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The respiratory tract, once believed to be sterile, harbors diverse bacterial communities. 
The role of microorganisms within health and disease is slowly being unraveled. Evidence 
points to the neonatal period as a critical time for establishing stable bacterial com-
munities and influencing immune responses important for long-term respiratory health. 
This review summarizes the evidence of early airway and lung bacterial colonization 
and the role the microbiome has on respiratory health in the short and long term. The 
challenges of neonatal respiratory microbiome studies and future research directions are 
also discussed.
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iNTRODUCTiON

Respiratory insufficiency is the major issue limiting viability at the extremes of prematurity. Chronic 
lung disease of prematurity (CLD), also known as bronchopulmonary dysplasia, is the most common 
long-term complication of prematurity (1) with reduced lung function persisting into adulthood 
(2). Many risk factors have been identified in the development of CLD, including prematurity, sup-
plemental oxygen therapy, mechanical ventilation, and patent ductus arteriosus (3). Systemic and 
pulmonary infections may also contribute to the development of CLD (4, 5). Despite the routine use 
of antenatal corticosteroids and exogenous surfactant, improved nutrition and ventilatory strategies, 
CLD remains a significant burden for surviving preterm infants, and an on-going challenge for 
neonatologists (6).

The microbiome is defined as the whole habitat of microorganisms (or of their genes) and the 
surrounding environment, with the term microbiota more specifically referring to the community of 
microorganisms living within a particular environment (7). The diversity of bacterial communities 
has been linked to important health outcomes (8). Diversity is a measure of how much variety is 
present in a community of microorganisms, regardless of the identities of the organisms. Diversity 
is made up of richness, the number of different bacterial species present, and evenness, defined as 
the relative abundance of the various species within the bacterial community (9). The composition 
of bacterial communities changes over time. A stable microbiota is resistant to such changes. The 
concept of dysbiosis refers to a pattern of bacterial colonization predisposing to disease (10).

The human host has evolved in symbiosis with microorganisms, which colonize multiple body 
sites. The interactions between host and the microbiota are only now being understood with microbi-
ome science demonstrating that bacterial communities living within a human host have an influence 
over a diverse range of diseases (11). Within neonatal medicine, most of this work has focused on 
the role of the gut microbiome in the pathogenesis of necrotizing enterocolitis (NEC) (12–14), with 
widespread use of probiotics, a clinical result of this work (15). Attention is now moving beyond the 
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gut to other body sites to identify the role of microbes in other 
anatomical locations including the respiratory tract.

The traditional notion of the lungs of healthy individuals 
being free from bacterial colonization is now defunct (16, 17). 
The lungs were initially not included in the human microbiome 
project (18) due to perceived sterility. The sterile lung hypothesis 
was driven by culture-based studies, designed to identify specific 
pathogens, failing to detect the low levels of difficult to culture 
commensal organisms within the lower airways and lungs. 
Culture-independent techniques utilizing sequencing technology 
to identify bacterial DNA have led to the discovery of communi-
ties of microorganisms within the airways and lungs of healthy 
individuals (19, 20). The alterations of microbial communities 
within the airways and lungs in pulmonary disease, and therefore 
the potential for therapeutic intervention, are only beginning 
to be grasped. This review summarizes the current evidence 
surrounding the early colonization of the airways and lungs of 
infants, and the impact this may have on short- and long-term 
health consequences.

MeTHODOLOGiCAL CHALLeNGeS

In addition to the ethical and practical challenges that complicate 
neonatal research, respiratory microbiome work has to overcome 
challenges of difficult sample collection, contamination, and the 
low bacterial load in the lungs.

