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Reconstructing missing complex networks against
adversarial interventions
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Interactions within complex network components define their operational modes, collective

behaviors and global functionality. Understanding the role of these interactions is limited by

either sensing methodologies or intentional adversarial efforts that sabotage the network

structure. To overcome the partial observability and infer with good fidelity the unobserved

network structures (latent subnetworks that are not random samples of the full network), we

propose a general causal inference framework for reconstructing network structures under

unknown adversarial interventions. We explore its applicability in both biological and social

systems to recover the latent structures of human protein complex interactions and brain

connectomes, as well as to infer the camouflaged social network structure in a simulated

removal process. The demonstrated effectiveness establishes its good potential for capturing

hidden information in much broader research domains.
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The interaction structure largely determines the operation
modes, collective behaviors, and global functionality of
complex systems. Consequently, it is crucial to discover the

best identification and recovery strategies for sabotaged networks
subject to unknown structural interventions or camouflages. Due
to its broad applicability, this problem draws interdisciplinary
attention in research areas ranging from network science1–4,
social science5, system engineering6,7 to ecology8, systems biol-
ogy9, network medicine10, neuroscience11,12, and network
security13 communities. This challenge raises intense research
interest in recent years14–23. By contrast, very few works discuss
and incorporate the statistical influence of the interventions. Most
prior works assume that the structural intervention entails a
sequence of randomly distributed removals of nodes and links in
the network. Under such assumption, constructing an unbiased
estimator for the nodal or edge property (but not both at the same
time) is shown to be possible14 and can be approached by solving
a matrix completion problem (e.g., low-rank matrix factoriza-
tion15–17, convex optimization18,19, spectral methods20). These
methods become mathematically infeasible when nodes and edges
are simultaneously removed. Extending existing approaches to
deal with such problems requires additional information that
links the known and unknown part of the network (e.g., group
membership21,22 and node similarity23) and become obsolete
when such information is not available. Alternatively, model-
based approaches are adopted in these settings by learning a
probabilistic connection between the observed and the latent
network structure. These probabilistic links are parametrized and
identified in a maximum likelihood sense.

Many of these approaches24,25 can be unified within an
Expectation-Maximization (EM) framework that solves the
model identification and inference problems simultaneously
through an iterative trial-and-error approach with a provable
convergence to the local maxima of the incomplete likelihood
function. However, in the context of the missing network infer-
ence subject to artificially (not randomly) introduced interven-
tions, the latent structure does not share the identical distribution
as the observed one, but follows a reshaped distribution. This
invalidates the use of EM formulations based on the assumption
of random network removals, which do not change the under-
lying distribution.

To overcome this challenge, we propose a causal statistical
inference framework (see Methods). In contrast to prior efforts,
our framework jointly encodes the influence of probabilistic
correlation between the visible and invisible part of the network
(i.e., network model) and the stochastic behavior of the inter-
vention. More importantly, this inference framework captures the
temporal causality of sequenced attacks and treats the partially

observed network as a result of time inhomogeneous Markovian
transitions driven by the intervention. The proposed inference
framework can be applied with any underlying network models
that are appropriate to the specific problem settings. As a case
study, we employ the multi-fractal network generative (MFNG)
model (see Supplementary Note 4) as the underlying network
model26 because it can model a variety of network types with
prescribed statistical properties (e.g., degree distribution). To
validate our framework, we discuss and evaluate it on both syn-
thetic and real networks in biological and social domains.

Results
Motivating example and problem formulation. For the success
of an iterated inference within an EM framework, a combined
modeling of the network and interventional behavior is necessary.
Let us consider a toy problem in Fig. 1. An attacker removes node
A from G0. We observe G1 as a resulting network after the attack.
The problem is to infer G0 from G1. We make three assumptions:
(i) The attacker always targets the most connected node. When
such a node is not unique, it randomly chooses one. (ii) There is
an underlying generative model for G0 that discourages nodes of
high connectivity and does not allow for disconnected nodes. (iii)
We have perfect knowledge of both the attacker and the gen-
erative model.

According to the Bayesian inference principle, we infer the
missing node and its links that maximize the likelihood based
on the network model and the attacker’s statistical behavior.
By assumption (ii), the missing node inferred based on the
network model will be less likely to have a higher degree. G0,1′
therefore can be one of the possible outcomes (G0,2′ represents
another possibility). Although G0,1′ is not unique, one must
choose it over many other possible configurations where node
A has a higher degree. By assumption (i), the missing network
inferred based on the attack can be G0′,1, G0′,2, or G0′,3 (other
outcomes removed due to symmetry). However, node A is
not the unique most connected node in G0′,1 and G0′,2 (i.e., only
50% chance to be chosen). Therefore, G0′,3 is the most
probable outcome. Interestingly, neither G0,1′ nor G0′,3 represents
the true configuration. From the perspective of the network
model, G0′,3 is a less likely structure due to the highly connected
node. G0,1′ is less likely (1/3 chance) to be the target of the
attacker. Combining the knowledge of both leads us to the true G0

in this simple case.
Inspired by this example, we incorporate the attack model and

formulate the challenge as a causal inference problem of time-
varying complex networks under adversarial interventions as
follows.
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Inference by network model

Inference by attack model
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A

Fig. 1 A motivating example. An illustrative example to show the importance of combined consideration of network model and interventional behavior
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Given a partially observed network Gt= (Vt, Et). Gt is a
subgraph of an unknown network G0 under structural interven-
tion A ¼ fAαðdi; sÞjs � 0g. Denote G to be a proper underlying
model that captures the network properties such that G0 is a
realization of G and we denote it as G0 � G.

