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Abstract Cytopathological examination through biopsy

is very important for carcinoma detection. The embedded

relay lens microscopic hyperspectral imaging system

(ERL-MHIS) provides a morphological image of a biopsy

sample and the spectrum of each pixel in the image

simultaneously. Based on the ERL-MHIS, this work

develops morphological and spectral methods to diagnose

oral carcinoma biopsy. In morphological discrimination,

the fractal dimension method is applied to differentiate

between normal and abnormal tissues. In spectral identifi-

cation, normal and cancerous cells are distinguished using

five methods. However, the spectra of normal and

cancerous cells vary with patient. The diagnostic perfor-

mances of the five methods are thus not ideal. Hence, the

proposed cocktail approach is used to determine the

effectiveness of the spectral methods in correlating with the

sampling conditions. And then we use a combination of

effective spectral methods according to the sample condi-

tions for diagnosing a sample. A total of 68 biopsies from

34 patients are analyzed using the ERL-MHIS. The results

demonstrate a sensitivity of 90 ± 4.53 % and a specificity

of 87.8 ± 5.21 %. Furthermore, in our survey, this system

is the first time utilized to study oral carcinoma biopsies.

Keywords Oral carcinoma � Hyperspectral imaging �
Biopsy � Microscopy

1 Introduction

Oral carcinoma is an important global health problem, as

evidenced by approximately 40,250 new cases of oral and

throat carcinoma detected in 2012 (American Cancer Soci-

ety). In theUnitedStates, the overall 5-year survival rate for all

stages of oral carcinoma is 61 % [1, 2]. Biopsy is the con-

ventional means of diagnosing oral carcinoma [3, 4]. In

addition to allowing pathologists to diagnose the stage of

carcinomaaccurately, biopsy also allows them toprescribe the

most appropriate treatment. However, differences in experi-

ence and subjectivity when evaluating borderline dysplastic

cells between pathologists might affect their diagnostic

accuracy. A microscopic hyperspectral imaging system

(MHIS) capable of presenting a tissue image and the spectral

information of each pixel in the image simultaneously was

developed to facilitate carcinoma diagnosis quantitatively [5–

16]. However, both the hardware and analytical algorithm

aspects of the conventional MHIS required further improve-

ment. Regarding hardware, the conventionalMHISwas time-

consuming, had a complex mechanical structure, high off-

axial optical aberration, and inconvenient alignment. The

embedded relay lensMHIS (ERL-MHIS, Fig. 1) developed in

our previous works overcomes these limitations [17, 18].

Certain limitations of analytical algorithms have pre-

ventedwidespreadMHIS application in carcinomadiagnosis

[11–15]. Siddiqi et al. [13] distinguished between normal

and cancerous cells by using the nuclear spectrum and then

further distinguished them based on the nuclear/cytoplasmic

ratio. Other works [11, 12, 14, 15] demonstrated that the

nuclear spectrum can present quantitative differences

between normal, precancerous, and cancer cells. However,

there are several problems with these studies. First, these

works used biopsies from only one patient. Although a

40 9 objective was used to examine every single cell in the
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biopsy, their conclusions may not be applicable to all cancer

patients. Second, the examination of every single cell in the

biopsy was quite time-consuming. Third, most pathologists

use a 20 9 objective [19]. Accordingly, the use of a high-

power objective (higher than 409) is inconvenient for

pathologists. Fourth, in a previous work, the sensitivity,

specificity, or both of discrimination between normal and

precancerous cells was about 70–80 % [13].

This work develops morphological and spectral methods

anduses them tohelppathologists quantitativelydiagnoseoral

carcinoma biopsy. The proposed methods were used to

diagnose68oral carcinomabiopsies of 34patients usingERL-

MHIS (with a 20 9 objective). In the spatial domain,

although the fractal dimension algorithm [20] can distinguish

between the morphological differences of normal and

abnormal tissues, an abnormal tissue does not represent a

cancerous tissue. Hence, normal and cancerous cells in the

tissue are distinguished in the spectral domain using five

methods. However, the spectra of normal and cancerous cells

vary with patient due to differences in sampling conditions

(e.g., age of patients, lesion site, tumor size, and lymph node

metastasis) [15, 21, 22]. Therefore, thiswork develops a novel

cocktail approach to reduce the difference in the cell spectrum

between patients. The proposed cocktail approach determines

the effectiveness of spectral methods in correlating with the

sampling conditions. The sample is then diagnosed using the

optimal combination of effective spectral methods.

