and 
self-supporting ability. The yield stress reflects the minimum force 
required to initiate fluid flow and is closely related to the extrusion 
performance of the ink during 3D printing. The minimum pressure 
required to start the flow of ink with yield stress can be described as 
follows: 

pmin =

(
4L
D

)

τyield (1)  

where Pmin indicates the minimum pressure required, L indicates the 
nozzle length, D indicates the nozzle diameter, and τyield indicates the 
yield stress of inks. 

During the extrusion phase, the shear force at the nozzle suddenly 

Fig. 1. Schematic diagram of 3D printing of meat.  
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becomes high, and the material under gravity experiences low shear 
action again after extrusion. The ink should therefore have shear thin-
ning properties with high shear recoverability, exhibit low viscosity 
during extrusion for smooth extrusion, and have sufficiently high vis-
cosity after deposition to adhere to the previously deposited ink layer. 
The shear-thinning behavior of the sample is evaluated by fitting a 
power-law model to the obtained viscosity measurements (Equation (2)) 
as expressed below: 

η= κ⋅γn− 1 (2)  

where η is the material viscosity (Pa⋅s), γ is the shear rate (s− 1), k is the 
consistency index (Pa⋅sn), and n is the flow behavior index(Paxton et al., 
2017). For fluid shear thinning with n < 1, a smaller n indicates higher 
shear thinning behavior. 

The recovery stage is the transition phase prior to a deposition where 
the ink undergoes a change from high to low shear. Ideally, the ink 
should have the ability to recover viscosity and resist deformation 
immediately after extrusion. Researchers often simulate the extrusion to 
the recovery process by alternating strain scans to evaluate the shear 
recovery behavior of inks(Zeng et al., 2021). During deposition, the ink 
layers stack up but do not merge and collapse between the layers, thus 
requiring good self-supporting capabilities. The main rheological pa-
rameters involved in the deposition stage are the yield stress, complex 
modulus (G*), storage modulus (G′), and elastic modulus (G′′) at the 
deposition temperature. The yield stress at the deposition stage reflects 
the resistance of the ink to external stresses, such as the gravity and 
forces exerted by its top material layer, at ambient temperature. G* in-
dicates solid-like properties, which reflect the resistance to compressive 
deformation and mechanical strength. G′ and G′′ reflect the viscoelas-
ticity of the ink. The results of the present study indicate that materials 
with a highly structured or more solid-like behavior have a good 
self-supporting ability (Fig. 2). 

Extruded 3D printed food materials need to maintain a low viscosity 
and yield stress during extrusion flow to ensure their smooth extrusion. 
After extrusion, these materials need to have sufficient viscosity and 
yield stress to retain their shape and support and connect other layers. 
Finally, the ink must provide strong mechanical support and gel strength 
to maintain the stability of the spatial structure(Chen et al., 2022), thus 
preventing the product from collapsing over time. As a complex colloid 
system, meat does not have the original printing ability. A good 3D 
printing effect can be obtained by improving the rheological and gel 
properties of meat paste in the process of ink development. At present, 
the printability of meat materials was improved mainly through 
pre-treatment to promote the interaction between colloids in the minced 
meat system or to add other colloids to meat. Notably, when adjusting 
the ink formulation, the ability of the ink to resist post-treatment should 
be considered. Ideally, the product should be able to transfer mass 
evenly, maintain its full shape, and have minimal steaming losses during 

maturation. 

3.1.1. Pre-processing to improve printability 

3.1.1.1. Pre-ultrasound treatment. As an emerging technology, ultra-
sound has been widely used in the food industry. Mechanical effects 
such as cavitation, agitation, and turbulence that are produced by ul-
trasound destroy muscle fibers contribute to the release of viscous 
substances (e.g., meat protein, fat, and glycogen) and increase the de-
gree of fiber swelling, thus improving the water retention, softness, and 
viscosity of meat(Amiri et al., 2018). The protein and fat in meat may 
dissolve and disperse into small molecules under the action of ultra-
sound and interact with each other through electrostatic action and van 
der Waals force. This interaction increases the stability of the whole 
colloid system. As the main protein of meat, myofibrillar protein de-
termines the functional properties of meat products(Chang et al., 2012; 
Li and Sun, 2002; Sun et al., 2021; Wang et al., 2021). Alarcon-Rojo et al. 
found that ultrasound enhances the rheological and gel properties of the 
myofibrillar protein(Alarcon-Rojo et al., 2015). Zhang et al. found that 
ultrasound synergistically treated with endogenous transglutaminase 
(TGase) can remarkably improve the gel strength of surimi(Zhang et al., 
2011). Therefore, ultrasound treatment could be used as a simple and 
efficient pre-treatment method for 3D printing inks to improve the 
printability of minced meat. Besides, ultrasound participates in 
enhancing mass transfer, improving heat transfer during cooking, and 
reducing cooking losses and cooking time(Leal-Ramos et al., 2011; 
Pohlman et al., 1997). 