Bacteria are able to colonize the full length of the airways, 
from the nostril to the alveoli. The changes in anatomy and 
environmental exposure along this length lead to the creation 
of many varied niches for bacterial colonization. Sampling of 
the proximal airways at any age is straight forward using nasal 
swabs or nasopharyngeal aspirates. The inaccessibility of the 
lungs poses significant challenges for researchers. Sampling 
from the lungs and distal airways in adults has involved using 
sputum or endoscopic bronchoalveolar lavage (19, 21, 22). In the 
neonatal population, the lower airways of intubated infants can 
be accessed using tracheal aspiration to sample the endotracheal 
tube and trachea (23, 24) or non-bronchoscopic bronchoalveolar 
lavage (NB-BAL) to sample more distal airways (25). All these 
techniques are easily contaminated by upper respiratory tract or 
nasopharyngeal organisms. Avoiding such contamination using 
diseased explanted lungs and lungs from organ donors for whom 
no recipient could be found have demonstrated bacterial com-
munities within lung tissue of adults (26, 27). The presence of 
bacterial DNA within the lungs of even healthy adults is no longer 
disputed (19, 20).

The particular difficulties of sampling the lung microbiome in 
neonates results in published studies concentrating on the upper 
airway or on ventilated infants (23, 28, 29). While the upper airway 
bacterial communities are related to those in the distal airways 
(30), it seems that the nasopharynx cannot be used as proxy for 
lung colonization (26, 30). Within the neonatal population, no 
studies have thus far reported on the lung microbiome of healthy 
term-born infants. In neonatal research, the vaginally delivered 
term-born, exclusively breast fed infant is considered most likely 
to develop the optimal microbiome (31). Other groups are gener-
ally compared to this assumed optimal microbial pattern. The lack 

of data from the airways and lungs of such infants complicates the 
interpretation of many neonatal studies. Studies of the gut micro-
biome reveal that the composition of gut flora is unique to an 
individual and shows marked variety between individuals (32). A 
similar variability between individuals has also been observed in 
the upper airways of children (33, 34). The concept of a “normal” 
microbiome or “normal” colonization pattern may not exist and 
may be difficult to define. Patterns of colonization or presence 
of predominant organisms are, however, distinguishable within 
populations and maybe associated with favorable or unfavorable 
outcomes.

Culture-independent techniques utilize sequencing technolo-
gies to identify organisms by sequencing target genes. The most 
commonly used gene for bacterial species identification is the 
16S ribosomal RNA gene. The difference in nucleotide sequence 
within the nine hypervariable regions of the gene are used to 
identify the bacterial species present within a sample using next 
generation sequencing (35). All bacterial DNA is identified, not 
only from resident bacteria but also from dead microbes unable 
to survive in the sampled niche; and DNA from contaminant 
organisms acquired at any stage during sample collection or 
analysis (26). DNA-based techniques may therefore overestimate 
the community of bacteria residing in a habitat. A transcriptomic 
approach, using RNA sequences rather than DNA to identify 
bacteria (36), overcomes the problem of non-viable bacteria, but 
not contamination. A further alternative to 16S sequencing is a 
metagenomic approach when all nucleotide sequences are identi-
fied rather than an individual gene (37). This provides a more 
rigorous bacterial identification.

Many respiratory samples, particularly those from neonates, 
generate a low biomass (38) with low bacterial loads close to the 
limit of detection of the assays designed to detect such organisms. 
Careful use of negative controls at each stage of the analysis process 
is important to ensure validity of the results (39). Contamination 
during sample collection can be assessed by comparing samples 
from the lower respiratory tract with samples taken concurrently 
from the upper respiratory tract. Identical patterns of colonization 
would imply contamination (38). DNA extraction kits and PCR 
reagents are also known to be contaminated with bacterial DNA 
(40). Studies using low biomass samples need to demonstrate 
thorough record keeping of the lot numbers of reagents used and 
analyze for contamination from laboratory sources.

Despite the challenges and limitations of studying the airway 
and lung microbiome, a significant body of work is available 
relevant to adults, with several comprehensive reviews published 
(16, 41). The extra difficulties of research in this area in the neo-
natal population result in fewer published studies, with varying 
methodology. The evidence relevant to the neonatal population 
is the focus of this review.

