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Prevalence of DNA of fourteen human polyomaviruses
determined in blood donors
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BACKGROUND: Human polyomaviruses (HPyVs), like
herpesviruses, cause persistent infection in a large part
of the population. In immunocompromised and elderly
patients, PyVs cause severe diseases such as
nephropathy (BK polyomavirus [BKPyV]), progressive
multifocal leukoencephalopathy (JC polyomavirus
[JCPyV]), and skin cancer (Merkel cell polyomavirus
[MCPyV]). Like cytomegalovirus, donor-derived PyV can
cause disease in kidney transplant recipients. Possibly
blood components transmit PyVs as well. To study this
possibility, as a first step we determined the presence of
PyV DNA in Dutch blood donations.
STUDY DESIGN AND METHODS: Blood donor serum
samples (n = 1016) were analyzed for the presence of
DNA of 14 HPyVs using HPyV species-specific
quantitative polymerase chain reaction (PCR)
procedures. PCR-positive samples were subjected to
confirmation by sequencing. Individual PCR findings
were compared with the previously reported PyV
serostatus.
RESULTS: MC polyomavirus DNA was detected in
39 donors (3.8%), JCPyV and TS polyomavirus (TSPyV)
DNA in five donors (both 0.5%), and HPyV9 DNA in four
donors (0.4%). BKPyV, WU polyomavirus (WUPyV),
HPyV6, MW polyomavirus (MWPyV), and LI
polyomavirus (LIPyV) DNA was detected in one or two
donors. Amplicon sequencing confirmed the expected
product for BKPyV, JCPyV, WUPyV, MCPyV, HPyV6,
TSPyV, MWPyV, HPyV9, and LIPyV. For JCPyV a
significant association was observed between detection
of viral DNA and the level of specific IgG antibodies.
CONCLUSION: In 5.4% of Dutch blood donors PyV
DNA was detected, including DNA from pathogenic PyVs
such as JCPyV. As a next step, the infectivity of PyV in
donor blood and transmission via blood components to
immunocompromised recipients should be investigated.

H
uman polyomaviruses (HPyVs) cause asymp-

tomatic persistent infection in healthy humans,1

whereas they can cause severe disease in immu-

nocompromised patients and elderly persons.

Latter groups increasingly receive blood components, although

the presence of HPyVs in blood donors has not been studied

extensively. Transfusion-transmitted HPyV infection has not

been reported, which can be explained by lack of such trans-

missions or by an erroneous assumption that HPyV-related

disease in immunocompromised patients always is caused by

reactivation of their own, hitherto silent infection. In kidney

transplant patients a substantial proportion of BK polyomavi-

rus (BKPyV) infections and pathology is donor derived.2,3

ABBREVIATIONS: BKPyV = BK polyomavirus; Ct = cycle

threshold; HPyV(s) = human polyomaviruses; JCPyV = JC

polyomavirus; LIPyV = LI polyomavirus; KIPyV = KI polyomavirus;

MCPyV = Merkel cell polyomavirus; MWPyV = MW polyomavirus;

NJPyV = NJ polyomavirus; PML = progressive multifocal

leukoencephalopathy; PyV = polyomavirus; qPCR = quantitative

polymerase chain reaction; STLPyV = STL polyomavirus; TS =

trichodysplasia spinulosa; TSPyV = TS polyomavirus; WUPyV = WU

polyomavirus.
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Polyomaviruses are ubiquitous viruses that frequently
infect human beings. During childhood the seroprevalence of
most HPyVs rapidly increases, sometimes reaching 100%.4–7

PyVs can be detected in healthy persons, for example, in skin,8

urine,9 tonsillar tissue,10 and respiratory samples.11 Despite the
persistence of these viruses, little is known about the occurrence
of viremia in the healthy population, especially regarding the
recently discovered HPyVs. In immunocompromised patients,
HPyVs can be found also in blood and cerebrospinal fluid.12,13

