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The trivalent seasonal influenza vaccine was the only approved and available vaccine
during the 2016–2018 influenza seasons. It did not include the B/Yamagata strain.
In this study, we report an acute respiratory disease outbreak associated with
influenza B/Yamagata infections in Guangzhou, Southern China (January through
March, 2018). Among the 9914 patients, 2241 (22.6%) were positive for the influenza
B virus, with only 312 (3.1%) positive for the influenza A virus. The influenza
B/Yamagata lineage dominated during this period in Southern China. The highest
incidence of influenza A virus infection occurred in the children aged 5–14 years. In
contrast, populations across all age groups were susceptible to the influenza B virus.
Phylogenetic, mutations, and 3D structure analyses of hemagglutinin (HA) genes were
performed to assess the vaccine-virus relatedness. The recommended A/H1N1 vaccine
strain (A/Michigan/45/2015) during both 2017–2018 and 2018–2019 was antigen-
specific for these circulating isolates (clade 6B.1) in Spring 2018. An outbreak of
influenza B/Yamagata (clade 3) infections in 2018 occurred during the absence of the
corresponding vaccine during 2016–2018. The recommended influenza B/Yamagata
vaccine strain (B/Phuket/3073/2013) for the following season (2018–2019) was antigen-
specific. Although there were only a few influenza B/Victoria infections in Spring 2018,
five amino acid mutations were identified in the HA antigenic sites of the 19 B/Victoria
isolates (clade 1A), when compared with the 2016–2018 B/Victoria vaccine strain. The
number was larger than expected and suggested that the influenza B HA gene may
be more variable than previously thought. One of the mutations (K180N) was noted to
likely alter the epitope and to potentially affect the viral antigenicity. Seven mutations
were also identified in the HA antigenic sites of 2018–2020 B/Victoria vaccine strain,
of which some or all may reduce immunogenicity and the protective efficacy of the
vaccine, perhaps leading to more outbreaks in subsequent seasons. The combined
epidemiological, phylogenetic, mutations, and 3D structural analyses of the HA genes
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of influenza strains reported here contribute to the understanding and evaluation of
how HA mutations affect vaccine efficacy, as well as to providing important data for
screening and selecting more specific, appropriate, and effective influenza vaccine
candidate strains.

Keywords: influenza B virus, Yamagata lineage, hemagglutinin, Victoria lineage, phylogenetic analysis, mutation
analysis, 3D structure analysis, antigenic sites

INTRODUCTION

Influenza viruses are the major cause of acute respiratory
diseases in humans, causing several serious global pandemics
because of their transmission dynamics and great antigenic
variability. Compounding this is the potential of emergent strains
originating in swine and avian hosts (Mostafa et al., 2018), as
well as from reverse zoonosis from human to animals (Morens
et al., 2013; Nelson and Vincent, 2015). For both directions
of transmission, knowing the distribution of strains in human
populations is important for perhaps predicting strains for
the coming season.

Influenza A virus presents as a permutation of 18
hemagglutinin (HA) and 11 neuraminidase (NA) possible
subtypes, with a wide range of hosts (Cauldwell et al., 2014).
The latest two subtypes H17N10 and H18N11 are of bat origins
(Tong et al., 2012, 2013). Influenza B virus, including the
Victoria and Yamagata lineages, is hosted by humans and seals
(Osterhaus et al., 2000). Although there is no direct evidence
that influenza B is transmitted between humans and animals,
it has been observed that influenza B can infect seal, swine,
ferret, guinea pig, pheasant, dog and horse (Osterhaus et al.,
2000; Pica et al., 2012; Huang et al., 2014; Ran et al., 2015;
Pascua et al., 2016). Pandemic influenza is usually caused by
influenza A virus, due to its rapid antigenic variation, strong
replication capacity, and transmission ability associated with
genetic reassortment (Chan et al., 2010; White and Lowen,
2018). Influenza B virus, often neglected, has been circulating
and, in some seasons, has predominated over influenza
A, particularly among children (Paul Glezen et al., 2013;
Tewawong et al., 2015; Furuse et al., 2016). Vaccines against
influenza A/H1N1 and A/H3N2 have been used effectively for
more than 20 years for controlling and preventing potential
pandemics. However, influenza vaccines against the B/Victoria
and B/Yamagata lineages were used interchangeably. In the
2016–2018 seasons, the trivalent influenza vaccine did not
include the B/Yamagata lineage.