ACQUiSiTiON OF MiCROBiOMe

Timing of Colonization
The in utero environment is traditionally considered to be physi-
ologically sterile. This assumption has been challenged with the 
finding of bacteria in the placenta (42), fetal membranes (43), and 
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amniotic fluid (44) of healthy pregnancies. It remains unclear if 
there is a low level of bacterial colonization of the in utero fetus, 
but bacterial presence has been detected in the first passage of 
meconium from healthy term-born infants (45), previously 
thought to be sterile, and in cord blood samples (46). Airway 
colonization may therefore begin in utero in some cases, and this 
is more likely in those exposed to chorioamnionitis, known to 
be a significant risk factor for preterm delivery. Bacterial DNA 
was detected from a larger proportion of preterm lungs and/
or gastric fluid within 24 h of birth if delivered due to prelabor 
premature rupture of membranes or spontaneous preterm labor 
compared to those delivered by cesarean section for maternal or 
fetal reasons (47).

Within the first 5 min following birth, microbiological com-
munities can be detected within the oral cavity and nasopharynx 
of term newborns (48), suggesting that colonization of the upper 
airways has already commenced. Initial studies searching for 
the presence of bacterial DNA in the lower respiratory tract of 
intubated preterm babies showed the presence of a diverse array 
of bacteria within the first week of life (24). In intubated preterm 
infants, one study noted that only 2 of 10 tracheal aspirate sam-
ples taken at <72 h of age contained detectable bacterial DNA. 
At 7 days of age, all 10 tracheal aspirates from the same babies 
contained detectable bacterial DNA (49). In contrast, Lohmann 
et al. detected bacterial DNA in all tracheal aspirate samples taken 
immediately after intubation on day 1 of life from 25 preterm 
neonates ≤32 weeks gestation (23). It appears that the coloniza-
tion of the airways begins very early in life, at or possibly even 
before delivery.

Ureaplasma species, implicated in preterm neonatal res-
piratory infection, have been detected by molecular methods in 
tracheal aspirates samples at 24 h of age (24). Using RNA-based 
methodology, another study demonstrated that these organisms 
are transcriptionally active within the lungs for at least 3 weeks 
after delivery in some preterm neonates (50).

Studies vary in estimating the time for a stable respiratory 
microbiota to be established. One study suggests that bacterial 
density in the nasopharynx of healthy infants increases through-
out the first year of life. Reducing diversity over time resulted in 
stable bacterial communities being established by 1 year of age 
(51). However, another study did not report a change in bacterial 
load in the nasopharynx after 1  month of age, but a continual 
evolution of organisms throughout the first 2 years of life (28).

The timing of bacterial colonization of the neonate remains 
controversial but a sterile in utero environment can no longer be 
assumed. Stable airway communities are not established during 
the neonatal period.

Airway Colonizing Organisms
The adult lung microbiome has been more widely studied using 
molecular-based techniques. In healthy adult lungs, the phyla 
Bacteroidetes and Firmicutes predominate (around 80%) with 
Proteobacteria making up around 10% of the lung microbiome 
(19, 20, 52). At a genus level, Streptococcus and Veillonella species 
are the predominant Firmicutes organisms, and Prevotella species 
make up the majority of Bacteroidetes. Within Proteobacteria; 
Pseudomonas, Haemophilus, and Neisseria species are most 

common (41). The presence of known lung pathogens within 
this list demonstrates that tight immunological control over the 
microbiome occurs, and challenges the traditional view that 
respiratory infections are environmentally acquired.