Find the missing sub-network Mt where Mt ∪Gt=G0 and
node-to-time mapping π such that,

argmaxG;Mt ;π
PðGt ;Mt ; πjG;AÞ ð1Þ

The consideration of mapping π in Eq. (1) comes from the
causal interdependency on the transitional path from G0 to Gt

due to the time varying interventional preference Aαðdi; sÞ being
a function of Gs. In other words, a most probable sequence of
interventions needs to be discovered so as to maximize the
posterior in Eq. (1). As a result, any missing substructure in Mt

has to be placed properly in time subject to the causality, hence
the requirement of the node-to-time mapping π. The statistical
strategy of the intervention is characterized by a power-law family
of distributions27,

Aαðdi; tÞ ¼
dαiPNðtÞ
i dαi

ð2Þ

where Aαðdi; tÞ denotes the probability of a node i of degree di to
be removed from a time-varying network Gt= (Vt, Et) at time t.
N(t) is the total number of nodes at time t. α is a parameter that
governs the statistical property of the adversarial intervention
distribution. When α > 0, the intervention prioritizes high degree
nodes (hubs). Such interventions are observed in real systems
obeying small-world principle28. Small-world networks are
known to be robust against random removals, but vulnerable to
hub-prioritized attacks. For example, in biological systems, viral
attackers have evolved to exploit the small-world properties and
interfere in the hub proteins activity such as p53, thereby taking
advantage of cellular functions for fast viral replication29. In
contrast, when α < 0, the intervention strategy focuses on less
connected nodes (i.e., boundary nodes). For instance, in
computer networks, boundary nodes usually correspond to end-
users with less security measures to protect their devices, thereby
becoming prey to malicious hackers and malware. Random
attacks are performed when α= 0 and all nodes have an identical
chance to be removed. More critically, Eq. (2) is a function of Gt

hence a time-varying distribution, which suggests the causal
dependency of interventions. At a given time s, Gs is a causal
consequence of all intervention sequences prior to that time
point. From a dynamic perspective, this time-varying distribution
of the intervention leads to a time-inhomogeneous Markovian
transition of Gt between different configurations in time. To
better understand this aspect, Supplementary Note 1 provides a
detailed discussion of an example concerning this inference
problem.

To solve the problem in Eq. (1), we propose a causal statistical
inference framework (see Methods). To evaluate the framework,
we consider two set of experiments with synthetic and real
networks. In both experiments, we assume MFNG model Gk ¼ðm; k;P;LÞ (see Supplementary Note 4 for detailed discussion)
and compare our proposed framework against a baseline where
the discount factor γ is fixed to 0 to ignore the influence of the
attack.

Reconstruction against ground-truth. We first test how well
the inference framework can retrieve the original network if
we have perfect knowledge about the model that generates it.
We sample synthetically a test network G0 of 1024 nodes (k= 10,
m= 2) with a randomized generating measure P. Then the
intervention Aαðdi; tÞ is introduced sequentially for T steps,

where T ranges from 5% to 45% of the total number of nodes in
the original network. We also vary the statistical preference of the
intervention by setting α differently to be 10 (hub-prioritized
attack) and −10 (boundary-node prioritized attack). These values
correspond to two distinct attack strategies that also influence the
network inference process (as discussed later). Each intervention
process is repeated for 10 times for every combination pair of
(T, α). Denote the estimated generating measure induced by G as
P̂ and the true one as P�. We report first the estimation error as
the Frobenius norm eF of their difference to quantify the cap-
ability to recover the generating measure P. Figure 2 shows the
results averaged over 10 intervention trials as a function of
amount of missing information. In contrast to the baseline, the
estimation error of the proposed method is robust against the loss
of network structural information and delivers accurate estima-
tion of the underlying parameters even when 45% of the network
is structurally sabotaged by the intervention. More importantly,
the estimation error for the baseline is significantly larger than the
proposed approach even for small percentage of network infor-
mation loss (5–10%).

These results demonstrate the importance of accounting for the
effect of intervention on the network probability measure. EM-
type inference methods essentially construct the maximum
likelihood estimator based on iteratively optimized incomplete
likelihood function (i.e., Q-function). Instead of solving analyti-
cally this Q-function, Monte Carlo method highly relies on being
able to draw samples of the latent variables (e.g., the missing
network) from a distribution that is increasingly approaching
their true distribution. As a result, the estimator converges to
local maxima in the statistical manifold (as the generating
measure P uniquely defines a distribution on a unit square).
However, if the samples of the latent variables are always drawn
from a distribution that is significantly different from the true
distribution, it is unlikely that the estimates will be close to the
true parameters and the resulting deviation increases with higher
dimension of latent space (e.g., number of missing nodes
increases).

Unfortunately, this is exactly how the baseline fails. The
network model and the interventions now jointly determine the
distribution of missing network. For instance, the degree
distribution of victim nodes under a hub-prioritized intervention
must concentrate the probability mass to the regions of relatively
high degree (right-shifted in relation to what network model
suggests). Failure to draw samples of the latent variable from their
true distribution leads to large errors in model estimation
(Fig. 2a). This will eventually affect the inference accuracy. To see
this, we visualize the degree distribution of missing nodes and
that supported by the true underlying model in Fig. 3a via kernel
smoothing method. 40% of nodes and their links were removed
with α ranging from −10 to 10. As predicted, the degree
distribution of missing network concentrates increasingly its mass
to the region of high degree as α becomes positively larger.
Similar observation is due when α becomes negatively smaller. In
either case, they are significantly shifted from the degree
distribution supported by the network model (blue bold line),
which explains the large estimation error of the baseline.
More precisely, Fig. 2c, d report the Kullback–Leibler (KL)
divergence eKL as a function of α and amount of lost information.
Figure 2c shows that the baseline always underestimates (i.e.,
positive KL divergence) the linking probability of the missing
nodes when α= 10 and overestimates (i.e., negative KL
divergence) it in Fig. 2d when α=−10. This shows that the
baseline neglects the intervention influence and suffers from large
estimation errors.

To better illustrate this, Fig. 3b, c shows two degree
distributions of the missing network recovered by the baseline
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and proposed methods. Figure 3b shows that the degree
distribution retrieved by the baseline shifts greatly to the left of
the true one (underestimation) when α= 10 and the situation is
reversed (overestimation) when α=−10. In contrast, the
proposed method recovers the distribution well in both cases.
Our method incorporates the influence of the attack on the
inference and takes only samples (as in the Monte Carlo process)
approved by both the model and the attacker. Consequently, it is
robust against the loss of information and delivers accurate
estimations.

Uncover the latent structure of biological systems. In the first
set of experiments with real networks, we demonstrate that the
proposed framework recovers the latent gene interaction and
brain networks when exposed to simulated targeted attacks.
Attackers like virus or cancer cells in these systems usually do not
possess the knowledge of the full network. However, the rationale
for considering targeted attacks on these systems is that, when
global information is not available, the probability of reaching a
particular vertex by following a randomly chosen edge in a graph
is proportional to the vertex’s degree30. This makes the degree
centrality an important factor in quantifying the vulnerability of
the nodes, even if the attacker has only extremely localized
information (e.g., connectivity). This resonates well with some of
our biological findings in terms of viral spreading31,32 and protein
inhibition33.