PyV-associated diseases are increasingly relevant in the immu-
nocompromised population. Two well-known examples of PyV-
associated disease are BKPyV-associated nephropathy14 and JC
polyomavirus (JCPyV)-associated progressive multifocal leu-
koencephalopathy (PML).15 Nowadays these severe conditions
are primarily seen, respectively, in immunosuppressed kidney
transplant recipients and patients on immunomodulatory drugs,
such as multiple sclerosis patients taking natalizumab.15 In the
past decade, with the identification of at least 10 novel
HPyVs,8,16–27 the number of PyV-associated diseases has
increased and now includes Merkel cell carcinoma and
trichodysplasia spinulosa (TS). Merkel cell carcinoma, caused
by Merkel cell polyomavirus (MCPyV), is an aggressive, poten-
tially lethal tumor that occurs in the elderly and in immunocom-
promised patients.16 TS, caused by TS polyomavirus (TSPyV), is
a dysplastic and disfiguring skin disease that is especially found
in solid organ transplant patients and lymphocytic leukemia
patients.17 HPyV6 and -7 cause pruritic and dyskeratotic derma-
toses in immunocompromised patients.28 KIPyV and WU poly-
omavirus (WUPyV) were first detected in human
nasopharyngeal aspirates from patients with respiratory infec-
tion.18,20 MWPyV and STLPyV were found in stool samples of
healthy children.23,27 HPyV9 was discovered in the serum of a
kidney transplant patient.26 HPyV12, NJPyV, and LI polyomavi-
rus (LIPyV) were all identified in human samples;21,22,24 how-
ever, seroprevalence of these viruses is low. Vaccination or
proven effective antiviral therapy is not available for HPyVs.

HPyVs are non-enveloped viruses, 40 to 50 nm in diam-
eter, with circular double-stranded DNA genomes. It can be
expected that common pathogen reduction techniques used
in blood banking have limited efficacy against HPyVs,
because these viruses are non-enveloped. HPyVs have
been isolated from lymphocytes and hence leukoreduction
of blood donations might decrease the presence of HPyVs
in donated blood, but the extent of this reduction is
unknown.29–31 It is uncertain whether higher levels of specific
HPyV-antibodies decrease potential infectivity by neutraliza-
tion. On the one hand, kidney transplant recipients with a
high antibody titer against BKPyV have a lower risk of devel-
oping BKPyV viremia compared to recipients with low anti-
body titers, but on the other hand kidney transplant patients
have an increased risk of developing BKPyV viremia after
receiving a kidney from a donor with high BKPyV antibody
levels.3,32 No group is fully protected and as such it seems
likely that a seropositive transfusion recipient is not necessar-
ily protected against PyV infection.

Since latent, persistent PyV infections bear a risk for the
immunocompromised, one can wonder about the contribu-
tion of blood components as a vehicle for HPyV transmission.
To start answering this question, we recently determined the
seroprevalence of all known, thus far 14, HPyVs in a large
group of blood donors and estimated that each blood donor is
persistently infected with on average nine HPyVs.4 To further
explore the risk from these potentially blood-transmitted
viruses, in this study we analyzed the same blood donor
cohort by HPyV-specific polymerase chain reaction (PCR) pro-
cedures for the presence of circulating genomic DNA of all
currently known HPyVs.4

MATERIALS AND METHODS

DNA extraction

Nucleic acid extraction was performed on a nucleic acid purifi-

cation instrument (MagNA Pure LC, Roche Diagnostics) using a

large-volume DNA isolation kit (MagNA Pure LC, Roche Diag-

nostics), according to the manufacturer’s instructions, with an

input volume of 1000 μL and an output volume of 65 μL. Extrac-
tion efficiency and PCR inhibition was controlled by adding a

fixed concentration of phocine herpesvirus (PhHV) DNA to the

lysis buffer that was added to each sample.33

PyV DNA detection

Each sample was analyzed for the presence of HPyV genomic
DNA with the help of three real-time multiplex quantitative
PCR (qPCR) procedures (Multiplex 1, 2, and 3), developed to
detect 14 PyVs (Table 1). The PCR procedures for BKPyV,
HPyV6, HPyV7, TSPyV, and HPyV9 were previously designed
and described.34–36 The PCR procedures for JCPyV, WUPyV,
and MCPyV were developed by other research groups.37–39

Novel primers and probes were designed for KIPyV, MWPyV,
STLPyV, HPyV12, NJPyV, and LIPyV using computer software
(Geneious, Version 10.2.4, Biomatters; Table 1 and Table S1,
available as supporting information in the online version of this
paper). Multiplex 1 was developed to detect MCPyV, HPyV6,
HPyV7, TSPyV, and HPyV9; Multiplex 2 to detect BKPyV,
WUPyV, MWPyV, and NJPyV (and the internal control phocine
herpesvirus); and Multiplex 3 to detect JCPyV, KIPyV, STLPyV,
HPyV12, and LIPyV.