3.1.1.2. Microwave treatment. Microwave heating (MH) absorbs mi-
crowave energy and simultaneously converts it into heat by electro-
magnetic induction of materials(Sumnu, 2001). Microwave heating is a 
promising method for 3D printing material pre-treatment and 
post-treatment because of its fast-heating speed, high energy efficiency, 
non-contact, and hygienic properties(He et al., 2020). Microwave has 
been used to improve the printability of materials such as soy protein 
(Bhattacharya and Jena, 2007) and potato starch(Prze-
taczek-Rożnowska et al., 2019). The thermal effect of microwave de-
natures the proteins in the minced meat system and reversibly associates 
them to form soluble aggregates, thus changing some of the proteins 
from sol to gel and increasing the self-supporting capacity of the meat 
filling(Bohr and Bohr, 2000; Cai et al., 2018; Sun et al., 2020). By 
controlling the time and power ratio of sol and gel through microwave 
control, the fluidity and mechanical strength of the meat filling can be 
changed. In 3D printing of meat products, microwave pre-treatment is 
seldom studied, and studies have mainly focused on surimi materials. 
Zhao et al. used a synergistic approach of microwave-focused heating 
and TGase to achieve the self-gelatinization of surimi during printing. 
Solid products with high resistance to deformation were obtained under 

Fig. 2. Outline of the proposed research method to 
assess bio-ink printability. 1. Initial screening of ink 
formulations to establish (a) fibre formation as 
opposed to droplet formation and (b) successful layer 
stacking without merging between layers. 2. Rheo-
logical evaluations are employed to characterise (a) 
the flow initiation properties and yield stress, (b) 
degree of shear-thinning to predict the extrusion 
process and cell survival and (c) recovery behaviour 
of the inks after printing(Paxton et al., 2017).   
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these conditions(L. Zhao et al., 2021). The results of these studies imply 
that microwave heating can effectively induce gels in 3D printing. 

3.1.1.3. High-pressure treatment. High-pressure treatment has been a 
promising area of research in meat processing because of its potential to 
prolong meat shelf life and improve meat quality(Chattong, Apicharts-
rangkoon & Bell, 2007). In addition, pressure treatment leads to changes 
in the constituent molecules of meat, affects the structural and func-
tional properties of proteins, promotes protein adsorption at the fat 
droplet/water interface to improve ink emulsification, increases the 
thermal stability of proteins, promotes gelation, and fixes free water, 
resulting in dense and uniform gels(Wang et al., 2020; Yang et al., 2021; 
Zhou et al., 2018). In addition, high pressure can improve the texture 
and printability of meat by increasing elasticity, water retention, and 
adhesion. Limited studies have applied high pressure to meat product 
printing, and the role of high-pressure technology in 3D printing needs 
to be further developed. 

3.1.2. Adjusting formulations to improve printability 
The rheological properties of raw materials (e.g., shear-thinning 

properties, viscosity, and yield stress) remarkably affect the 3D print-
ing process and the quality of the printed product. Protein, fat, and 
carbohydrates are essential components of a balanced diet, and they 
have different rheological properties and gelation characteristics(Liu 
et al., 2019; Liu et al., 2018; Liu et al., 2020). Therefore, the rheological 
characteristics of raw materials need to be understood for an effective 
3D printing. By altering the proportion of meat to non-meat ingredients 
in ink formulations, the rheology and printability of the ink can be 
improved, and nutrient-rich goods can be developed. 