We consider a targeted attack process in two biological networks
(hu.MAP and human brain connectome) with α= 1 that models
the hub-preferential interventions observed in real systems. hu.
MAP network34 encodes the interactions of human protein
complexes. hu.MAP is a synthesis of over 9000 published mass
spectrometry experiments containing more than 4600 protein
complexes and their interactions. Of all protein complexes, we have
identified the largest connected component consisting of 4035
protein complexes and used it as our target network. Budapest
Reference Connectome v3.0 generates the common edges of the
connectomes of 1015 vertices. It is computed from the MRI of the
477 subjects of the Human Connectome Project 500-subject
release35. We vary the percentage of missing network nodes from
5% to 45% under a simulated attack that removes nodes. Both
ROC-AUC and PR-AUC scores are computed under varying range
of thresholds to quantify the inference capability of the models
retrieved by baseline and our framework.

For hu.MAP network, Fig. 4a shows that the ROC-AUC score
stays around 0.88 with only a small decrease to 0.85 when 45% of
nodes are removed. In contrast, the ROC-AUC score of the model
retrieved by the baseline degrades sharply from 0.85 to 0.68.
Similar observations are due for the PR-AUC score where
proposed framework raises it from 0.17 to 0.23 with 5% of node
loss and from 0.15 to 0.21 when 45% of nodes are removed. We
note that the PR-AUC score is much lower as compared to ROC-
AUC. This is due to sparsity of the network. The number of links
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Fig. 2 Quantifying the capability of inferring synthetic networks under varying attack strategies. a, b Estimation error eF as a function of missing network
under hub-prioritized (a) and boundary-prioritized (b) intervention (α= 10 or −10). c, d KL divergence comparison of the true linking probability
distribution and the recovered ones by baseline and proposed frameworks with the presence of hub-prioritized (c)/boundary-prioritized (d) intervention
(α= 10 or −10)
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(i.e., positives) is much smaller than that of a complete network of
the same size and both methods produce noticeable amount of
false positives. The source of these false positives can be (i)
insufficient order of the model (e.g., choose larger k for linking
measure matrix, see Supplementary Note 4), (ii) insufficient
sample size in E-step, (iii) overshooting in M-step. While
realizing the space for fine-tuning and improvement, we note
that the proposed framework places no constraint on the proper
choice of model and its real power lies in considering and
exploiting the influence of interventions, rather than treating
them as a random sampling process.

For human brain connectome, we observe a slightly different
pattern in Fig. 4e. While ROC-AUC score obtained by the
proposed method is consistently higher than the baseline, the
score of both methods degrade first (up to 15% of nodes
removed) and then oscillate afterwards. This phenomenon is due
to three facts: (i) human brain connectome is rich in small-
worldness; (ii) there are much fewer hubs in brain connectome
than in hu.MAP; (iii) the intervention becomes close to a random
sampling after most of the hubs are removed and small-world
networks are robust against such random removals. As a result,
the attack process quickly reduces to a random sampling after the
few hubs are removed. Thereafter, the residual network loses the
structural resemblance to the original network, which serves as
the very basis for EM-type inference methods to work. Averaging
out the contribution of latent structure in the E-step now
effectively wipes out the structural properties of the original
network to be recovered (as it becomes dominant now). This
leads the iterative optimization process of EM to a nondetermi-
nistic search in the solution space (which is super-exponentially

large), leading to predictions that are not aligned with the original
networks. However, even under such conditions, our framework
consistently recovers the network that is more structurally similar
to the original one. This resonates again with our argument in hu.
MAP experiment that exploiting the combined knowledge of the
generative model and the intervention can significantly boost the
performance. Similar observations are due for PR-AUC scores.

To quantify the capability to recover the global property of the
original network, we use the log-likelihood and KS distance. The
KS distance is averaged over 1000 network samples drawn from
both models and shown in Fig. 4b, f, respectively. The solid lines
in both figures represent the averaged distance with the shades
being the standard deviation. In both figures, the KS distance of
the generated network via our proposed method is consistently
robust to the interventions and more accurately retrieved than the
one obtained by the baseline approach, which is an indicator of a
boosted structural similarity between the true one and the
synthesized ones. To further support our findings, we compute
the log-likelihood function in Fig. 4d, h, respectively, based on
both models with respect to the original network.

We notice that the two figures are similar to each other,
suggesting that the overall goodness-of-fit of the identified model
highly relies on being able to guide the optimization in EM
framework iteratively towards a linking probability measure (i.e., a
network model) that best explains the original network. Otherwise,
the error can easily propagate repetitively between the inference and
the estimation step, resulting in a retrieved model that poorly
explains the original network as we have seen in these two figures.
Both methods perform similarly to fit a model that explains the
observed part of the network. However, the baseline retrieves
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models incapable of inferring the latent structure as accurately
(quantified by the AUC scores) as our proposed method does.
Consequently, the difference of log-likelihood in terms of the latent
structure dominates, hence producing a similar pattern between
AUC score curve and log-likelihood curve.

In summary, we observed a significant boost in structural
similarity by our framework that incorporates and exploits the
influence of the interventions on the underlying distribution of the
latent structures of the two studied biological networks as compared
to the baseline that treats the unobserved and observed networks in
a statistically equal way (i.e., random sampling assumption).

Discover the hidden social networks. Next, we use our frame-
work to discover the hidden subnetwork in a simulated removal
process that mimics the social network interventions in an
abstracted setting. This study is inspired by the recent social
network user privacy and information breaches via injected
malicious agents (trolls and bots)36,37. These injected agents act as
information collectors or launch campaigns to propagate
designed information to target social groups. Together with the
user nodes, they form an extended network that is usually not
fully unveiled. The ultimate challenge is to estimate their struc-
tural formation and influence on various social events. Although
real social network attacks can be much more sophisticated by
involving multiple parties at the same time (as opposed to a
coordinated sequence of operations as in Eq. (2)), evolving in a
statistically inconsistent way (as opposed to a stabilized and
consistent stochastic behavior) and exhibiting a complex opinion
diffusion dynamics, we here consider an idealized abstraction of a
class of real attacks that prioritize the degree centrality. The
considered attack model and its variants have been widely
adopted as an abstraction of the targeted attacks for the study of
robustness, stability, resilience, and defensive/attack strategies of
networks27,30,38–44 ranging from mathematically constructed
complex network to traffic network45, brain network46–48, com-
puter network13, and also social networks49,50.