The PCR mix (total volume, 25 μL) consisted of a master
mix kit (HotStarTaq, Qiagen), MgCl2, primers, probes (see
Table 1 for concentrations) and 10 μL of input DNA isolate.
Cycling conditions for the PCR procedures were as follows: 95°
C for 15 minutes, followed by 45 cycles of 95°C for 30 seconds,
60°C for 30 seconds, and 72°C for 30 seconds. qPCR procedures
were performed on a real-time PCR detection system (Model
CFX96, Bio-Rad Laboratories). Analysis of the qPCR data was
performed with computer software (CFX Manager, Version 3.1,
Bio-Rad Laboratories). Baseline threshold values were deter-
mined separately for each target, and fluorescence drift correc-
tion was applied.
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Polymerase chain reaction efficiency and analytical sensi-
tivity of each PyV PCR were determined on replicates of serial
dilution series of 10,000 to 1 copy per reaction of a plasmid
containing a single cloned copy of the PyV target gene (VP1 or
Large T-antigen) and was defined as the ability of the assay to
detect the target concentration with a probability higher than
95% in a number of replicates (Tables S2 and S3, available as
supporting information in the online version of this paper).

PCR product sequencing

Polymerase chain reaction products amplified with a cycle
threshold (Ct) value below 40 were analyzed by Sanger
sequencing for confirmation, with a maximum of 10 posi-
tive samples (amplicons) per HPyV. The generated PCR
products were run on a 2% agarose gel. Bands of the
expected size (74-150 bp) were isolated using a PCR and
gel kit (Isolate II, Bioline Reagents), ligated, and cloned in
Escherichia coli using a cloning kit (TOPO TA, Thermo
Fisher Scientific), according to manufacturer’s instructions.
For each successful ligation, three colonies per plate were
picked, and plasmid DNA was isolated with an isolation kit
(NucleoSpin Plasmid EasyPure, Macherey-Nagel). Sanger
sequencing was performed on a DNA analyzer (ABI3730xl,
Thermo Fisher Scientific) using M13 forward primer.

Study population

The study population consisted of 1050 serum samples from
healthy Dutch blood donors. The samples were previously
used for routine blood donor screening for human
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Blood donors
(N = 1050)

Polyomavirus
Immunoassay

(n = 1016)

DNA isolation
(n = 1050)
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(Insufficient 

volume, n = 31)

Exclusion
(Inhibition in 
qPCR, n = 3)

qPCR
(n = 1019)

Exclusion
(background
signal, n = 6)

Fully screened blood
donors (N = 1010)

Not reported here.
Previously published: 
Kamminga et al. PLOS ONE.
2018 okt;13(10):e0206273. 

Fig. 1. Flow chart for study population. Numbers in parentheses

indicate serum samples that were successfully isolated, PCR

amplified, and assessed with the immunoassay. Boxes on the

right side of the figure state reasons for exclusion of samples.
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immunodeficiency virus, hepatitis B and C virus, and syphi-
lis.4 Of 1050 samples, 34 were excluded due to insufficient
volume for DNA extraction or due to inhibition in qPCR
(Fig. 1). The presence of PyV antibodies in this sample set
was determined previously. On average, a donor from this
population is seropositive for nine different PyV species and
seropositivity ranged from 5% to 100% depending on PyV
species.4 Basic population demographics (age and sex) of
the fully screened donor population are shown in Table 2.
Samples from all regions of the Netherlands were included,
as reported previously.4

Each blood donor gave permission to use residual blood
samples for studies of blood-borne agents. Hence, Sanquin’s
scientific board and the secretary of Sanquin’s ethical advisory
board decided that for this study additional permission from
the ethical advisory board is not needed. The blood donors
fulfilled all criteria for blood donation eligibility.