2 Materials and Methods

2.1 ERL-MHIS

Figure 1(a) illustrates the functions and setup of the ERL-

MHIS. The designed relay lens for scanning is placed

between the microscope and the hyperspectrometer. The

stepping motor is located under the relay lens. The relay

lens comprises symmetric infinite conjugate lenses for

scanning and transferring images with optimal off-axis

optical aberration. The object on the platform is imaged

with the objective lens on imaging plane 1. The relay lens

then transfers the image from imaging plane 1 to imaging

plane 2, where the hyperspectrometer slit is located. The

slit is along the y axis direction. Imaging plane 2 images

one line (slit size) at a time on the electron-multiplying

charged-coupled device (EMCCD). When the relay lens is

static, the line image of slit size and the spectrum can be

recorded on the EMCCD. While the stepping motor moves

along the x-axis, the individual line images are recorded on

the y–k plane of the EMCCD. The stepping motor moves

one step in the x-axis direction to capture the next line

image and its spectrum. Each y–k image is recorded as a

single y–k file for each row along the object corresponding

to the radiation collection region, which maps through the

hyperspectrometer to the EMCCD. After all of the line

images are captured, the data cube of all of the y–k files are

loaded into memory.

The ERL-MHIS provides transmission and fluorescence

images of the biopsy to assist pathologists in detecting

cancerous cells or tissues. The transmission light source is

a 100-W halogen lamp. The fluorescent light source is a

75-W xenon lamp. The transmission image provides mor-

phological information and spectral information from 400

to 1000 nm of the cell or tissue. The fluorescence image

provides the characteristic spectrum of the cell or tissue.

The proposed system has two fluorescence modes (F1:

330–385 nm; F2: 470–490 nm). The fluorescence mode

can be changed by tuning the fluorescent wheel. Fig-

ure 1(b) shows the finished product of the proposed ERL-

MHIS, which consists of an inverted microscope (Olympus

Fig. 1 a Diagram and b photograph of ERL-MHIS (RL relay lens, HS hyperspectrometer, SM stepping motor, IMP1 imaging plane 1, IMP2

imaging plane 2, FW fluorescent wheel
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IX71), charged-coupled device (CCD; AVT PIKE F-421-

C), RL, stepping motor (Sigma Koki, SGSP20-20),

hyperspectrometer (Specim V10E, with spectral range of

400 to 1000 nm), and EMCCD (Andor Luca R604, with

1000 9 1000 pixels and 8-lm pixel size). The spatial

resolution of the ERL-MHIS is 30 lm 9 10 lm. The

objective power affects the spatial resolution. This

work uses a 20 9 objective (spatial resolution: 1.5 lm 9

0.5 lm). The spectral resolution of the ERL-MHIS is about

2.8 nm. The software for acquiring images and analyzing

spectral information was programmed in the C language.

The software controls the speed of the stepping motor,

gain, and exposure time of the EMCCD.

2.2 Patient Biopsy Preparations

Sixty eight biopsies of 34 oral carcinoma patients were

provided by the China Medical University Hospital (Tai-

Chung City, Taiwan). The 68 biopsies were divided into 58

training cases and 10 test cases. The type of test biopsy

(normal or cancerous) was not revealed to the analyst who

analyzed the 10 biopsies. The 58 training cases were uti-

lized to determine the most effective methods for each

sampling condition and its cut-off point. The performance

of the proposed approach was validated using the 10 test

cases.

Before the experiment, institutional review board (IRB)

approval was obtained from China Medical University

Hospital (IRB number DMR98-IRB-209). All patients

received complete information on this experiment before

providing their signed informed consent. This study was

implemented in accordance with the Declaration of

Helsinki.