We consider an extended social network with 4049 nodes
(including hidden nodes injected for information manipulation,
referred as injected nodes, and ordinary user nodes) built from
Facebook network dataset51. Due to the small-worldness of the
social network (see Supplementary Note 2), only a small group of
injected nodes is required to make sure all user nodes have at least
one injected node as their immediate neighbor (i.e., all users are
subject to data security issues and/or manipulated information
even without information propagation among them). We define
coverage to be the chance of a user node to have an immediate
neighboring injected node. Figure 5 visualizes the coverage of
injected nodes against their share in the network under different
α from −10 to 10. In this figure, α has a different meaning and
AαðdiÞ now is a proxy of the likelihood of an injected node of
degree di being the highest connected node in the network. For
higher α, a larger portion of the highest connected nodes are
represented by injected nodes and so they have a bigger coverage.
Figure 5 suggests that 48.6% of the population have at least one
neighboring injected node when the injected nodes account for
only 1% of total nodes with α= 1. The coverage goes up to
98.44% when injected nodes account for 15% of the network as
shown in Fig. 5. This suggests that a full-scale information
manipulation/collection requires only a small injection of
designed agents (i.e., disseminators/collectors) into the network
and these agents do not have to be significantly more connected
than an average node. This observation is corroborated by a
recent study of Russian trolls attack on Twitter52 which found
that the injected tweet bots only account for 4.9% and 6.2% of
total liberal and conservative spreaders, respectively.

We simulate the removal process by setting α= 1 and vary the
share of injected nodes from 5% to 45%. ROC-AUC and PR-AUC
are used as metrics for quantifying the inference capability and
shown in Fig. 6a, c for baseline and proposed methods.
Resonating with our previous experiments, the ROC-AUC and
PR-AUC scores of our proposed inference framework are
significantly better than the baseline, suggesting a boost in
capability to infer the missing network more accurately. To
measure the structural similarity, we estimate the Kolmogorov–
Smirnov (KS) distance eKS between the empirical degree
distribution of the original network F*(x) and networks generated
by both methods F(x). The results are averaged over 1000
network instances and reported in Fig. 6c. In addition, we also
report the log-likelihood (LL) in Fig. 6d as a global metric for
goodness-of-fit to compare the model identified by both methods.
Although the absolute value of LL strongly varies as a function
of a particular model choice for the network, the relative
difference given the fixed model provides a good performance
comparison between different identification techniques. As
expected, Fig. 6b, d suggests that our proposed method retrieves
a model that is more globally consistent with the true one with
smaller eKS and larger LL values compared to the baseline.

The statistics of both the intervention process and the complex
network structure play a crucial role in these observations. First, in
small-world networks, the hubs account for a small fraction of the
network. Lower degree nodes are unaffected by hub-prioritized
interventions. The baseline ignores the influence of the intervention
and therefore is biased by the observed part towards the retrieval
of a model that explains better a network without the hubs. As
demonstrated by our studies, the baseline has poor performance on
inferring the missing network. Second, due to the time-varying
nature of the interventions, the hub-prioritized interventions induce
a random sampling behavior after the removal of hubs. This
behavior change can be demonstrated by the small variance of the
degree distribution, reshaped by the conducted intervention (see
Transitional behavior of interventions in Supplementary Note 3).
Consequently, the performance of baseline and proposed methods
exhibit a plateau since a small-world network is robust against
random removals. We present the investigation of small-world-ness
of all networks considered in our work in Supplementary Note 2.

Last but not least, we report the estimated number of user
nodes (later referred as “affected users”) with at least one injected
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node as their immediate neighbor. Without considering the
opinion diffusion dynamics, this measurement serves as an
upper bound on the number of users being exposed to designed
information or personal data breaches. To consider a more
realistic setting, this assessment should also incorporate the
propagation of information among users, which is left as an
important extension in our future work. Varying the share of
injected nodes in the extended social network from 1% to 15%,
Fig. 7 shows the average affected users estimated over 5000
network instances drawn from both models retrieved through
baseline and proposed methods. As expected, the baseline
underestimates affected users as it does not exploit the knowledge
of the targeted removal process. More interestingly, when
compared to Fig. 5, we found that the curve corresponding to
the estimated affected users by the baseline is almost identical
to the coverage curve obtained under a random intervention
(i.e., the degree of an injected node being statistically the same
as a randomly chosen node in the original network without
injected nodes). This suggests again that the baseline works only
if the intervention is purely randomized and easily fails when
this assumption does not hold.

In summary, our causal inference framework gives a significant
improvement upon the structural fidelity of inferred latent
networks as a result of properly exploiting the causal influence
of targeted interventions in both synthetic and realistic settings.
This study recognizes and emphasizes the importance and
benefits of a combined learning of network generative process
(i.e., network model) and the underlying process that leads to
partial network observability (i.e., intervention model).

Discussion
In sharp contrast to prior work based on random removal
assumption, we proposed a causal inference framework that
considers the statistical behavior of intervention and its causal
influence on reshaping the underlying distribution of the latent
structure through a sequence of dynamic attack strategies.
While its application to vast domains needs to be further
investigated, we demonstrated its effectiveness in three case
studies concerning three different sets of real complex networks in
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social-, genomic-, and neuro-science. Moving beyond these
examples, we believe our framework can help us explore a wide
spectrum of real complex networks problems. For instance,
instead of assuming the intervention model a priori, we can
alternatively consider a range of intervention policies and postu-
lated network scales (e.g., network size) to infer the missing net-
work under different hypotheses. These hypothesized networks
can potentially guide us to rediscover the latent structure in a
variety of networked systems that are subject to variations and
limited observabilities.