3.1.2.1. Lipids. Lipids (also translated as lipid-like) are a class of bio- 
organic molecules that are poorly soluble in water and highly soluble 
in non-polar solvents. Most lipids consist of esters and their derivatives 
formed from fatty acids and alcohols. The chain length and saturation of 
the fatty acids also affect the physical and functional properties of the 
lipids, and thus the 3D printing results. Notably, raw meat comes with 
animal fat, and the fat content and composition vary greatly depending 
on the type and part of the meat. During meat ink processing, meat 
pieces are crushed and sheared to form minced meat. At this time, the fat 
is sheared into microspheres and evenly adsorbed on the protein surface. 
When the ink is heated, the proteins therein are denatured and cross- 
linked to form a 3D gel network, while the fat fills the network pores 
or co-polymerise with the protein to form an emulsified gel. Therefore, 
lipids in meat products can improve the flow behavior of meat materials, 
reduce the viscosity, and increase the ink flow and extrudability. During 
gel formation, lipids play an excellent filling role, forming emulsion gels 
with proteins in meat with a uniform structure and good formability and 
self-supporting properties. Wu et al. found that fat globules interact with 
proteins through disulfide bonds, thus affecting the formation of gel 
networks and improving gel hardness and water retention(Wu, Xiong, 
Chen, Tang & Zhou, 2009a). The addition of functional lipids to 3D 
printing provides a new idea for the design of nutritious and healthy 
personalized foods. However, too much fat will lead to the fluid 
behavior of meat paste, thus increasing cooking loss and deformation. 
Arianna and others found that beef ink’s cooking loss and shrinkage are 
proportional to the lard content. Moreover, the addition of fat makes the 
ink show viscous fluid behavior; although this condition is conducive to 
extrusion, it affects the continuity of extrusion and self-supporting(Dick, 
Bhandari & Prakash, 2019b). Therefore, lipids and other materials 
should be chosen to improve the printability of meat ink. Xie et al. 
produced cod protein ink with high thixotropy by blending flaxseed oil 
with inulin/soybean dietary fiber(Xie et al., 2022a,b). 

3.1.2.2. Hydrophilic colloid. Hydrocolloids, also known as edible gums, 
are a heterogeneous group of long-chain polymers, which mostly include 

polysaccharides and a few proteins. These compounds are soluble in 
water and can be fully hydrated under certain conditions to form viscous 
dispersions and/or gels. The addition of hydrocolloids in meat products 
can improve the water retention of gels, enhance the mechanical 
strength of gels, and promote the stability of hybrid dispersion systems 
(Liu and Xu, 2019; Perez-Mateos et al., 2001; Ramirez et al., 2002; Wang 
et al., 2018). In 3D printing, the addition of exogenous colloids interacts 
with macromolecules in the minced meat, thereby enhancing the sta-
bility of the meat colloids and improving its rheological properties. 
Hydrocolloids mainly acts as thickening and gelling agents. The thick-
ening effect mainly affects the continuity and homogeneity of the ink 
during extrusion. Hydrocolloids have a certain viscosity, because their 
molecular structure contains more hydrophilic groups, such as hydroxyl 
and carboxyl. The presence of these groups makes the protein or poly-
saccharide partly dissolved in the solution, forming a viscous colloidal 
solution. Based on Stokes’ law, the greater the viscosity, the smaller the 
settling rate of colloidal particles, the smaller the degree of mutual 
agglomeration between molecules, and the more stable the system. 
High-viscosity inks show good deposition and self-supporting properties 
in 3D printing, and they can clog the nozzle tip and prevent extrusion. 
Low-viscosity inks may interrupt flow and agglomerate solid particles, 
and they have poor mechanical solids properties that make them diffi-
cult to mold(Müller et al., 2020). Therefore, hydrocolloids should be 
added to adjust the extrudability of meat materials. 

Gelling mainly improves the self-supporting properties of the ink. 
The hydrophilic groups in hydrogels form gels through hydrogen 
bonding, hydrophobic association, and cation-mediated cross-linking 
physical association. These gels can be classified as cold-curing, heat- 
curing, and cation-mediated gels in terms of their gelation-forming 
mechanism (as shown in Table 1). For example, starch as a cold- 
curing hydrogel has a high viscosity and shear stability, and consid-
ering the interaction between starch molecules, intermolecular in-
teractions are enhanced at high starch concentrations and the 
probability of forming hydrogen bonds increases. This phenomenon 
contributes to the formation of a denser gel network and enhanced self- 
supporting properties of the ink(Goldstein et al., 2010). Starch can be 
used as an additive to other food materials to make them printable(Feng 
et al., 2019). Beef, chicken breast, and other meats usually have very low 
viscosity, are not printable, and are often used in combination with 
starch and lipids to blend into printable inks. 