The routine pathological diagnosis procedure with

hematoxylin and eosin (H&E) staining was utilized to

prepare the biopsies. After surgical operations, the oral

carcinoma and normal samples were resected from the

patients. Samples were then stained with H&E. Next, two

biopsies (normal and cancerous) were prepared from each

patient. The pathologist identified the biopsies as either

normal or cancerous. Moreover, the pathologist marked the

layers of the oral tissue (lamina propria and basal-cell

layer) on the image of the biopsies. For each biopsy, one

transmission image and two fluorescence images were

acquired using the ERL-MHIS.

2.3 Morphology-Based Fractal Dimension Method

for Tissue Discrimination

Fractal dimension is a ratio that gives statistics of com-

plexity, comparing how much detail in a pattern changes

with the scale at which it is measured [20]. In this work, the

complexity of the border between the lamina propria and

the basal-cell layer is represented using the fractal

dimension of the tissue image. Fractal dimension can be

calculated by taking the limit of the quotient of the log

change in object size and the log change in measurement

scale, as the measurement scale approaches zero:

D ¼ logN

log s
; ð1Þ

where D denotes the fractal dimension, s denotes the length

of the chosen smallest unit, and N denotes the number of

s required to cover the pattern. In this work, the nuclear

size with nine pixels is used as the smallest unit. N is the

image size (1000 9 1000 pixels). The fractal dimension is

calculated using the binary image version of the trans-

mission image.

The raw data of the transmission image must be cali-

brated before the fractal dimension is calculated. In this

work, the dark noise of the system is removed using a dark

image with no illumination. The nonuniformity of the

transmission image is then removed using a reference

blank, for which an area on the slide is scanned with all

layers of glass besides the cell structures. The nonunifor-

mity is caused by uneven illumination, scan line stripping,

effect of the lamp, and reflectance or transmittance of glass.

The calibration formula is:

TðkÞ ¼ ITðkÞ � IdarkðkÞ
IwhiteðkÞ � IdarkðkÞ

; ð2Þ

where T(k) denotes the calculated transmittance value of

each pixel in the transmission image, IT(k) denotes the

spectral intensity of raw data for each pixel in the trans-

mission image, Idark(k) denotes the spectral intensity of

each pixel in the dark field, and Iwhite(k) denotes the

spectral intensity of each pixel in the bright field.

Additionally, an attempt was made to acquire a binary

image with a clear border between the basal-cell layer and

the lamina propria by superimposing the transmission

image in the wavelength range of 500–700 nm. The largest

difference of spectral intensity between the basal-cell layer

and the lamina propria is in the wavelength range. Finally,

the fractal dimension of the binary image is calculated

using Eq. (1).

2.4 Five Spectrum-Based Methods for Cell

Discrimination

When the oral dysplasia arises from the epithelial tissue,

the number of nuclei in the basal-cell layer increases and

the nuclear shape and size change [3, 4]. Moreover,

according to previous studies [13–15], the nuclear spec-

trum presents a quantitative difference between normal,

precancerous, and cancerous cells. Therefore, it is

hypothesized that normal and cancerous cells differ in the
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nuclear spectrum of the basal-cell layer of epithelial tissue.

In this work, the analyzed spectral data are obtained from

two fluorescence images (obtained with F1 and F2 exci-

tation, respectively). We choose the nuclei with well dyed

and exclude the nuclei of border. Before analysis, the dark

noise must be removed. The calibration formula is

F(k) = IF(k)–Idark(k), where F(k) denotes the fluorescent

emission intensity of each pixel in the fluorescence image,

IF(k) denotes the spectral intensity of raw data of each

pixel in the fluorescence image, and Idark(k) denotes the

spectral intensity of each pixel in the dark field. After the

noise is removed, all of the nuclei in the basal-cell layer are

chosen. Each nucleus comprises nine pixels. For each

nucleus, the fluorescent emission spectral intensity is the

average spectral intensity of the nine pixels.