On a different direction, as we observed in our experiments,
many real networks are following a structural organization
principle (e.g., small world property) that is robust against ran-
dom removals. In biological systems, the prevalence of such
structural robustness against random removal might reflect some
degree of evolutionary wisdom since it offers protection against
internal or external random perturbations and mutations. How-
ever, under the exact same principle, adversarial entities like
viruses and cancer cells develop their counter-strategies to cancel
out these structural advantages to maximize their own survival
benefits. This notion also applies to social, computer, and traffic
networks where infrequent yet highly connected hubs actually
dominate the normal operation of entire systems. They are
consequently much more easily targeted and, once sabotaged,
give rise to greater social, political, and economic expenses. Real
threats and interventions are therefore rarely randomized and an
inference framework that admits widely ranged structural inter-
ventions is a must. From these perspectives, we would like to see
the application of our proposed framework beyond the presented
examples and extend its reach to a much broader class of topics.

Methods
Taming the interdependency between network inference and adversarial
interventions. To make our discussion concrete without the loss of generality, we
consider G to be universal model that induces a linking probability measure P
where pi;j 2 P quantifies the probability of a link between an arbitrary pair of
nodes i and j in the network. In fact, most of state-of-the-art network models
including stochastic block model53, Kronecker graphs54, and MFNG all fit into this
construction. One issue arises under this assumption. Given the partially observed
network Gt with its node arbitrarily indexed, we do not know the mapping between
a node index i to its associated linking probability measure i′ 2 P as in the original
network G0. Consequently, we also need to infer such correspondence. Define ψ:
V→N to be the mapping between the node index i to its associated linking
probability measure index i′= ψ(i). We then rewrite Eq. (1) as follows:

argmaxG;Mt ;ψ;π
PðGt ;Mt ;ψ; πjG;AÞ ð3Þ

Clearly, Eq. (3) implies an interdependent dilemma: Inferring the missing part of
the network requires full knowledge of the underlying model of the original
network. Identifying the underlying model calls for full knowledge of the original
network. In other words, the optimal solution to Eq. (3) requires the maximization
over the generative model G and the missing information {Mt, ψ, π} at the same
time.

To decouple them, a straightforward approach is to first consider a maximum
likelihood estimator (MLE) for the underlying model G by marginalizing over the
missing information {Mt, ψ, π}.

G� ¼ argmaxGPðGt jG;AÞ ¼ argmaxG

Z Z Z
PðGt ;Mt ;ψ; πÞjG;AÞdMtdψdπ ð4Þ

where the likelihood PðGt ;Mt ;ψ; πjG;AÞ can be calculated as follows:

PðGt ;Mt ;ψ; πjG;AÞ ¼ ðΠði;jÞ2E0pψðiÞ;ψðjÞΠði′;j′Þ=2E0 ð1� pψði′Þ;ψðj′ÞÞÞ � γΠt�1
s¼0Aαðdðπ�1ðsÞÞ; sÞ

ð5Þ
where π−1(s)= Δv(s) represents the node removed at time s ∈ [0, t−1] and
d(π−1(s)) denotes its degree. The first two terms represent how likely the network
structure is entailed by the underlying model. The third term encodes how much
the inferred sequence of missing substructures can be explained by the statistical
behavior of the attacker. The discount factor γ reflects the disagreement between
the attacker’s structure preference of its target and what network model suggests.
If the intervention is hub-prioritized whereas the underlying network model
discourages highly connected nodes, the discount factor is consequently large to
emphasize the influence of the intervention. Otherwise, a small discount factor is
selected. In a special case when the intervention is purely randomized (i.e., α= 0),

the discount factor γ is 0. Only in this case the formulation in Eq. (3) can be
reduced to the well-researched network completion problem.

Solving the model identification problem in Eq. (4) simultaneously leads us to
the solution of the inference problem. However, the marginalization over the latent
variable Mt, ψ, and π is computationally intractable. To approach this problem, we
replace the marginalization process by constructing a series of maximization steps
over the incomplete likelihood function PðGt ;Mt ;ψ; πjG;AÞ conditioned on the
propagated belief about the model parameters G.

Formally at ith step by taking the log-likelihood,

QðGjGðiÞÞ ¼
Z

log½PðGt ;Mt ;ψ; πjG;AÞ�Pðψ;Mt ; πjGðiÞ;GtÞdMtdψdπ ð6Þ

QðGjGðtÞÞ constructs an incomplete maximum likelihood function in terms of
observable part of the network. It averages out the contribution of the missing
information {Mt, ψ, π} by using the incomplete MLE for G at previous step to infer
a current guess on {Mt, ψ, π}. Complex models for high dimensional data lead to
intractable integrals as the ones in Eq. (6). To overcome this drawback, we
approximate the integral conditioned on the current guess on the generative
measure G via a Monte-Carlo sampling procedure,

QðGjGðiÞÞ ¼ limK!1
1
K

XK
i

log½PðGt ;M
ðiÞ
t ;ψðiÞ; πðiÞjG;AÞ� ð7Þ

where the samples are drawn from Pðψ;Mt ; πjGðiÞ;GtÞ. Update the estimator of
GðiÞ by maximizing QðGjGðtÞÞ,

Gðiþ1Þ ¼ argmaxG�QðGjGðiÞÞ ð8Þ
Under regularity conditions55,56 and given a suitable starting value Gð0Þ, the
resulting sequence G will converge to a local maximizer of the likelihood function
by alternating the above procedure until the difference PðGt jGiþ1;AÞ �
PðGt jGi;AÞ changes by an arbitrarily small amount. It should be noted that the
above procedure not only constructs a MLE for the underlying model G but also
simultaneously returns the most probable guess on Mt, ψ and π in a maximum
likelihood sense.