However, the effect of hydrogels in meat systems is not always 
positive, and the effect is related to the type of hydrocolloid and the way 
and amount of addition. The addition of xanthan gum, k-carrageenan, 
and alginate alone may sometimes deteri0orate the texture of meat 
products(Hachmeister and Herald, 1998; MITTAL & BARBUT, 1994). 
The addition of small amounts (0.2% and 0.5%) of horny gum may in-
crease gel elasticity. However, higher concentrations of carrageenan can 
lead to a decrease in sausage elasticity(Ayadi et al., 2009). In addition, 
the combination of several hydrocolloids usually results in new rheo-
logical properties to the food, improves product quality, and has the 
advantage of fat and cost reduction. Cross-linking may occur between 
different hydrocolloids, leading to precipitation or gelation. Hydrocol-
loids with opposite charges may join and form precipitates. By using the 
synergistic effect of gels, gel structures can be enhanced at lower addi-
tion levels(Fan et al., 2020; Yasin et al., 2016). 

3.1.2.3. Transglutaminase (TGase). TGase is an extracellular acyl-
transferase that catalyzes the formation of a non-disulfide covalent bond 
between the ε-amino group of a lysine residue and the γ-carboxamide 
group of the glutamine residue on the heavy chain of myosin. This re-
action changes the physical and chemical properties of the meat matrix 
(Cando et al., 2016). Dong et al. found that microbial transglutaminase 
(MTGase) catalyzes the acyl transfer reaction during the manufacture of 
surimi to improve surimi’s printability and form a tight and uniform gel 
structure(Dong et al., 2020). TGase, as a temperature-dependent 
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enzyme, has a dynamic temperature range of 0–60 ◦C and a pH activity 
range of 4.5–8.0. The reaction temperature and pH can be adjusted using 
other processing techniques to control the cross-linking effect and the 
reaction process(Kieliszek and Misiewicz, 2014). For example, Zhao 
et al. synergistically treated surimi with TGase and microwave heating 
and found that ϵ-(γ-Glu)-Lys was produced by the synergistic effect of 
microwave, and TGase mainly resulted in gel enhancement(Z. Zhao 
et al., 2021). Trespalacios studied the effect of simultaneous application 
of MTGase and high pressure on the functional properties of chicken 
gels. Significant improvements in hardness and chewiness were 
observed(Trespalacios and Pla, 2007). In addition, MTGase is usually 
synergized with NaCl or phosphate in the 3D printing of meat to obtain 
sufficient protein substrate to enhance protein cross-linking levels 
(Sadeghi-Mehr et al., 2018). 

3.2. Meat-related 3D printers need further development 

3.2.1. Lack of capacity to ensure food safety at all links 
Meat materials increase the demand for the development of 3D 

printers. For example, microbial growth can be inhibited and spoilage of 
meat products can be prevented during printing by setting a printing 
temperature of less than 4 ◦C at all times. However, cooling during 
printing results in energy consumption, thus deteriorating the sustain-
ability in large-scale food production. Therefore, the development of 
energy-efficient and environmentally friendly automatic temperature- 
controlled 3D printers may be used as the basis for the commercializa-
tion of food 3D printing. In addition, during printing, the ink comes into 
contact with several parts of the printer, such as the extruder, nozzle, 
and piston, which are located inside the printer, making them difficult to 
clean. Subsequently, this configuration may promote the growth and 
colonization of different microorganisms, such as Staphylococcus aureus 
and Escherichia coli(Severini et al., 2018). Muro-Fraguas et al. have 
developed acrylic acid and tetraethyl orthosilicate coatings applied by 
plasma polymerization to reduce the biofilm formation of Pseudomonas 
aeruginosa, E. coli, and Listeria monocytogenes on 3D printing contact 
surfaces(Muro-Fraguas et al., 2020). However, antimicrobial surfaces 
may form a layer of dead cell surface debris after some time, thus 
remarkably decreasing the lethality efficiency of the antimicrobial 

surface. The fabrication of self-cleaning surfaces is one of the most 
anticipated alternatives to slow down the rate of bacterial adhesion to 
surfaces. The application of superhydrophobic-based systems in 3D 
printers is highly desirable. Superhydrophobic materials have consid-
erable surface roughness(Yoon et al. 2014), which forms cavities when 
water comes in contact with the surface. This property repels aqueous 
residues, spills, and droplets that carry bacterial suspension, thus 
reducing the actual effective contact area between the suspension(Oh 
et al., 2019) and the coated surface and improving the efficiency of 
disinfection and cleaning of devices and surface(Ghasemi and Niakou-
sari, 2020). Meat colloids are hydrophilic colloidal systems with water 
as the dispersed phase, and superhydrophobic coatings can effectively 
reduce ink adhesion and enhance the hygienic design of 3D printers 
(Fig. 3). 