According to the characteristics of the emission spectral

shape, normal and cancerous cells were distinguished using

five methods (three methods for spectrum obtained with F1

excitation and two methods for spectrum obtained with F2

excitation). The emission spectral shape for F1 excitation

has two peaks and one valley (Fig. 3a); peak 1 at 560 nm,

peak 2 at 705 nm, and valley at 630 nm). Since the normal

cell and cancerous cell had different peak ratios or different

valley values, the first method uses the peak ratio (PR),

peak 1/peak 2, as a characteristic of spectral shape. The

second method uses the peak and valley ratio (PVR), with

the spectrum normalized by the intensity of peak 1. Then,

the formula (peak1 9 peak2)/valley is used as a charac-

teristic value of spectral shape. The third method uses the

area under the spectral curve (AUS1) normalized by the

intensity of peak 1 as a characteristic of spectral shape. The

emission spectral shape for F2 excitation has only one peak

(Fig. 3b); peak at 560 nm). The fourth method uses the

area under the spectral curve (AUS2) normalized by the

intensity of peak as a characteristic of spectral shape. The

fifth method uses the full width at half maximum (FWHM)

of the spectral curve as a characteristic of spectral shape.

Each cell can obtain one characteristic value from each

method. For each patient (two biopsies) and each method,

the characteristic values of normal cells and cancerous cells

were plotted as two distribution groups. The cut-off point

and optimal performance (sensitivity and specificity) of

each method were determined using the receiver operating

characteristic (ROC) curve [23]. Sensitivity and specificity

measure the inherent validity of a diagnostic method for

dichotomous results [24, 25]. Details on how to calculate of

sensitivity and specificity can be found elsewhere [25].

Sensitivity measures the proportion of actual positives that

are correctly identified as positive, that is, the percentage of

cancerous cells that are correctly identified. Specificity

measures the proportion of negatives that are correctly

identified, that is, the percentage of normal cells correctly

identified. However, specificity and sensitivity rely on the

cut-off point utilized to define ‘‘positive’’ and ‘‘negative’’

test results. Notably, sensitivity and specificity shift when

the cut-off point shifts. The ROC curve delineates the

trade-off between the sensitivity and (1-specificity) across

a series of cut-off points [24].

2.5 Spectrum-Based Cocktail Approach for Cell

Discrimination

This section describes how the cocktail approach deter-

mines which spectral methods are effective for each

patient. Previous works [15, 21, 22] have established that

the lesion site, tumor size, age, and lymph node metastasis

affected the cell spectrum. Therefore, in this work, patient

data were sorted according to the age, lesion site, size or

direct extent of the primary tumor (T), and degree of spread

to regional lymph nodes (N). Here, a method with a mean

sensitivity and a mean specificity of higher than 80 % was

defined as effective with respect to a specific condition. For

example, the ages of three patients (patients 18, 25, and 28)

ranged from 30 to 39 years old. The mean sensitivity and

mean specificity of the PR method for the three patients

were 76.8 and 73.46 %, respectively (Table 2). Hence, the

PR method is infeasible for patients in this age range. In

contrast, the mean sensitivity and mean specificity of the

PVR method were 91.43 and 83.6 %, respectively, for

these patients, and thus the method was considered effec-

tive. Once the most effective methods were determined for

each condition, their combination was used to diagnose a

biopsy, depending on its conditions. The cell must undergo

screening of all of the effective methods of the sample,

followed by its diagnosis as a normal or cancerous cell.

Figure 4 (in the Sect. 3.2) shows the flowchart that

describes how the cocktail approach finds the effective

methods for each condition.

2.6 Combined Diagnosis Based on Fractal

Dimension and the Cocktail Approach

The fractal dimension was first used to determine whether

the biopsy tissue was normal or abnormal. The cocktail

approach can further determine whether the cells were

normal or cancerous. The biopsy was thus determined as

normal or cancerous.

3 Results and Discussion

3.1 Morphological Identification Between Normal

and Abnormal Tissues

Table 1 shows information on the biopsies. Figure 2 dis-

plays the biopsy image of patient 7. Pathologists can obtain
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more information about the biopsy (e.g., the differentiation

and the stage) from the transmission images (Fig. 2a, e).