The finite sum approximation of the expectation depends on being able to draw
samples from the joint distribution PðGt ;Mt ;ψ; πjG;AÞ. Instead of using uniform
sampling that generates unimportant samples in an unprincipled fashion, we need
to confine the samples to be drawn from the region where the integrand of Eq. (6)
is large. Moreover, the computational intractability of sampling the posterior joint
distribution also originates from the factorial dependence of the sample space on
the size of the original network and the missing network. This factorial dependence
comes from the requirement to infer the time-stamp mapping π and the linking
probability measure mapping ψ for each node in the missing network Mt. Consider
a temporally ordered sequence of subgraph Zt= {z0, z1, ..., zt−1} that corresponds to
trajectory of the subgraph removed at each step of the intervention up to time t.
Inferring the optimal π and ψ for each node implies that when maximizing Eq. (5)
the following relation holds:

8j 2 VðMtÞ; 9zi 2 Zt ; πðjÞ ¼ VðziÞ _ 8i; j 2 VðMtÞ; πðiÞ ¼ πðjÞ , i ¼ j ð9Þ

8j 2 VðMtÞ; 9j′ 2 P;ψðjÞ ¼ j′ ð10Þ
Note that V(Gk+1)= V(Gk)/V(zk) and EðGkÞ ¼ EðGk�1Þnfei;Vðzk�1Þj8i 2 VðGk�1Þg.
Equation (9) implies that the size of the sample space is given by the number of all
possible permutations of the time stamps |Mt|!, hence the need for factorially many
samples for the finite sum approximation (7) to be valid. One key observation here
is that Zt is also a sufficient statistic for the incomplete likelihood function Q in
terms of {Mt, π}. In other words, we can eliminate the need to infer π and ψ
separately by introducing the following mapping ψ′ : Z ! P that satisfies,

ψ′ðπðiÞÞ ¼ ψðiÞ ð11Þ
Note that Mt ¼ ∪ zi2Zt

fzig thus the log-likelihood function in Eq. (6) can be
reduced as,

QðGjGðiÞÞ ¼ R log½PðGt ;Mt ;ψ; πjG;AÞ�Pðψ;Mt ; πjGðiÞ;GtÞdMtdψdπ

¼ R log½PðGt ;Zt ;ψ′jG;AÞ�Pðψ′;Zt jGðiÞ;GtÞdZtdψ

¼ lim
K!1

1
K

PK
i
log½PðGt ;Z

ðiÞ
t ;ψ′ðiÞjG;AÞ�

ð12Þ

The transformation in Eq. (12) suggests that we just need to infer the transition
path Zt and the linking measure assignment ψ′(V(zk)) (instead of ψ) as in MFNG
for each subgraph zk∈ Zt. Alternatively stated, the nodes inMt are anonymized and
their mapping to Zt is not important given the knowledge of ψ′. To efficiently
estimate the joint distribution Pðψ′;Zt jGðjÞ;Gt ;AÞ, we choose to construct a Monte
Carlo Markov Chain (MCMC) that alternates sampling from

PðZt jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ and Pðψ′jZðτÞt ;GðjÞ;Gt ;AÞ. However, MCMC offers only a
sketch of sampling schedule guaranteeing that the drawn samples follow
asymptotically Pðψ′;Zt jGðjÞ;Gt ;AÞ. The overall complexity of this schedule still
depends on how efficiently the samples can be taken from the individual

conditional distributions. For sampling the permutations of Pðψ′jZðτÞt ;GðjÞ;Gt ;AÞ,
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many existing strategies are applicable based on, to name a few, the construction of
a MCMC54 or a simulated-annealing type swapping method26. We focus on the
design of sampling for PðZt jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ as there exists a nicely recursive
optimal substructure that is very similar to the most probable sequence problem in
Markov decision process and hidden Markov model (HMM). We take advantage of
this recursive structure and draw samples from PðG0:t�1jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ
efficiently via a combination of rejection sampling and Metropolis sampling.

Decouple the sampling of joint distribution Pðψ′;Zt jGðjÞ;GtÞ. Formally, by
proper choice of an acceptance criteria A(s*, s) and a proposal transition dis-
tribution q(s*|s) to satisfy the detailed balance condition,

pðsÞpðs�jsÞ ¼ pðs�Þpðsjs�Þ ð13Þ
where p(s*|s)= A(s*, s)q(s*|s). It follows that the Markov chain {s(i)} defined by q
(s*|s) has a stationary distribution of p(s). By restricting the proposal transition
only from s= {s/k, sk} to s� ¼ fsnk; s�kg for ∀k with following acceptance probability:

Aðs�; sÞ ¼ min 1;
pðs�Þqðsjs�Þ
pðsÞqðs�jsÞ

� �
ð14Þ

where s\k denotes all but the kth component. The joint distribution p(s), as the
stationary distribution of this constructed Markov chain, can then be sampled by
cycling through separate sampling procedures from the kth conditional
distribution p(sk|s\k) for all k’s. This special case of MCMC sampling provides us an
efficient way to decouple the sampling of Zt and ψ′. The algorithmic details are
stated as follows.

● Denote B as the number of Burn-in samples, K as the total number of samples,
and S ¼ fZðiÞt ;ψ′ðiÞg to be the set of samples drawn from Pðψ′;Zt jGðjÞ;Gt ;AÞ

● Initialize fZð0Þt ;ψ′ð0Þg and set S=∅.
● Repeat the following Steps (4)–(6) for all τ < K+ B.
● Sample ZðτÞt � PðZt jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ;
● Sample ψ′ðτÞ � Pðψ′jZðτÞt ;GðjÞ;Gt ;AÞ;
● Add fZðτÞt ;ψ′ðτÞg to S if τ < B.

Optimal recursive structure in PðZt jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ. To sample
PðZt jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ, we notice the transition equation Gk+1=Gk/zk holds for
∀zk∈ Zt. Denote G0:t−1= {Gt−1, Gt−2, ..., G0} as an ordered sequence of residual
graph after each intervention up to time t− 1 such that,

G0:t�1nGt ¼ f∪ i
k¼1zt�kgi¼1;2;:::;t ð15Þ

Given Gt, this relation suggests the knowledge of Zt and Gt is interchangeable
and the following probability are identical under the transformation given in
Eq. (15)

PðZt jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ ¼ Pð∪ t�1
k¼0fGk þ 1nGkgjψ′ðτ�1Þ;GðjÞ;Gt ;AÞ

¼ PðG0:t�1jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ
ð16Þ

by Bayesian rule,

PðG0:t�1jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ ¼ βPðGt jG0:t�1;ψ
′ðτ�1Þ;GðjÞ;AÞPðG0:t�1;ψ

′ðτ�1Þ;GðjÞ;AÞ
ð17Þ

notice the transition of Gk is driven by the attacker that depends only on the
network configuration presented to it at the time of the intervention. In other
words, the transition is Markovian and conditionally independent of the network
model, hence we have,

PðG0:t�1jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ
¼ βPðGt jGt�1;AÞPðGt�1jψ′ðτ�1Þ;GðjÞ;AÞfPðG0:t�2jψ′ðτ�1Þ;GðjÞ;Gt�1;AÞg

ð18Þ

where β is the appropriate normalization factor. PðG0:t�1jψ′ðt�1Þ;GðjÞ;Gt ;AÞ
quantifies the probability of a sequence of interventions up to time t given the
underlying network and adversarial attack models. PðGt jGt�1;AÞ represents the
transition model determined by the adversarial intervention (as it is the only driver
of the transition). PðGt�1jψ′ðτ�1Þ;GðjÞ;AÞ considers how likely Gt−1 can be
explained by the underlying network model. Given Gt−1, the product of first two
quantifies how likely Gt−1 explains the transition of a network (i.e., Gt−1→Gt)
described by the model G under the adversarial intervention A. It hints on that the
guess we take on Gt−1 from our observation on Gt should be supported by both the
adversarial intervention model and the network model, which emphasizes again the
necessity of a combined knowledge of network and adversarial intervention
models. As a result, the prior methods that consider only the network models
cannot be applied here.