A high incidence of influenza-like illnesses was reported in
January 2018 by the China CDC1. To investigate whether this
was due to the unavailability of B/Yamagata vaccine, we collected
9914 nasal swabs from patients presenting with influenza-like
symptoms in Guangzhou, Southern China from January through
March in 2018. Most of the patients were outpatients (88.7%).
Influenza-positive samples were further subtyped by sequencing
and phylogenetic analysis of HA and NA genes. The data provide
a view into the molecular epidemiology of the influenza viruses

1http://www.chinacdc.cn/jkzt/crb/bl/lxxgm/zstd/201801/t20180108_158017.html

circulating in the current population, which may, in turn, confirm
the efficacy of the influenza vaccines administered as well as
provide insights for the future development and deployment of
effective subtype or lineage-specific influenza vaccines.

MATERIALS AND METHODS

Influenza Diagnostic Tests
From January through March 2018, nasal swab specimens
from 9914 patients with influenza-like symptoms were collected
and tested for influenza viral antigens (Li et al., 2019)
using the Clearview R© Exact Influenza A&B kit with the
colloidal gold detection method (Jennings et al., 2009)2.
Briefly, each nasal swab was eluted with 192 µL lysis
buffer and the immunochromatographic strip in the kit was
inserted into the eluent and incubated for 15 min at room
temperature. Then the results were determined according to
the manufacturer’s instructions. The interaction between the
colloidal gold conjugated antibodies and the influenza antigens
will indicate red in the test line. This study was approved
by the Institutional Review Board of the Affiliated Cancer
Hospital of Guangzhou Medical University in accordance with
the Declaration of Helsinki, with the patient consent for using
left-over specimens waived.

RNA Extraction, RT-PCR and Sequencing
Each nasal swab was eluted with 1 mL DMEM. The eluent was
immediately stored at −80◦C. Subsequently, 1 mL Trizol was
used to extract viral RNA from the 200 µL of nasal swab eluent,
and 200 µL chloroform was added immediately and centrifuged
at 12,000× g. The upper aqueous layer was transferred to a tube,
with 1 mL 100% isopropanol for RNA precipitation. Following
centrifuge at 12,000 × g, 1 mL of 75% cold ethanol to the
pellet as a wash. The RNA was eluted into 20 µL RNase-free
water. This RNA was reverse transcribed into cDNA using the
PrimerScriptTM RT Reagent Kit with gDNA Eraser (TAKARA),
according to the manufacturer’s protocol. All primers used in
this experiment are based on the "WHO protocols for molecular
diagnosis of influenza virus"3 (Table 1). The cDNA was amplified
using the Premix TaqTM (TaKaRaTM Taq Version 2.0), under
the following conditions: Initial denaturation at 94◦C for 2 min;
amplification in 40 cycles of 94◦C for 30 s/50◦C for 30 s/72◦C for
2 min; and final extension for 10 min at 72◦C. These amplified

2https://www.alere.com/zh/zh/product-details/clearview-exact-influenza-a-and-
b.html
3https://www.who.int/influenza/gisrs_laboratory/molecular_diagnosis/en
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TABLE 1 | Primers used for RT and PCR amplification of influenza A and B viruses.

Purpose Primer name Sequence (5′–3′) Expected size

RT for influenza A uni12W AGCRAAAGCAGG N/A

RT for influenza B Buni11W AGCAGAAGCGS N/A

PCR for the HA gene of influenza A H1F1 AGCAAAAGCAGGGGAAAATAAAAGC 1.7 kb

H3A1F6 AAGCAGGGGATAATTCTATTAACC

H5A1F1 AGCAAAAGCAGGGGTATAATC

HARUc ATATCGTCTCGTATTAGTAGAAACAAGGGTGTTTT

PCR for the NA gene of influenza A N1F1 AGCAAAAGCAGGAGTTTAAAATG 1.3 kb

NARUc AGTAGAAACAAGGAGTTTTTT

PCR for the HA gene of influenza B BHAF1ua AGCAGAAGCAGAGCATTTTCTAATATC 1.4 kb

BHAR1341 TTCGTTGTGGAGTTCATCCAT

nested-PCR for the HA gene of influenza B Bvf224 ACATACCCTCGGCAAGAGTTTC Victoria lineage:

Bvr507 TGCTGTTTTGTTGTTGTCGTTTT 284 bp

BYf226 ACACCTTCTGCGAAAGCTTCA Yamagata lineage:

BYr613 CATAGAGGTTCTTCATTTGGGTTT 388 bp

Primers were chosen from the “WHO protocols for molecular diagnosis of influenza virus.” aModified from primer sequences WHO recommended.

sequences were confirmed by Sanger DNA sequencing using the
primers listed in Table 1 as sequencing primers.

Phylogenetic Sequence Analyses
Phylogenetic analysis was performed by Molecular Evolutionary
Genetics Analysis (MEGA X)4 (Kumar et al., 2018). The
phylogenetic tree was generated by the maximum-likelihood
method with 1,000 bootstrap replicates using the MEGA X by
applying default parameters (Zhang et al., 2017, 2019). Sequences
of HA and NA genes were retrieved from Influenza Research
Database5 are used for comparison. The gene reference sequences
of H1N1, H3N2, and Victoria and Yamagata lineages were
extracted from published sequences, using BLAST, obtained
from strains that circulated worldwide in recent years, as
well as China strains and northern hemisphere vaccine strains
recommended by WHO and the reference strains of known
clades as reported by WHO.

Amino Acid Mutation Analysis
Amino acid mutations in the HA genes of 23 influenza
A/H1N1 isolates from residues 7 to 566 were compared
to homologous sequences in the 2017–2019 vaccine strain
(A/Michigan/45/2015). In addition, amino acid mutations of the
HA genes of 80 influenza B/Yamagata isolates from residues
96–215 were compared to the equivalent sequences from
the 2018–2019 vaccine strain (B/Phuket/3073/2013). Amino
acid mutations in the HA genes from the 19 influenza
B/Victoria isolates and the 2018–2020 B/Victoria vaccine
strain from residues 93 to 180 were also compared to the
counterparts in the 2016–2018 northern hemisphere vaccine
strain (B/Brisbane/60/2008). These analyses were compared
using the software CLUSTAL.

4http://www.megasoftware.net/index.html
5https://www.fludb.org/brc/influenza_sequence_search_segment_display.spg?
method=ShowCleanSearch&decorator=influenza

3D Protein Structure Analysis
The SWISS-MODEL server and web-tool6 (Waterhouse
et al., 2018) was used to predict the 3D structure of the
HA protein of the two northern hemisphere vaccine strains
(A/Michigan/45/2015 and B/Phuket/3073/2013). SWISS-
MODEL searches for related protein structure templates from
the SMTL database by BLAST and HHblits were conducted to
ensure accuracy and sensitivity as much as possible. The crystal
structure of the B/Brisbane/60/2008 vaccine strain of the HA
protein was retrieved from NCBI. The PDB ID: 4FQM. PyMOL
software7 as used to overlay the positions of the antigenic sites
and mutation sites on the HA crystal structure of influenza A
and B isolates.

HA and NA Gene Sequences Annotation
and GenBank Accession Numbers
Sequence data were assembled with the SeqMan Pro software
7.0.1 (DNASTAR, Inc., Madison, WI, United States). Nucleotide
and amino acid sequences of the HA and NA genes were
aligned using the CLUSTAL and BLAST software. These HA and
NA gene sequences from influenza A and B were archived in
GenBank with the following accession numbers: (1) MN653601-
MN653624 (influenza A, HA gene); (2) MN653549-MN653572
(influenza A, NA gene); and (3) MN653573-MN653600 and
MT123908-MT123978 (influenza B, HA gene).