Only limited information is available regarding the initial 
colonizers of the airways in the early days of life. One study of 10 
intubated preterm infants using culture-free methodology noted 
a dominant organism was present (>50% of total sequences) in 31 
of 32 tracheal aspirate samples taken in the first month of life. The 
most common dominant genus was Staphylococcus, in 19 samples, 
17 of these being coagulase negative staphylococci. Ureaplasma 
species were dominant in nine samples from six subjects. Other 
species that predominated in a single sample, all between 14 
and 21 days of life were Pseudomonas aeruginosa, Enterococcus 
faecalis, and Escherichia coli (49). A similar finding was reported 
in a separate study using tracheal aspirates collected during the 
first week of life. The two most common organisms identified 
using the 16S RNA gene were Staphylococcus haemolyticus and 
Staphylococcus epidermidis, both coagulase negative staphylo-
cocci (24). A subsequent study also demonstrated the presence 
of a dominant organism in many tracheal aspirate samples but 
noted that species within the Proteobacteria phylum, mainly 
Acinetobacter species, were dominant most often in the first day 
of life (23). Taken together, this evidence suggests that in the first 
days of life a pioneering colonizer becomes established but the 
identity of the organism depends on initial exposure of the infant.

Factors Affecting Airway Colonization
The constituents of the infant gut microbiota have been shown to 
have been strongly influenced by delivery mode, feeding choices, 
and the perinatal use of antibiotics (53). The use of drugs such 
as H2 blockers affecting gastric acid secretion also affect early 
colonization patterns within the gut (54) and may indirectly 
affect the lungs. Such factors can have sustained effects on the gut 
microbiota beyond the neonatal period, with differences between 
vaginally and cesarean-born infants detectable until 12 months 
of age (55).

Evidence from the airways is less substantial, but the naso-
pharynx of term-born infants share the same initial colonizing 
organisms as various skin sites and the mouth. All sites demon-
strated a large influence of the delivery method (48). Infants born 
by normal vaginal delivery had bacterial communities resembling 
maternal vaginal flora, while infants born by cesarean section 
were colonized by maternal skin organisms.

Mechanically ventilated preterm infants exposed to chorioam-
nionitis appear to have decreased species diversity in their tracheal 
aspirates although the trend did not reach statistical significance 
compared to unexposed infants (23). This may reflect overgrowth 
of pathogenic species in infants exposed to chorioamnionitis. 
Bacterial load estimation was not made in this study. It would 
have been interesting to compare the number of organisms pre-
sent between chorioamnionitis exposed and unexposed infants.

Antibiotic use is widespread in neonatal patients, particularly 
in those born preterm. Exposure to antibiotics has been shown to 
reduce diversity and modify colonization patterns of the neonatal 
gut (56). Antibiotics also induce a significant change in the micro-
biota of sputum of cystic fibrosis patients (57). The impact on the 

http://www.frontiersin.org/Pediatrics/archive
http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org


February 2016 | Volume 4 | Article 104

Gallacher and Kotecha Respiratory Microbiome of New-Born Infants

Frontiers in Pediatrics | www.frontiersin.org

lungs of neonates is unknown; however, in the upper airways of 
infants under 12 months of age, those who had received antibiot-
ics in the preceding 4 weeks displayed a reduced proportion of 
Alloiococcus and Corynebacterium, with an increased proportion 
of potential pathogens, including Haemophilus, Streptococcus, 
and Moraxella (58).

Over 200 species of bacteria have been isolated from human 
breast milk including the beneficial Bifidobacterium and 
Lactobacillus species (59). Breast milk has the ability not only to 
pass on desirable colonizing flora from mother to baby but also 
to provide oligosaccharides to promote development of healthy 
microbiota (60).

Evidence is divided on the factors affecting the bacterial 
colonization of the nasopharynx of infants under 12 months of 
age. One study reported that at 2 months of age, mode of deliv-
ery and feeding methods did not affect the composition of the 
nasopharyngeal microbiome; however, the presence of siblings, 
recent respiratory tract infections, and attending day care all 
made a significant difference (58). In contrast, a well-designed 
study comparing exclusively breast fed and exclusively formula 
fed infants showed detectable changes in the nasopharyngeal 
microbiota at 6  weeks of age (61). A similar study showed a 
significant seasonal effect with a bloom of Corynebacteriaceae 
in the summer months, but Pasteurellaceae predominated in 
the winter months (51). These differences may also be explained 
by geographical differences, with the studies conducted in the 
Netherlands, Switzerland, and Australia.