More importantly, we note that the third term PðG0:t�2jψ′ðτ�1Þ;G ð jÞ;Gt�1;AÞ is
exactly a sub-problem of original one, hence suggesting a nice recursive structure of
the inference problem, which resembles the most likely sequence problem in
HMM. In principle, such recursive optimal problem structure immediately implies
a dynamic programming (e.g., Viterbi algorithm) that solves the problem optimally
given the initial distribution on G0 if ψ′* and G� are known. If not, we instead take
advantage of this recursive structure and draw samples from

PðG0:t�1jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ. More precisely, for each subgraph Gs in time, we

recursively sample GðτÞs from PðGsjψ′ðτ�1Þ;GðjÞ;AÞ and accept it with a probability

A(Gs) conditioned on the previously drawn sample GðτÞsþ1,

AðGðτÞs Þ ¼
f ðGðτÞs ;GðτÞsþ1Þ

PðGðτÞs jψ′ðτ�1Þ;GðjÞ;AÞ
ð19Þ

Therefore, the probability to accept GðτÞs is f ðGðτÞs ;GðτÞsþ1Þ and the probability

AðGðτÞ0:t�1Þ to accept the entire path G0:t−1 is given by,

AðGðτÞ0:t�1Þ ¼ Πt�1
s¼0 f ðGðτÞs ;GðτÞsþ1Þ

¼ PðGðτÞ0:t�1jψ′ðτ�1Þ;G ð jÞ;Gt ;AÞ
ð20Þ

The second equality holds due to the recursive structure in Eq. (18). One
straightforward sampling method is rejection sampling that takes samples exactly
from the target distribution given a proper proposal distribution. Fortunately, such

a proposal distribution can be naturally constructed by PðGsjψ′;G ð jÞk ;AÞ in the
recursive structure of our problem and it is always locally lower bounded by f(Gs;

Gs+1) (hence being overall lower bounded by PðG0:t�1jψ′ðτ�1Þ;G ð jÞk ;Gt ;AÞ). Note
that a strict ordering holds for G0:t−1 such that Gi⊂ Gj for ∀i > j. Therefore,
sampling PðGsjψ′;GðjÞk ;AÞ requires only the sample on zs=Gs/Gs+1.
Algorithmically, the following procedure states the sampling process:

● For s= t− 1 to 0, repeat the following Steps (2) and (3) until

as< ¼ f ðGðτÞs ;GðτÞsþ1Þ
● Draw a sample GðτÞs from PðGsjψ′ðτ�1Þ;G ð jÞ;AÞ.
● Draw a sample as from Uð0; PðGðτÞs jψ′ðτ�1Þ;GðjÞ;AÞÞ.

The above procedure provably produces samples from PðZt jψ′ðτ�1Þ;GðjÞ;GtÞ
whereas the acceptance rate can be practically low during the experiment as a result
of unprincipled sampling from unimportant regions (low probability) of
PðGsjψ′ðτ�1Þ;G ð jÞ;AÞ. To conquer this, we supplement it with the construction of a
Markov chain such that we can efficiently draw samples from
PðZt jψ′ðτ�1Þ;G ð jÞ;Gt ;AÞ once a sample Z(τ) is obtained by the above procedure.

Specifically, given ZðτÞ ¼ fzðτÞt�1; z
ðτÞ
t�2; :::; z

ðτÞ
0 g, we define the transition probability

for each zðτÞk by,

P
zðτÞk jz

ð�Þ
k
¼ 1

dðiÞ
pi;xP
y pi;y

ð21Þ

where i 2 VðzðτÞk Þ, x 2 Vðzð�Þk Þ and y 2 V Gt ∪ zðτÞt�1
n� �

; zðτÞt�2
�
; :::; zðτÞkþ1

�o
. For

∀k < t, the following procedure induces a Markov chain with respect to zk with its
stationary distribution being f(Gk; Gk+1):

● Randomly sample an edge (i, j) where i 2 VðzðτÞk Þ and j 2
V Gt zðτÞt�1

n� �
; zðτÞt�2

�
; :::; zðτÞkþ1

�o
with a probability P{(i, j)} = 1/d(i).

● Rewire (i, j) to (i, j′) to produce zð�Þk with probability, pi;j′=
P
y
pi;y where

y 2 V Gt zðτÞt�1
n� �

; zðτÞt�2
�
; :::; zðτÞkþ1

�o
.

● Accept zð�Þk with probability

Aðzð�Þk ; zðτÞk Þ ¼ min 1; ~pðzð�Þk ÞPzð�Þk jz
ðτÞ
k
=~pðzðτÞk ÞPzðτÞk jz

ð�Þ
k

� �
where ~pðzkÞ ¼ f ðGk;Gkþ1Þ. Define ~P

zðτÞk jz
ð�Þ
k
¼ P

zðτÞk jz
ð�Þ
k
Aðzð�Þk ; zðτÞk Þ:, it can be easily

shown that the constructed Markov chain satisfies the following detailed balance
condition,

f ðGðτÞk ;GðτÞkþ1Þ~PzðτÞk jz
ð�Þ
k
¼ f ðGð�Þk ;Gð�Þkþ1Þ~Pzð�Þk jz

ðτÞ
k

ð22Þ
Constructing the above Markov chain for each component in Z(τ), it follows Eq.
(20) that samples are drawn from PðZt jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ.