The balance between printer printing efficiency and cost should be 
focused on. Most current printers are single or dual printheads, and the 
feed tube and cartridges can only hold a small amount of food material 
and do not have the capacity for large-scale batch production. The high 
price of printers makes them unaffordable for small food factories and 
home kitchens. Therefore, continuous feeding systems and multi-jet 
printers should be developed to improve the practicality of printers. 
Most printers simply give the ink its characteristic shape, and raw meat 
products not only rely on special pre-treatments and formulations to 
achieve the proper extrusion viscosity but also require post-processing 
by using traditional convection or conduction methods, thus limiting 
the ability of combining multiple materials in a single food object 
(Hertafeld et al., 2018). In response to these limitations, the combina-
tion of 3D printing technology with advanced thermal processing or 
texture modification technologies for the development of printers with 
pre-and post-processing capabilities can maximize the benefits of 3D 
printing(Demei et al., 2022). Gunduz et al. combined high-frequency 
amplitude ultrasound on 3D printing nozzles to enable the 3D printing 
of high-viscosity materials without pre-processing the recipe to adjust 
the viscosity(Gunduz et al., 2018). However, only a few specialized 
studies have integrated 3D printing with new technologies, and limited 
data are available to support the need to fully consider food safety and 
production economics to address the potential problems in the appli-
cation of these technologies(Dankar et al., 2018). 

Table 1 
Hydrocolloids in meat products.  

Gel conditions Hydrocolloids Functional Class Application References Example 

Cooling Gelatin (triple helix) Thickeners, Gelling 
agent 

Chicken 
Wang et al. (2018) 

3D printed chicken mince (Yang 

et al., 2022) 

Agar Stabilisers, 
Thickeners, Gelling 
agents 

Canned food, fish, 
poultry 

Banerjee & Bhattacharya (2012) 

Starch Stabilisers, 
Thickeners 

Minced fish, minced 
shrimp, pork ham 

(Li and Yeh, 2003); (Pan et al., 
2021); (Dong et al., 2019) 

Collagen Gelling agents Minced fish (Eilert, Blackmer, Mandigo & 
Calkins, 1993); (Shi et al., 2022) 

Cooling and 
salt 

Carrageenan Stabilisers, 
Thickeners, Gelling 
agents 

Beef, sausage (Dick, Bhandari & Prakash, 
2021); (Cao et al., 2022) 

3D printed chicken mince (Dick 

et al., 2019b) 

Cold-junction gum Gelling agents Chicken, sausage Li et al. (2019) 
Guar gum Emulsifier, 

Stabilisers, 
Thickeners 

Beef (Dick et al., 2019b); (Ramí;rez, 
Barrera, Morales & Vázquez, 
2002) 

Heating Soy protein Gelling agents sausage (Patana-anake & foegeding, 
1985); (Kang et al., 2021) 

Photos of 3D printed pork 

after cooking(Dick, Bhandari, Dong & Prakash, 
2020b) 

Ovalbumin Gelling agents Beef Pietrasik (2003) 
Methylcellulose Thickeners Ostrich meat Chattong et al. (2007) 

Salt (Specific 
binding) 

Alginate Chelating agent, 
Stabilisers, 
Thickeners 

Pork, cold-cut duck Kim et al. (2020) 

Synergistic 
effects 

Xanthan Gum +
Galactomannan 

Gelling agents 
Thickeners 

Pork (Ramí;rez et al., 2002); (Dick, 
Bhandari, Dong & Prakash, 
2020)  
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3.2.2. Lack of simultaneous precision cooking ability 
Post-processing issues are among the main challenges that face the 