PyV serology

The PyV serostatus of all blood donors was determined and
described in a previous study,4 using a multiplex immunoas-
say as previously described,40 employing a GST-VP1 fusion
protein for each PyV as antibody-binding antigen.

Statistical analysis

Statistics were performed with computer software (SPSS Sta-
tistics, Version 23, IBM Corp.). Chi-square tests were used
to compare PCR results and seropositivity, age category, or
sex. Mann-Whitney U tests were used to compare ser-
oreactivity results between samples positive or negative in
qPCR analysis.

RESULTS

PyV PCR validation

The analytical sensitivity was 10 to 15 copies/reaction for all
PCR procedures, except for the MCPyV PCR, which reliably
detects 100 copies/reaction, although the dilution with 10 cop-
ies/reaction was detected in 90% of cases (Table S2, available
as supporting information in the online version of this paper).
High concentrations of nontarget PyV DNA with a Ct value
between 25 and 30) did not inhibit the PCR (Table S4A-N,
available as supporting information in the online version of
this paper). In addition, a panel of common double-stranded
DNA viruses containing herpes simplex virus 1 and 2, varicella
zoster virus, cytomegalovirus, Epstein-Barr virus, and adeno-
virus was tested negative in each HPyV PCR (data not shown).
In short, all HPyV PCR procedures detect their target in a sen-
sitive and specific manner.

Presence of PyV DNA in blood donors

Serum samples from 1016 blood donors were analyzed for the
presence of HPyV DNA using three multiplex PCR procedures.
In Table 2 the PCR results are summarized. MCPyV DNA was

the most prevalent, detected in 39 of 1016 (3.8%) donors, with a
viral load ranging between 24 and 452 genome equivalent cop-
ies/mL. Sequencing confirmed the presence of theMCPyVDNA
in the PCR product in most samples (78%; Table 2). JCPyV,
TSPyV, and HPyV9 were detected, respectively, in five (0.5%;
range, 9-37 copies/mL), five (0.5%; range, 9-81 copies/mL), and
four (0.4%; range, 7-68 copies/mL) donors. Sequencing con-
firmed the presence of virus-specific DNA in 100% of cases for
JCPyV and TSPyV and in 33% for HPyV9. When sequencing was
successful but HPyV-specific sequences were not present, espe-
cially human genomic DNA and primer-dimers were detected
(Table 2). For example, the HPyV12-positive findings in
10 donors with a low range of 2 to 13 copies/mL could not be
not confirmed at all by sequencing. The other HPyVs were
detected in only one or two donors, while HPyV7 was not
detected at all. Summarizing, we found 64 donors to be HPyV
PCR positive (6.3%), of which the detection of specific viral DNA
was confirmed (in part) for BKPyV, JCPyV, WUPyV, MCPyV,
HPyV6, TSPyV, HPyV9, MWPyV, and LIPyV in 55 blood donors
(5.4%). HPyV codetection was observed in four donors (0.4%)
and involved TSPyV, HPyV9, and LIPyV (all sequence-verified);
WUPyV, TSPyV, and HPyV9 (WUPyV and TSPyV sequence veri-
fied); TSPyV, KIPyV, and NJPyV (TSPyV sequence verified); and
TSPyV and HPyV9 (TSPyV sequence verified), respectively. The
distribution of PyV detection over sex and age category is sum-
marized in Table 2. For none of the HPyVs a correlation was
found between the detection in serum and sex or age category
of the donor.

Previously we analyzed every sample included in this
study serologically for HPyV infection,4 which enabled us to
compare the HPyV PCR findings with HPyV serostatus
(seropositivity) and seroreactivity (the median seroresponse
given as median fluorescence intensity value; Table 3). In
case of BKPyV, JCPyV, KIPyV, WUPyV, MCPyV, HPyV6,
TSPyV, and MWPyV, 77% to 100% of the positive PCR find-
ings were obtained in donors seropositive for the detected
HPyV. The HPyV9, STLPyV, HPyV12, NJPyV, and LIPyV
DNA-positive samples, however, were all from donors sero-
negative for the HPyV that was detected. No significant cor-
relation was found between presence of PyV DNA and
seropositivity. Seroreactivity was comparable between DNA-
positive and -negative samples for all HPyVs, except JCPyV
where significantly higher seroresponses were measured in
the JCPyV DNA–positive samples (Mann-Whitney U test,
p = 0.005; Table 3).