Evidence from patients with cystic fibrosis followed up to 
21  months of age, suggests that species colonizing the upper-
airway (oropharyngeal samples) are first present in the stool 
(62). This suggests that the airway microbiota may be established 
from that of the gut. In healthy adult subjects who underwent 
microbiome analysis from the oral cavity, nasal cavity, lungs and 
stomach, the lung microbiome closely resembled the microbiome 
of the oral cavity more than other sites (30). Micro-aspiration of 
saliva into the airway is known to occur during sleep in healthy 
individuals and may result in aspiration of physiologically signifi-
cant numbers of bacteria (63).

Accurate determination of the source of the microbiota would 
require deep sequencing of the genome of organisms from mul-
tiple sites including maternal skin, breast milk, birth canal, and 
from the skin of midwifery or neonatal staff caring for the infant, 
as well as range of environmental sites – a major undertaking.

Evidence suggests that the airway microbiome is affected by 
multiple environmental factors. Interpreting the studies is dif-
ficult given the different sampling techniques and anatomical 
sites tested; however, evidence is consistent with studies of bowel 
colonization showing an effect of delivery mode, antibiotics, and 
feeding methods.

CHRONiC LUNG DiSeASe OF 
PReMATURiTY

Dysbiosis is defined as an imbalance in the microbes present in 
a particular niche that contributes or predisposes to disease (10, 
16). Adult-based studies have suggested that airway dysbiosis can 

predict poor outcomes in cystic fibrosis (64) and in asthma (65). 
It is still unclear if dysbiosis reflects a change in environmental 
conditions within the airways in those with more severe disease 
or if dysbiosis is driving the poor prognosis.

Preventing CLD is a significant challenge in neonatology. 
Pulmonary infection has been suspected as an important 
contributing factor to CLD (4, 5) with organisms such as 
Ureaplasma species repeatedly implicated (66). The role of 
the commensal bacteria is less well studied. Early work using 
culture independent techniques comparing infants with and 
without CLD showed that detectable bacterial DNA (16S gene) 
in NB-BAL fluid was associated with developing CLD. The 
risk was even higher if the bacteria were present within the 
first 3 days of life (4). Organisms associated with CLD in this 
study were E. coli, Haemophilus influenzae, Enterobacter species, 
and P. aeruginosa. Further work showed the presence bacterial 
DNA in NB-BAL fluid was associated with higher proteinase 
activity within the lung, and the chance of developing CLD. 
Predominant organisms identified with high proteinase activity 
in the CLD group were Staphylococcus aureus and E. coli (67). 
The proteinases analyzed in this study were neutrophil derived. 
A greater immune response due to the presence of bacteria could 
explain the increased proteinase activity and the mechanism 
of the bacteria influencing the pathogenesis of CLD. Bacterial 
proteinases have been implicated in the pathogenesis of gut 
pathologies (68). The much lower bacterial load in the lungs 
compared to the gut make the role of colonizing microorganism 
derived proteinases less likely to be significant in pulmonary 
diseases, but this remains uncertain.

Another study investigated the difference between airway 
microbiota in tracheal aspirates from preterm infants with and 
without CLD using culture-independent techniques (23). Day 
one colonization patterns were similar in both groups with the 
predominance of Acinetobacter. Those infants who developed 
CLD had reduced species diversity and higher proportions of 
the pathogens Staphylococcus and Klebsiella. Those infants who 
did not develop CLD showed more stable bacterial communities 
with greater diversity. This suggests a role for the microbiome 
in the development of CLD but correlation between pro-
inflammatory cytokines and microbial colonization patterns 
was not witnessed. The microbiome is likely to influence the 
development of CLD by stimulating pro- or anti-inflammatory 
responses. The study, however, was not able to provide such a 
link. Without a plausible mechanism of effect, differences in the 
microbiome between those with and without CLD may reflect 
different environmental conditions within the airways of those 
predisposed to more severe disease due to an independent 
factor, rather than a causal relationship. Further work is clearly 
needed to corroborate this study, but the concept of diverse 
bacterial communities being advantageous follows the pattern 
of evidence with reports in other diseases including respiratory 
and gut pathologies (8, 69).