3D meat printing industry today. The need for simultaneous maturation 
capabilities provides new challenges for printer development. Unlike 
chocolates and candies, most meat materials cannot be eaten raw and 
need to be processed using traditional convection or conduction 
methods after printing, thus limiting their ability to combine multiple 
materials in a single food object. Traditional cooking methods tend to 
cause damage to the print shape and cooking loss(De Pilli and Ales-
sandrino, 2020; Dick et al., 2021), and the steaming process moisture, as 
a heat transfer medium, can over-penetrate the ink and damage its 
structure and shape(Dankar et al., 2020; Dong et al., 2019). The loss of 
surface moisture and excessive protein denaturation caused by baking 
can lead to uneven heating and affect the taste of the product(Severini 
et al., 2016). The traditional heating method can only heat a certain area 
and cannot precisely control the heating object. When printing complex 
multi-layer products, the heating time and conditions required are 
different for different layers of printing materials, and the traditional 
printing method cannot precisely locate the heat required for cooking. 
The combination of modern cooking technology with the printer to 
achieve simultaneous maturation during printing can meet the heat 
requirements of different food materials. Laser cooking technology al-
lows for heat targeting and transfer, thus providing more uniform and 
efficient heating than conduction without physical contact with the 
food. Therefore, this technique is an ideal cooking method for 3D 
printing(Anonymous et al., 2021; Blutinger et al., 2019; Blutinger et al., 
2021; Ma and Tao, 2005; Vaskoska et al., 2020). By incorporating a blue 
laser (λ = 445 nm), near-infrared (NIR) laser (λ = 980 nm), and 
mid-infrared (MIR) laser (λ = 10.6 μm) into the printer, the researchers 
laser-cooked food with approximately 50% less cooking loss than 
oven-baked food and enabled layer-by-layer cooking (Fig. 4). Hertafeld 
et al. integrated an infrared light heating mechanism into the printer, 
thus allowing the printer to selectively cook and print multi-material 
food objects, thereby creating complex food patterns with more 
compositional complexity(Hertafeld et al., 2018). However, many dif-
ficulties are encountered in the application of synchronous cooking 
technology to 3D printing. The control of cooking space and laser in-
tensity needs to be improved, and the synchronous cooking method 
suitable for meat and the safety of the new technology need to be 
studied. 

3.3. Improvement of nutritional and sensory properties 

Ideally, 3D printed products should have the same or even better 

sensory properties and nutritional values than traditional foods to 
replace traditional foods in the market gradually. However, limited 
studies have focused on the sensory evaluation of 3D printed products 
and have primarily focused on the improvement and evaluation of 
texture and formability of single meat raw materials (e.g., chicken, beef, 
and pork). At the same time, mixed material printing with high nutri-
tional value is lacking(Pant et al., 2021). Therefore, the currently 
developed printed products can only meet a single requirement. For 
example, the development of geriatric foods only focuses on the 
improvement of soft texture, with emphasis on hardness and chewiness, 
while the sensory evaluation of color and flavor is lacking. In addition, 
printability is not the only criterion that determines product quality. 
Post-treatment methods remarkably influence structural stability and 
consumer acceptability. Traditional post-treatment methods such as 
frying, steaming, and baking can alter the structure (e.g., shrinkage and 
steaming loss) and functionality (e.g., protein denaturation and vitamin 
loss) of the product to some extent. When cold-curing gels are used in 
printing to maintain the structure, the high temperature of the 
post-treatment often leads to gel melting and structural collapse. 
Therefore, the ink printability must be considered along with the sta-
bility of the post-treatment and the final product’s sensory properties. 
Studying a personalized and nutritionally balanced diet is the prominent 
advantage of 3D printing. Many bioactive substances such as curcumin 
(Chen et al., 2021) and anthocyanin have been applied in the 3D 
printing of plant-based materials, while meat materials are rarely 
involved. Therefore, nutritional health and flavor need to be combined 
for the development of more functional meat products(Ghazal et al., 
2021; Ghazal et al., 2019). 

4. Opportunities of 3D printing in meat applications 

4.1. 3D printing of cultured meat products 

The 3D printing of complex structures such as muscles, skin, bones, 
and cartilage with biomaterials is called bio-printing. Bio-printing is a 
new technology that is based on tissue engineering, and this field is still 
being developed for food applications. Unlike cell-cultured meat, the 3D 
printing of cultured meat is more complicated, which achieves tissue 
maturity by accurately adhering to and growing stem cells and bio-
materials in scaffolds, thus forming cultured meat(Ramachandraiah, 
2021). The 3D printing of meat is mainly composed of the initial cells, 
culture medium, and scaffold. Initially, cells need to have the ability of 
self-renewal, infinite proliferation, and differentiation to develop and 
form the cells (e.g., muscle cells, fat cells, and chondrocytes) needed for 
meat. The medium mainly drives cell growth, multiplication, and dif-
ferentiation and is responsible for providing nutrients for cell growth, 
leading to tissue regeneration and maturation. Growth factors and ani-
mal serum are important components of the growth medium for tissue 
maturation, which are often obtained from animal embryos(Andreassen 
et al., 2020; Andreassen et al., 2020; Kolkmann et al., 2020). The 3D 
scaffold is essential to the structure of cultured meat, which determines 
the physiological similarity between cultured meat and real meat. 
Therefore, the scaffold used in 3D printing must have good sensory 
quality and food safety and ensure the sufficiency of surface area and 
porosity to support cell adhesion and proliferation(Datar and Betti, 
2010). Ben-Arye et al. used soybean protein as a 3D scaffold to support 
cells and imitate extracellular matrix to create bovine muscle tissue, thus 
replicating the feeling and texture of meat(Ben-Arye et al., 2020). 
Fibrinogen, gelatin, and collagen are 3D printing scaffolds that can 
improve tissue stiffness and meet the requirements of meat fiber char-
acteristics(Ahmad et al., 2021; Duan et al., 2013; MacQueen et al., 
2019). In the future, 3D printing of cultured meat may be able to solve 
the problems of land, resources, and environment in the farming pro-
cess, bringing new opportunities for the development of the meat 
industry. 