In this work, the complexity of the border between the

basal-cell layer and the lamina propria was represented

using the fractal dimension (Fig. 2a). Normal tissues had a

clear border between the basal-cell layer and the lamina

propria. In abnormal tissues, the cells eroded other cells,

leading to a disordered border [4]. Figures 2d and

2(h) show the binary images. The white area of the binary

image represents the border. Although the white area in the

normal tissue is a continuous curve, the white area in the

abnormal tissue is made up of discontinuous curves and

spread over the entire image. Therefore, in the binary

image, the border of abnormal tissue was more complex

than that normal tissue. When the binary image contained a

large number of white areas, the fractal dimension of the

binary image was high. Hence, the fractal dimension of

abnormal tissue was higher than that of normal tissue.

Table 1 Patient information
Group Patient no. Age Site T N Stage Number of nuclei

Normal Cancer

Training 1 71 Tongue 2 2 IV 555 478

2 50 Tongue 2 2 IV 158 156

3 41 Mucosa 1 0 I 260 164

4 42 Gum 2 2 IV 250 200

5 44 Gum 1 0 I 102 200

6 52 Gum 4 2 IV 166 160

7 64 Tongue 1 0 I 360 400

8 67 Mucosa 3 0 III 200 179

9 51 Pyriform sinus 4 2 IV 133 578

10 56 Gum 2 0 II 333 299

11 47 Pyriform sinus 3 2 III 255 399

12 51 Tongue 2 0 II 209 108

13 56 Mucosa 3 0 III 300 367

14 63 Palate 2 0 II 432 333

15 50 Tongue 2 2 IV 589 601

16 57 Gum 4 2 IV 200 309

17 52 Tongue 2 0 II 378 678

18 37 Tongue 1 2 IV 409 561

19 78 Tongue 2 0 II 444 500

20 60 Tongue 2 2 IV 400 266

21 80 Tongue 1 0 I 289 260

22 52 Palate 2 0 II 178 256

23 65 Mucosa 2 0 II 300 457

24 60 Tongue 3 0 III 398 457

25 34 Tongue 1 0 I 405 302

26 43 Tongue 2 2 IV 298 390

27 61 Palate 4 0 IV 203 599

28 32 Mucosa 1 0 I 592 212

29 56 Mucosa 1 0 I 402 700

Testing 30 65 Mucosa 2 0 N/A 214 692

31 41 Tongue 1 0 N/A 299 401

32 31 Mucosa 1 0 N/A 272 459

33 48 Tongue 2 3 N/A 393 598

34 37 Mucosa 2 0 N/A 505 496

The number of nuclei are those in the basal-cell layer

T Tthe size or direct extent of the primary tumor, T1, T2, T3, and T4 The size and/or extension of the

primary tumor, N The degree of spread to regional lymph nodes, N0 The tumor cells are absent from

regional lymph nodes, N1 The regional lymph node metastasis is present, N2 The tumor has spread to an

extent between N1 and N3, N3 The tumor has spread to more distant or numerous regional lymph nodes
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Closely examining column 1 of Table 2 reveals that the

criterion of fractal dimension for discrimination between

normal and abnormal tissues is 1.73; below this value, the

tissue was diagnosed as normal; otherwise, the tissue was

diagnosed as abnormal. Notably, the chosen nuclei were

well dyed and circle. Besides, when the objective power

was altered, the fractal dimension changed. The change of

fractal dimension was relative to the border complexity of

magnified tissue. Moreover, the fractal dimension was high

when the binary image of magnified tissue included a

significant number of white areas.

3.2 Spectral Identification Between Normal

and Cancerous Cells

Since the ERL-MHIS provides the fluorescence spectrum

of cell nuclei from the fluorescence images (Fig. 2b, c, f,

and g), this work attempted to determine whether there was

any spectrum-based difference between normal and

cancerous cells in the basal-cell layer. Previous works [11–

13] have established that the nuclear spectra at normal,

precancerous, and cancerous stages are different. Hence, in

this work, the nuclear spectrum was used to represent the

spectrum of each cell. Figure 3 displays the typical cell

spectra of various cancer stages, as obtained by the ERL-

MHIS. Under F1 excitation (330–385 nm), the shape of the

fluorescent emission spectrum had two peaks and one

valley. Peak 1 was located at 560 nm and peak 2 was

located at 705 nm. The valley was located at 630 nm.