The influence of the microbiome over CLD has been the target 
of studies due to the chronic nature of CLD and the known impact 
of bacterial infection. No studies have looked at the impact of 
the microbiome on other respiratory conditions affecting the 
neonate.
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MiCROBiOLOGiCAL PROGRAMiNG

The early programing theory suggests that early life exposure 
to microbes is important for long-term health. Epidemiological 
data suggest a period in infancy that can determine future res-
piratory health (70, 71). Early colonization patterns are thought 
to affect immune development and potentially prime the host 
for later disease. This process was demonstrated in the gut, 
where early microbial colonization can significantly impact the 
long-term risk of asthma and allergy (72, 73). The respiratory 
microbiota also has a role in programing. Infants who were 
shown to be colonized (culture positive from hypopharyngeal 
aspirate) at 4 weeks of age with one of Streptococcus pneumo-
niae, H. influenzae, and/or Moraxella catarrhalis (but not S. 
aureus) were at significantly higher risk of pneumonia and 
bronchiolitis by the age of 3 years (74). The same cohort was 
followed up again at 5 years of age and the same organisms were 
associated with an increased risk of asthma (75). Interestingly, 
microbial colonization status at 12 months of age was not cor-
related with outcomes. The early colonization was important 
suggesting not only that a critical phase in immune program-
ing exists but also that there may be a window of opportunity 
early in life to cultivate a healthy or protective microbiome. 
Cytokine data from these patients showed that the T helper 
cell type induced by colonization was significantly different. 
M. catarrhalis and H. influenzae induced a mixed T helper cell 
response. S. pneumoniae colonization was not associated with 
a significant change in mucosal cytokines (76). These results 
demonstrate a possible mechanism of action for the influence 
of the bacteria over the immune system. By inducing a mixed T 
helper cell response, the Th1 responses needed for intracellular 
bacteria destruction may be impaired, potentially leading to 
chronic inflammation (76). These pathways provide potential 
therapeutic targets for intervention to influence this process 
pharmacologically.

An Australian study using culture independent techniques 
to identify bacterial and viral DNA within infants’ nasopharynx 
also showed that early (around 2 months of age) asymptomatic 
carriage of streptococcus species significantly increases the risk 
of chronic wheeze at 5  years of age (58). In a similar culture-
independent study, sampling the nasopharyngeal microbiota 
repeatedly over the first 2 years of life, the early (6 weeks of age) 
microbiota composition determined the future stability of the 
microbiota. Stable profiles were characterized by the presence 
of Moraxella and Corynebacterium or Dolosigranulum and 
were associated with breast feeding. Less stable profiles were 
marked by high abundance of Haemophilus or Streptococcus. 
Parent-reported respiratory infections were reduced in the stable 
microbiota group (28).

The combined evidence suggests early colonization of the gut 
and the respiratory tract may have a role in determining future 
respiratory health. The factors previously discussed affecting the 
early colonization patterns may therefore have a lasting impact 
beyond the neonatal period. Further work to understand the 
mechanisms of microbiological programing may assist in devel-
oping novel treatments or reveal possible ways to influence the 
microbiota to promote long term health.

GUT–LUNG AXiS

The GI tract microbiome has the ability to influence diseases ana-
tomically distant from the gut via immunological modulation of 
mucosal immune responses and the plethora of small metabolite 
molecules produced by bacteria (77). Figure  1 demonstrates a 
conceptual model of the mechanisms underlying the gut–lung 
axis (78). As previously mentioned, the additional influence of 
the gut over airway and lung bacterial colonization may also be 
extended to direct transfer of bacteria through micro-aspiration 
(63). H2 blockers or other drugs affecting the gastric acid secre-
tion may affect lung colonization by affecting the composition of 
bacteria transferred by micro-aspiration (54). H2 blockers have 
been shown to be associated with the risk of late onset sepsis and 
NEC (79, 80) and in one study pneumonia (81) in preterm new-
born infants. Thus, use of drugs, which may alter the microbiome, 
may have wider ranging consequences.