A MCMC approach to sample Pðψ′jZðτÞt ;G ð jÞ;Gt ;AÞ. We construct a Markov
chain for the sampling of mapping ψ′ by repeating the following procedure:

● Randomly sample two indexes i and j in ψ′(τ) and swap them to obtain ψ′(*).
● Accept ψ′(*) with probability A(ψ′(*),ψ′(τ)).
where A(ψ′(*), ψ′(τ)) is defined by,

Aðψ′ð�Þ;ψ′ðτÞÞ ¼ min 1;
Pðψ′jZð�Þt ;GðjÞ;GtÞ
Pðψ′jZðτÞt ;GðjÞ;GtÞ

 !
ð23Þ

Optimization strategy to maximize QðGjGðiÞÞ under MFNG model Gk . We adopt
a batch gradient descent approach to optimize the incomplete log-likelihood

function QðGðjþ1Þk jGðjÞk Þ at jth iteration with the following procedure:
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● fZðτÞt ;ψðτÞg  Pðψ′;Zt jGðjÞk ;Gt ;AÞ
● lðτÞ ¼ log½PðGt ;Z

ðτÞ
t ;ψ′ðτÞjGðjÞk ;AÞ�

● gðτÞ ¼ ∂lðτÞ=∂P0

● Repeat Steps (1)–(3) for τ= B+ 1 to K+ B

● Pðjþ1Þ0 ¼ Pð jÞ0 þ σ=K �Pτ g
ðτÞ

● Gðjþ1Þk ¼ ðm; k;Pð jþ1Þ0 ;LÞ
The derivation of the gradient of the log-likelihood function can be found in

Supplementary Note 5.

Computational complexity. Overall, E step involves taking samples from dis-
tribution Pðψ′;Zt jGðjÞ;GtÞ which can be addressed by the proposed alternated
MCMC sampling processes for both PðZt jψ′ðτ�1Þ;GðjÞ;Gt ;AÞ and
Pðψ′jZðτÞt ;GðjÞ;Gt ;AÞ. Since MCMC surely produces a sample after each iteration
in O(1) time, the amortized sampling cost is thus O(|Zt|) where |Zt| being the size of
latent network. Consider K+ B samples in total, each iteration of E step takes O((K
+ B)|Zt|). M step involves the optimization of the Q function by gradient descent.
The amortized cost of gradient calculation is given by O(|E0|) per sample (see S5).
Therefore, the worst-case computational complexity of one iteration of EM is O
(KS|E0|+ (K+ B)|Zt|) where S is the number of optimization steps, K is the
number of samples and B is the number of burn-in samples. Note that |E0| is a
quadratic function of network size in the worst case. Thus,
O(KS|E0|+ (K+ B)|Zt|)=O(KS|E0|) and the computational complexity is mainly
decided by the M-step.

Method constraints. There are several key aspects that could be improved by our
future work. While the assumptions made in the attack model seem plausible, the
real attacks may not follow a consistent statistical pattern as the one described in Eq.
(2). For instance, the causal structure of the attacking sequence considered in our
framework can be more sophisticated by the coordination/interaction (sharing of
information) among multiple attackers co-existing in the network. Attackers may
not necessarily operate under the same strategy, which makes it challenging to
construct consistent and accurate models to characterize their behavior. Conse-
quently, it is important to incorporate attack strategies as part of the network
inference framework (e.g., either estimating the unknown parameters of the attack
model together with the network model in an EM approach or estimate them
separately based on additional information when available). Since real networks can
change their growth rules and possibly their self-similar structure over time (e.g., co-
existence or emergent transition of small-world and multi-fractal scaling observed
in complex networks57,58), a generative model that captures all the structural fea-
tures of interested networks can be difficult to build. As a result, applying the
proposed method to retrieve the latent subnetwork resulted from attacks on real-
world networked systems (e.g., social network manipulation and intervention)
requires time-labeled data collection process. This data collection should enable
reliable identification of and estimation on the statistical behavior of attackers and
its variations over time (e.g., through multiple piece-wise temporal windows that
correspond to different statistical modes/patterns of the attacker). Towards this end,
an integration of continuous anomaly detection and data monitoring system is a
must to interface with the proposed framework and other analytical tools (e.g.,
opinion diffusion dynamics) for identification, influence assessment, and source
tracking of the adversarial interventions on real-world networks.

Finally, applying the inference framework to large scale networks would require
more efficient computational techniques. As detailed in the “Methods” section, the
overall computation complexity of one EM iteration is O(KS|E0|) where |E0| is the
number of links in the original network, K is the number of samples and S denotes
optimization steps. In the worst case, |E0| is a quadratic function of network size

and the number of samples required to identify the network model also grows
exponentially. This can be shown in Fig. 8 that runtime is dominated by the
network size and slowly increases as the |Zt| grows where |Zt| is the number of
latent nodes. The algorithm is written in Matlab and runs on i7-4790K with 32 GB
memory where K= 40,000, B= 10,000 and S= 10.

While extending the inference framework to larger scales requires further work,
we also need to be very cautious about the interpretation of the worst-case
computational complexity. Firstly, many real networks are sparse, which makes the
runtime of proposed algorithm run much faster than the worse-case computational
complexity implies. Secondly, the size of many biological networks varies from a few
hundreds to a few thousands of nodes, which makes the proposed framework suitable
for use and further extension to specific biological investigations. Thirdly, social
networks are known to possess small world and scale-free properties, as well as rich in
the degree of locality (related to occupation, age, or geographic proximity). Also,
attackers can hardly grasp the global information about the networks. This means that
a targeted attack usually happens to a localized subnetwork (observable part of the
network for the attacker) rather than the entire network. Combining these important
aspects with more realistic attack strategies and opinion/information diffusion models
opens up a rich yet challenging class of network reconstruction and inference
problems for the network science research community.

Data availability
The Facebook social network can be accessed from Stanford Network Analysis Project
(SNAP) [http://snap.stanford.edu]. The hu.Map network can be accessed from Biological
General Repository for Interaction Datasets (BioGRID 3.5) [https://downloads.
thebiogrid.org/BioGRID/Published-Datasets/Marcotte2017]. The human brain
consensus connectome can be found in Budapest Reference Connectome 3.0 [https://doi.
org/10.1016/j.neulet.2015.03.071]. The source codes for generating the results can be
found at Github [https://github.com/urashima9616/NetworkReconstruction].
Supplementary Note 6 gives a detailed instruction to run the code.
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