Fig. 3. Principle of superhydrophobic surface antibacterial and self-cleaning.  
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4.2. Exploitation of meat by-product ink 

The exploitation of meat by-products and trimmings is a crucial 
challenge for meat printing. Meat by-products mainly include body parts 
other than muscle, such as offal, skin, feet, and fat, accounting for 52% 
and 66% of the live weight of cattle and pigs, respectively. Some of these 
by-products, such as heart, liver, and kidney, have high nutritional value 
but have an unpleasant fishy taste and are generally unacceptable to 
consumers, making them low-value products in the market(Zou et al., 
2021). The unpleasant smell in the liver is mainly caused by the release 
of iron bound to the proteins, which produces a metallic smell, and the 
decomposition of proteins and lipid oxidation, which produces a large 
number of alcohols, aldehydes, ketones, amines, low-grade fatty acids 
and sulfides, and other organic substances with a particular smell(Xiong 
et al., 2017). Undesirable flavors can be well removed by chemical 
methods such as antioxidant method(Liu et al., 2021) and acid-base salt 
treatment(Yarnpakdee et al., 2012), physical methods such as β-cyclo-
dextrin adsorption(Yu et al., 2016), microencapsulation(Serfert et al., 
2010), and fermentation, and enzyme treatment methods(Li et al., 
2020), but these methods require the destruction of liver tissue. 3D 
printing can customize paste ink into various shapes, indicating that the 
inclusion of various deodorizers in the raw material handling process 
has unique advantages. Thus, the use of 3D printing technology has 
great potential in the development of consumer-acceptable meat 
by-products. Notably, in addition to parts such as liver, some trimmings 
can be used as low-value products or even discarded because of the 
presence of large amounts of sinew and the connective tissue or poor 
meat quality, such as beef neck meat. The presence of these connective 
tissues directly affects the uniformity and adhesion of the ink, thus 
limiting their application in 3D printing. The problem of raw material 
waste in the meat industry can only be solved by solving the problem of 
by-product development. Subsequently, ring sustainability can be 
improved, and the value of 3D printing can be realized. 

4.3. New technology combined with modeling methods to improve printing 
accuracy 

4.3.1. Predicting ink extrusion behavior using computational fluid 
dynamics (CFD) 

CFD refers to computers for building mathematical models to simu-
late and studying the motion of fluids in a specific geometry with 
boundary conditions(Oyinloye and Yoon, 2021). The evaluation crite-
rion is the agreement between numerical simulation results and exper-
imental results performed under specific conditions. CFD has been used 
to simulate food-processing operations such as drying, cooking, sterili-
zation, and freezing(Norton and Sun, 2006; Singh and 

Muthukumarappan, 2017). CFD can also be used to predict chemical 
reactions, mechanical motions, phase changes, and heat and mass 
transfer in food processing(Jiang et al., 2021). In 3D printing processes, 
CFD techniques have been used to explore the effects of material 
formulation and printing parameters on the extrusion behavior to pre-
dict the optimal deposition formulation. CFD mainly involves the se-
lection of suitable methods to discretize the simulation of the fluid 
continuum, which mainly includes finite difference (FD), finite element 
(FE), and finite volume (FV) (Oyinloye and Yoon, 2021). In meat 3D 
printing, the finite element method (FEM) is widely used because of its 
ability to solve problems that involve non-Newtonian fluids and 
nonlinear flow. Oyinloye et al. successfully optimized the parameters of 
surimi 3D printing using FEM. They demonstrated that the nozzle 
diameter significantly affects the fluid properties (e.g., pressure, veloc-
ity, and shear rate) in the flow field and the residual stress and defor-
mation of the printed sample(Oyinloye et al., 2022). 