When the peak 1 intensity was normalized, the peak 2

intensity showed a difference between stages. Furthermore,

the peak 2/peak 1 intensity ratio of normal cells was lower

than that of cancerous cells. This finding is consistent with

that of Roblyer et al. [26]. The peak 2 difference between

normal and cancerous cells was due to the difference in

porphyrin concentrations [27, 28]. Ramanujam et al.

attributed the valley difference to cell metabolism. Under

F2 excitation (470–490 nm), the fluorescent emission

spectrum had only one peak, located at 560 nm. When the

peak was normalized, the stages differed in the FWHM of

the spectrum [27]. The difference can be used to monitor

the changes of FAD concentration [29].

In order to distinguish between normal and cancerous

cells in terms of spectral difference, the characteristics of

spectral shape were described using five methods: PR,

PVR, AUS1, AUS2, and FWHM. The performance of each

method was evaluated based on the ROC curve. The cut-off

point, sensitivity, and specificity were also determined

(Table 2). Notably, under F1 excitation, although the nor-

mal cells of each patient had similar fluorescent emission

shapes, the 29 patients differed in intensity of the two

peaks or the valley. Under F2 excitation, these patients

slightly differed in the FWHM of normal cells. The

cancerous cells exhibited the same phenomenon under both

excitations. Therefore, the diagnostic performances of the

five spectral methods were not ideal. The methods were

suitable for some patients, but not others. For example, the

PR method yielded good results for patient 3, but not for

Fig. 2 Biopsy image of patient 7. a Transmission image of normal tissue. Fluorescence images of normal tissue under (b) F1 and (c) F2

excitation. d Binary image of normal tissue for calculating fraction dimension. e Transmission image of cancerous tissue. Fluorescence images of

cancerous tissue under (f) F1 and (g) F2 excitation. h Binary image of cancerous tissue for calculating fraction dimension
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patient 9. Hence, the five methods all showed high standard

deviations.

To solve the difference of nuclear spectrum between

patients, this work classified the 29 sample data according

to lesion site, tumor size, age, and lymph node metastasis.

Then, based on the proposed cocktail approach, the effec-

tiveness of the spectral methods in correlating with the

sampling conditions was determined. Figure 4 shows how

the cocktail approach determines the most effective

methods for each sampling condition. Table 3 lists the

most effective methods for each sampling condition. These

methods can be combined according to the sampling con-

ditions to diagnose a sample. For example, the combination

of methods AUS1 and FWHM was used to diagnose

sample 1 (71 years old, lesion on tongue, T2, and N2).

Before a cell is diagnosed using the most effective

method, the optimal cut-off point of the method must be

determined. The optimal cut-off point was defined as the

mean of total cut-off points under a specific condition. For

example, for patients 18, 25, and 28 (age: 30–39 years),

PVR was the most effective method. The optimal cut-off

point for PVR under this condition was the mean of the

three patients’ PVR cut-off points (1.55, 1.23, and 1.23, in

Table 2). Moreover, each effective method had different

optimal cut-off points under different conditions, because

each condition had a different patient group. For example,

the patient groups of T1 and T2 were different. Therefore,

the optimal cut-off points of AUS1 differed for T1 and T2.

3.3 Combined Diagnosis

The morphological changes of tissue were diagnosed using

the fractal dimension. Although this method can diagnose

the abnormal tissue, the abnormal tissue did not represent

cancerous tissue. It may represent hyperplasia. In hyper-

plasia tissue, the number of cells increases and the border

between the basal-cell layer and lamina propria becomes

disordered [4]. Hence, in this work, the fractal dimension

of hyperplasia tissue differed from that of normal tissue.

Moreover, whether the cells were cancerous or normal was

further confirmed using the cocktail approach.

Figure 5 compares the performances of all methods.

Because each method was appropriate for only some

patients, the standard deviation of each method was large.

In contrast, the cocktail approach showed a high mean

specificity, high mean sensitivity, and small standard

deviation, implying its better correlation with sample data.

In addition, the fourteen patients with early stage oral

carcinoma were successfully diagnosed with a sensitivity

of 90 ± 4.65 % and a specificity of 87.2 ± 5.06 %.