The gut microbiome may have a greater effect on respiratory 
health than previously appreciated (82). Clinical evidence cor-
roborates the presence of the gut–lung axis. Oral probiotics have 
been shown to be beneficial in preventing ventilator-assisted 
pneumonia in adults (83) and upper respiratory tract infections 
(84) but their benefits for respiratory health in neonates remain 
to be seen.

Bacterial metabolites such as short chain fatty acids (SCFA) 
may also be a mechanism for gut microbes influencing respira-
tory health (85). SCFA act directly on both epithelial cells and 
immune cells significantly affecting the immune response (86). 
Changes to the fiber content in the diet of mice affect the bacte-
rial composition within the gut and levels of serum SCFA. Mice 
fed a high fiber diet had more Bacteroides in the gut and raised 
serum SCFA compared to mice fed a low fiber diet who had more 
Firmicutes and decreased SCFA. Raised SCFA was associated 
with reduced allergic airway inflammation (87).

The common mucosal response theory suggests that antigens 
presented from one mucosal surface can affect lymphoid cell 
migration to other mucosal sites, influencing immune responses 
at the distal site (88). The immunological mechanisms explain-
ing this effect are summarized in Figure 1 (78). Bacterial derived 
antigens presented by dendritic cells (DCs) lead to T-cell activa-
tion within mucosa-associated lymphoid tissue. Tissue-specific 
T-cells expressing chemokine receptor 4 drawn to the lung along 
with the more generic chemokine receptor 6 (78). Differences in 
the gut microbiota will result in altered antigen presentation and 
T-cell activation. Oral probiotics could also influence respiratory 
health via this mechanism. DCs are critical to antigen presenta-
tion. Probiotics lead to DC secretion of the regulatory cytokines 
IL-10 and IL-12 leading to a shift in the T-helper cell population 
toward Th1 dominance (89). The improved pathogen clearance 
and reduction in the Th2 response provides a potential mecha-
nism for beneficial effect of probiotics in the lung.

There may also be a lung–gut axis with the reverse processes in 
action. Exposing the lungs of mice to lipopolysaccharide results 
in changes to the bowel flora (90). The impact of acute lung injury 
and infection may not be restricted to the lungs. Further work is 
needed to verify these finding and explore any clinically relevant 
impact.
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FiGURe 1 | Conceptual figure of the gut–lung axis. Proposed model for the regulatory influence of the gastrointestinal microbiota on the immunology of the 
lung. Microbes in the intestine are sampled by dendritic cells (DCs) either directly from the lumen or following translocation through M cells to the gut-associated 
lymphoid tissue (GALT). A combination of signals from the microbes results in phenotypic changes in the DCs and migration to the draining lymph node. DCs 
promote the activation of various T cell subsets within the mesenteric lymph nodes (MLN) and the production of various regulatory cytokinesm, such as IL-10, 
TGF-b, INFg, and IL-6. T cell subsets then acquire immune homing molecules (i.e., CCR6, CCR4, and CCR9). Following immune challenge in the airway, cells 
activated in the GALT and MLN traffic to the respiratory mucosa via CCR4 or CCR6 where they promote protective and anti-inflammatory responses. Production of 
various bacterial metabolites (e.g., SCFAs) also affects the gut–lung axis, as these products are transported to the lung, where they can alter the levels of 
inflammation. Modified from Samuelson et al. (78).

February 2016 | Volume 4 | Article 106

Gallacher and Kotecha Respiratory Microbiome of New-Born Infants

Frontiers in Pediatrics | www.frontiersin.org

The gut–lung axis is an example of the potential influence of 
the gut microbiome over many body systems (91–93). A more 
detailed understanding of this process may influence feeding and 
probiotic strategies in neonatology.