4.3.2. Improving ink printing accuracy with low field nuclear magnetic 
resonance (LF-NMR) 

As the most critical chemical components in meat and meat products, 
the water content and water holding capacity are directly related to the 
edible quality of meat and meat products, such as color, tenderness, 
juiciness, and flavor(Guanghong, 2008). As a fast and non-destructive 
testing method, LF-NMR can detect much information about moisture 
in meat and meat products by analyzing the spin relaxation character-
istics of hydrogen core (oil/gas/water) in the magnetic field. The 
relaxation time and corresponding peak area of food ink obtained by 
LF-NMR are closely related to its shear-thinning and viscoelastic prop-
erties(Phuhongsung et al., 2020; Xu et al., 2020). Therefore, LF-NMR is 
often used as a routine method for ink printability analysis in 3D 
printing. Many researchers have applied LF-NMR parameters to poly-
nomial regression models to predict 3D printability, and high correla-
tion coefficients (R2) were obtained for both 3D printing accuracy and 
stability. Therefore, LF-NMR is an excellent non-destructive tool for the 
fast and accurate prediction of rheological properties and the assessment 
of 3D printability of food inks(Liu et al., 2022). Although LF-NMR has 
been widely used in predicting the printability of non-meat materials 
(Phuhongsung et al., 2020), meat materials have not been studied in 
detail. Therefore, the application scope should be increased, and strong 
technical support should be provided for enriching meat inks. 

4.3.3. Predicting ink printability using NIR spectroscopy 
NIR light is an electromagnetic wave with wavelengths between ul-

traviolet and visible spectrophotometer (UV–vis) and middle infrared 
(MIR). NIR correlated with sample rheological properties, modeled 
using appropriate methods, have proven to be effective in predicting ink 

Fig. 4. Close up of raw chicken printed by a general food printer (a); Close up of a printer with a blue laser printing and synchronizing cooked chicken (b)(Blutinger 
et al., 2021). 
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printability and improving printing accuracy. First, the NIR spectros-
copy technology obtains the spectra of the samples containing hydrogen 
groups by absorbing the frequency doubling and combining frequencies 
of the vibrations of hydrogen groups (–CH, –NH, and –OH) (Alexan-
drakis et al., 2012; Ammor et al., 2009). Then, other traditional 
analytical methods are used to determine the properties or data of the 
samples, and the correction model can be obtained using stoichiometric 
methods, such as principal component analysis, partial least square 
method, and multiple linear regression to correlate the spectra with the 
data. According to the established calibration model, the composition or 
content of the sample can be predicted by combining it with the NIR 
spectrum of the sample. At present, NIR spectroscopy has been widely 
used for the quantitative analysis of meat products, including the pre-
diction of meat water holding capacity, tenderness, and shear force 
(Samuel et al., 2011), which are strongly related to rheological prop-
erties. In comparison with low field nuclear magnetic resonance and 
rheological properties detection, NIR spectroscopy has the advantages of 
fast and easy operation. It shows a good correlation in predicting 
rheological and printing properties of purple sweet potato past(Phu-
hongsung et al., 2020). Therefore, NIR spectroscopy can be applied for 
the prediction of the printability of meat inks in the future. Based on the 
models of partial least squares, principal component regression, and 
artificial neural networks, the rheological properties of slurries can be 
well predicted using appropriate NIR spectral parameters. Thus, the 3D 
printability of slurries can be predicted indirectly but quickly. 

5. Conclusion 

As reviewed, meat materials are non-native printable materials, 
which need to be pretreated or formulated to improve printing charac-
teristics. Pre-treatment technology provides the feasibility of direct 
printing of “additive-free” raw materials, and grafting pre-treatment 
technology (e.g., ultrasound, infrared) onto 3D printers can achieve 
the rapid printing various materials and meet consumer demand for 
"additive-free" printed products. However, limited studies have focused 
on pre-processing technologies, and the lack of valid data require more 
in-depth research. Many scholars have conducted extensive research on 
printable meat formulations and have developed various products such 
as minced fish, chicken snacks, and beef burgers. However, the current 
research has many limitations, which are mainly in terms of single- 
ingredient composition, low product innovation and functionality, and 
lack of post-processing and sensory evaluation. In the future, convenient 
and rapid detection technologies will provide new opportunities for the 
development of 3D printing inks. Evaluation techniques such as LF- 
NMR, NIR spectroscopy, and CFD have already played an essential 
role in the development of meat inks, although only a few studies on the 
3D printing of meat materials have been published. With the develop-
ment of new technologies, the development of printable inks will no 
longer be a problem. 
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