DISCUSSION

In this study we determined the presence of PyV DNA in
serum samples taken from healthy Dutch blood donors. Our
results show that the prevalence of PyV DNA varies from 0%
to 3.8% depending on HPyV species. Importantly, we detected
DNA from known pathogenic PyVs, BKPyV (0.1%), JCPyV
(0.5%), MCPyV (3.8%), and TSPyV (0.5%), which suggests that
these viruses may be present in blood components.
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The prevalence of PyV DNA (5.4%) was based on PCR
amplification (with Ct values <40) and sequence confirma-
tion of at least one amplicon per HPyV, which was obtained
for BKPyV, JCPyV, WUPyV, MCPyV, HPyV6, TSPyV, HPyV9,
MWPyV, and LIPyV. Since blood donors in the Netherlands
are selected on optimal health and minimal risk exposure
(among others to infectious diseases), we believe that our
estimation of HPyV presence is a minimum estimator of
HPyV prevalences in the general adult Dutch population
and probably in other western populations as well, as little
differences in PyV seroprevalence are observed between
these populations.4–7

A strength of this study is the inclusion of many blood
donors and all 14 currently described HPyVs. Except for
MCPyV (see below), the most likely explanation for our
findings is that the implicated blood donors were viremic at
the time of blood collection. However, HPyV DNAemia as
the result of disintegrating persistently infected cells cannot
be excluded, which could be relevant for BKPyV and JCPyV
that have been found in peripheral blood mononuclear cells
from healthy persons.29,30,41 In a study of 400 plasma sam-
ples of American blood donors, BKPyV and JCPyV DNA was
not detected,42 which might be explained by the smaller size
of the study. Alternatively, technical or geographic differ-
ences could account for the negative outcome in that study.

Since HPyV infections are generally acquired during
childhood,5,6 HPyV-detections probably result from persistent
HPyV infections. Although primary infection is a possible expla-
nation for PCR-positive donors that are seronegative. Whether
our findings result from continuous HPyV viremia, which occa-
sionally exceeds the lower limit of PCR detection, or from an
occasional viremic episode in the background of an otherwise
latent infection cannot be deduced from our cross-sectional
data set. Furthermore, infectivity of the suspected HPyV, or loss
of infectivity after nuclease treatment, to assess the presence of
intact virions, will be difficult because of the detected low viral

load levels (median, 55 copies/mL serum). Potential infectivity
of blood components could be assessed by documented sero-
conversion or an increase in seroreactivity in the recipient after
administration of blood components.

MC polyomavirus was detected in 3.8% of serum samples
in our study, which is comparable to findings in other studies.
For example, a study of 190 blood donors reported MCPyV in
2.6% of sera43 and another study of 621 sera from 394 elderly
hospitalized patients older than 65 years of age found a preva-
lence of 9.9% for MCPyV,44 which suggests that the prevalence
may increase with age. MCPyV has been detected in other
blood compartments, for example, in 22% of buffy coats from
blood donors.45 Interestingly, MCPyV was detected with whole-
genome sequencing as part of the blood virome46 and also with
metagenomics in blood components eligible for transfu-
sion.47,48 KIPyV and WUPyV DNA have previously been
reported in plasma from blood donors with prevalence ranging
from 0.5% to 3.1% for KIPyV and 0.8% for WUPyV.49,50 This is
slightly higher than our finding of 0.1 and 0.2% in serum for
KIPyV and WUPyV, respectively. Prevalence data in serum from
healthy individuals for the other PyVs is currently lacking.

We consider it likely that a substantial part of the rela-
tively high number of MCPyV PCR positives is explained by
the high prevalence (>50%) of MCPyV (DNA) on skin of
healthy individuals, as reported in several publications.51–53

During the hollow-needle venipuncture, before the blood is
actually collected, a small “biopsy” of skin tissue is punched
that could act as a source of virus. For TSPyV, however, this
scenario is unlikely, as it is barely found on the skin of asymp-
tomatic immunocompetent and immunocompromised indi-
viduals.51 In addition to the potential “contamination” of
donor blood through the skin punch, there is a theoretical risk
of MCPyV contamination by blood bank and laboratory per-
sonnel, who carry MCPyV as well.