Figure  2 summarizes the factors currently shown to affect 
neonatal bacterial respiratory colonization and the effects colo-
nization patterns may have.

THe FUTURe

identifying the Microbiota and Dysbiosis
Overcoming technical challenges in obtaining samples from the 
lower airways and lungs of preterm infants can potentially lead to 
the development of accurate biomarkers for accurately identifying 
lung microbial colonization. Certainly, molecular methods pro-
vide improved sensitivity to traditional culture-based techniques, 
but modern methods will need to separate infection from coloni-
zation, viable from non-viable and commensals from pathogenic 
bacteria. In clinical work, the transition from culture-based 
pathogen identification to molecular-based techniques is already 
underway with PCR tests for, among others, Cytomegalovirus 
and Neisseria gonorrhoeae used routinely (94). These techniques 

have already been applied to respiratory bacteria in samples from 
patients with cystic fibrosis for research purposes (95). It is likely 
that most routine clinical microbiology will be performed using 
molecular-based techniques in the future.

influencing the Microbiota
Probiotics and prebiotics are attempts to manipulate the microbi-
ome of the gut to promote a healthy microbiome. This approach 
has received widespread support in the neonatal community and 
a favorable Cochrane review showing efficacy of probiotics in 
preventing NEC in preterm infants treated with Lactobacillus and/or 
Bifidobacterium species (96). Alternative strategies for gut microbi-
ome alteration have been tried, with variable success, in adults using 
fecal transplantation in Clostridium difficile infection (97). Managing 
the human microbiome with antibiotics has been occurring for 
decades. The liberal use of antibiotics on neonatal units alters neo-
natal gut (56), and likely respiratory, microbiota significantly, with 
unknown long term effects. Routine use of azithromycin to treat pos-
sible Ureaplasma infection in pre-terms has been suggested as a way 
to reduce rates of CLD (98, 99). The impact this would have on other 
organisms at this important stage of early colonization is unknown 
and will be important to determine as part of any future trial.
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Rising antibiotics resistance and further understanding of 
host–microbe interactions may lead to a change in emphasis from 
eradication of pathogens by antibiotics to out competing patho-
genic organisms by restoring the healthy, premorbid microbiome. 
Dysbiosis in the lungs may perhaps be amenable to treatment with 
nebulized probiotics. Early mouse work has demonstrated nasal 
administration of probiotic bacteria can protect against respira-
tory infection (89). Furthermore, as we understand the source of 
lung colonizing bacteria and factors influencing the early coloniz-
ers, manipulation of bacterial acquisition may be possible.

Studying the gut–lung axis may provide significant insights 
into cultivating the optimal respiratory microbiome. Dietary 
changes are known to affect the gut microbiome (100). Breast milk 
is recommended for all infants for many good reasons includ-
ing reduced upper respiratory tract infections (101). Part of the 
benefits of breast milk may be through manipulation of the gut 
and/or respiratory microbiota, but this needs further exploration.

Early microbial programing demonstrates the importance 
of a long-term view of all areas of neonatal care. Future studies 
focusing only on the neonatal period will not detect the effects of 
microbiological programing.

As the understanding of the role of the microbiome increases 
from observational studies, it is likely that interventional studies 

will seek to manipulate the respiratory microbiome using estab-
lished and novel techniques. Detailed work to grasp the complex 
symbiosis of host and colonizers is needed to minimize the risks 
of these treatments.

CONCLUSiON

The proponents of microbiome research suggest understanding 
the microbiome could lead to highly individualized care based 
on a patients colonization patterns, preventing acute infections, 
and long-term disease risks by microbiome manipulation (102, 
103). The respiratory tract lags behind the gut in terms of the 
understanding of the role of commensal bacteria in health and 
disease. In neonatal practice, further work is needed to under-
stand the early colonization and how this can be optimized. The 
important window of opportunity for influencing long-term 
health through microbiome-mediated effects is likely to be in the 
neonatal period.
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