Fig. 4 Flow chart of

combination approach

determining most effective

methods

Fig. 3 Difference of mean

fluorescent emission spectrum

of cells between normal and

various oral cancer stages on

tongue (patients 7, 12, 24, and

26). Mean fluorescence

emission spectra of normal cells

and cancer cells under (a) F1
and (b) F2 excitation
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Moreover, 10 test samples were utilized to validate the

training results (Table 3). Note that the type of sample

(normal or cancerous) for the 10 test samples was not

revealed to the analyst during their analysis of the samples.

The 10 test samples were diagnosed according to the

patient’s conditions. The sensitivity and specificity of the

10 test samples were 80.16 ± 4.5 % and 81.74 ± 2.26 %,

respectively. Notably, the testing nuclei were chosen from

well dyed cells and cells away border. The results can be

enhanced by the correct patient’s condition. The concen-

tration and the time of the H&E would be the key

conditions.

In clinical application, the proposed approach can help

pathologist quantitatively diagnose biopsies. The procedure

of sample preparation and examination is the same as that

for pathological examination in a clinic. The procedure of

the diagnostic approach is controlled using programming.

Therefore, the approach is convenient for pathologists. In

addition, this is the first time that the ERL-MHIS was

utilized to diagnose oral carcinoma biopsy. This study also

provides a categorical approach of cellular spectrum to

enhance diagnosis performance for clinical oral carcinoma

research. The cut-off point of each method can be used as

reference data by researchers. Moreover, this study proves

that the spectrum of oral carcinoma cell relates to not only

the cancer stage but also the patient’s conditions.

4 Conclusion

This work developed morphological and spectral methods

and then combined them to help pathologists diagnose oral

carcinoma biopsy quantitatively. 68 biopsies of 34 oral

carcinoma patients were diagnosed based on the ERL-

MHIS. This is the first work to apply the ERL-MHIS to the

cytopathological examination of oral carcinoma. The

fractal dimension algorithm is applied to discriminate

between normal and abnormal tissues in terms of mor-

phological differences. For the spectral discrimination,

normal and cancerous cells are distinguished using five

methods. The spectra of normal and cancerous cells vary

with patient. The diagnostic results of the five methods are

thus not ideal. Therefore, the proposed cocktail approach is

utilized to determine the effectiveness of spectral methods

Fig. 5 Comparison of

performance of all methods.

(a) Mean sensitivity and

(b) mean specificity of 29

patients for each method

Table 3 Correlation between effective methods and patient’s conditions

Age 30–39 40–49 50–59 60–69 70–80

Method PVR (1.34), AUS1

(230.3)

AUS2 (138.2),

FWHM (65.7)

AUS1 (233) FWHM (66.3) AUS1 (236),

FWHM (60.7)

Site Tongue Mucosa Gum Palate Pyriform sinus

Method AUS1 (242.6) PVR (1.45) AUS1 (219.2), AUS2 (139.6) PVR (1.41) AUS2 (126)

T T1 T2 T3 T4

Method PVR (1.36), AUS1 (233.1) AUS1 (247.5) PVR (1.54), FWHM (66.3) AUS2 (139.5)

N N0 N2

Method PVR (1.46) AUS1 (246.5)

Number in parentheses is optimal cut-off point of each effect method under different condition

T The size or direct extent of the primary tumor, T1, T2, T3, and T4 The size and/or extension of the primary tumor, N The degree of spread to

regional lymph nodes. N0 The tumor cells absent from regional lymph nodes, N1 The regional lymph node metastasis present, N2 The tumor

spreads to an extent between N1 and N3, N3 The tumor spreads to more distant or numerous regional lymph nodes
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in correlating with the patient’s conditions. A combination

of effective spectral methods that depends on the patient’s

conditions is then used for diagnosing a biopsy. In addition

to promoting the mean sensitivity and mean specificity, the

proposed cocktail approach reduces the standard deviation.

Moreover, this study successfully diagnosed oral carci-

noma in its early stage. In the future, the k-nearest neighbor

method or principle component analysis method will be

used for finding characteristic molecules of different car-

cinoma stages. Furthermore, light-emitting diodes can be

used as the light source of the ERL-MHIS to reduce

scanning time.
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