The seroprevalence of each PyV was determined within
the same sample set in a previous study.4 Despite a high

TABLE 3. Overview of PyV serostatus and DNAemia in fully screened population (n = 1010)

PyV Seroprevalence*

Seropositives
among PCR
positives (%)

Median seroreactivity
in MFI among PCR positives Median seroreactivity in MFI among PCR negatives p value†

BKPyV 99 1/1 (100) 22,519 18,936 0.635
JCPyV 62 5/5 (100) 8,382 828 0.005
KIPyV 92 1/1 (100) 11,956 9,755 0.775
WUPyV 99 2/2 (100) 20,796 12,170 0.108
MCPyV 82 30/39 (77) 9,799 6,297 0.239
HPyV6 83 1/1 (100) 3,022 8,140 0.575
HPyV7 71
TSPyV 79 4/5 (80) 716 6,575 0.391
HPyV9 19 0/4 (0) −231 −69 0.101
MWPyV 100 1/1 (100) 11,023 10,425 0.909
STLPyV 65 0/1 (0) −263 873 0.126
HPyV12 4 0/10 (0) −288 −259 0.596
NJPyV 5 0/1 (0) 367 204 0.466
LIPyV 6 0/2 (0) −143 −224 0.514

* Overall percentage seroprevalence, as previously described by Kamminga et al. PLOS ONE. 2018 okt;13 (10):e0206273.
† Mann-Whitney U test (p value < 0.05 was considered significant).
MFI = median fluorescence intensity.
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concordance (≥77%) between DNA positivity and seroposi-
tivity for most prevalent PyVs, we found no significant cor-
relation between the two. This lack of association is likely
caused by the low number of PCR positives among the gen-
erally high number of seropositives. The HPyV9-, STLPyV-,
NJPyV-, and LIPyV-positive donors were seronegative for
these PyVs, which could be explained by primary infection
or a lack of productive infection. The latter seems likely for
NJPyV and LIPyV as these viruses may not have humans as
their primary host.4 For JCPyV we did observe an associa-
tion between the height of the seroresponse and JCPyV
DNA detections. An association between viral load and ser-
oreactivity was previously observed for both BKPyVs in kid-
ney transplant patients12,32 and for JCPyV, where individuals
with high seroreactivity had higher viral loads compared to
individuals with low seroreactivity.54 JCPyV serology is also
used as risk marker for PML.55 This suggests that there is an
association between JCPyV viral load and JCPyV serology,
both in healthy individuals and in patients at risk for PML.

Some limitations of this study include the chance of mis-
classification by sample contamination and the chance of erro-
neous detection. In addition, this study shows the presence of
viral DNA, rather than the presence of encapsidated, infectious
viral particles. The risk of lab contamination is reduced by
storing and preparing reagents in separate rooms, using dis-
posables and using no-template controls. To further limit the
chance of erroneous detection, prevalence calculations were
based only on positive PCR results with a Ct value of less than
40. Furthermore, amplicon sequencing of samples (with a
maximum of 10) with a Ct value below 40 was performed to
check for presence of the expected product. For most PCR
procedures the expected product was detected, although
sometimes detection was difficult, for example, in case of
codetection (TSPyV and HPyV9). Out of curiosity, we analyzed
several very weak PCR-positive samples and could confirm the
presence of JCPyV-, HPyV6-, and TSPyV-specific DNA in some
of those samples (data not shown). For HPyV12, in all
10 PCR-positive samples human genomic DNA was detected,
which is probably amplified in a non-specific manner, because
of the absence of specific DNA template. Furthermore, the
finding of a PyV similar to HPyV12 in shrews56 combined with
a reported low seroprevalence4 suggests little circulation of this
virus in humans.

In summary, DNA of HPyVs was detected in 5.4% of
serum samples from a large cross-section of Dutch blood
donors. The detection of PyV DNA in these samples sug-
gests that PyVs are present in blood components eligible
for transfusion, which should be further investigated using
infectivity assays and a donor–recipient transmission
study.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the
online version of this article.

Table S1. Oligonucleotide and MgCl2 concentrations.
Table S2. PCR efficiency and limit of detection.
Table S3. Polyomavirus plasmids.
Table S4. Competition experiments.
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