RESULTS AND DISCUSSION

The Epidemiology of Influenza A and B
Infections
Type-specific colloidal gold test revealed that 2547 of 9914
patients (25.7%) during this outbreak were positive for influenza
viruses, of which 312 (3.1%) were identified as influenza

6https://swissmodel.expasy.org/
7https://pymol.org/2/

Frontiers in Microbiology | www.frontiersin.org 3 May 2020 | Volume 11 | Article 1079

http://www.megasoftware.net/index.html
https://www.fludb.org/brc/influenza_sequence_search_segment_display.spg?method=ShowCleanSearch&decorator=influenza
https://www.fludb.org/brc/influenza_sequence_search_segment_display.spg?method=ShowCleanSearch&decorator=influenza
https://swissmodel.expasy.org/
https://pymol.org/2/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01079 May 28, 2020 Time: 14:53 # 4

Yan et al. Influenza B in Southern China

A and 2241 (22.6%) as influenza B. The dominant type
circulating was influenza B (87.8%). Outpatients of influenza A
and B positive accounted for 297 (95.2%) and 2141 (95.5%),
respectively. Positive specimens collected during the outbreak
were selected randomly (100 specimens for each month) for
further subtyping by Sanger sequencing DNA sequencing of the
HA and NA genes. The sequence data resulted in the typing
of the influenza A strains as 23 H1N1 with one H3N2, and
the typing of influenza B as identified 80 Yamagata and 19
Victoria strains.

Influenza cases peaked initially from January 8 to 21, followed
by another peak from February 5 to March 4 (Figure 1).
This was different from the Northern China epidemic profile
(one peak, January 1–21). During the two peaks, there was a
total of 1776 influenza positive cases. Among these, influenza
B accounted for 1579 cases, with only 203 as influenza A
positive. These include six cases testing as both influenza A
and B positive.

During the outbreak, influenza A and B viruses circulated
in all age groups. Median ages of the patients were 12 and 17,
respectively, with the male to female ratio of 1.1:1. The highest
positive rate of influenza A and B infections appeared in children
between the ages of 5–14 years, with incidences of 4.2 and
31.7%, respectively (Table 2). All age groups were susceptible to
influenza B virus, accounting for 17.9–31.7% of the flu-like cases.

FIGURE 1 | Timeline and type distribution of influenza A and B cases of onset
in Guangzhou, Southern China, January–March 2018. The number of cases
of each influenza A and B are shown encompassing the two peaks of the
epidemic.

TABLE 2 | The age distribution of influenza A and B patients in Guangzhou,
Southern China, January–March 2018.

Cases Influenza Influenza Influenza

Age detected A (%) B (%) A and B (%)

0–4 3307 117 (3.5) 671 (20.3) 787 (23.8)

5–14 1274 53 (4.2) 404 (31.7) 456 (35.8)

15–24 958 27 (2.8) 258 (26.9) 284 (29.6)

25–59 3098 91 (2.9) 679 (21.9) 769 (24.8)

≥60 1277 24 (1.9) 229 (17.9) 251 (19.7)

Total 9914 312 (3.1) 2241 (22.6) 2547 (25.7)

The Subtype Distribution and
Phylogenetic Analysis of Influenza A and
B Viruses
To reveal the subtypes circulating during this outbreak, the
HA and NA genes were further analyzed using their sequences.
Phylogenetic analysis showed that the HA and NA genes of the
23 H1N1 isolates had close sequence relationships to the strains
circulating in Northern China, Japan, Italy, England, and the
USA during 2017–2018, as well as to the 2016–2017 vaccine
strain (A/California/7/2009/vaccine) and 2017–2019 vaccine
strain (A/Michigan/45/2015/vaccine). The phylogenetic analysis
indicated that there were few HA and NA genetic variations
between the A/H1N1 isolates circulating in 2018 and the 2016–
2019 vaccine strains. All of the A/H1N1 strains circulating
during January to March, as well as the 2017–2019 vaccine strain
(A/Michigan/45/2015), fell into clade 6B.1, which is defined by
the HA1 amino acid substitutions S84N, S162N and I216T. The
2016–2017 vaccine strain (A/California/7/2009) and the other
four China strains circulating in 2016 formed a clade noted as
6B.2 (Figure 2).

The majority (80/99) of the influenza B isolates belonged to
the Yamagata lineage, which was further divided into two sub-
branches: One was phylogenetically close to strains circulating
in China, Japan, Italy, South Korea, German, Canada, and
the USA during 2016–2018 and the other was close to strains
B/Georgia/7276/2018, B/Florida/31/2017, B/Idaho/03/2017,
B/New Mexico/6335/2017, B/Turkey/5879/2017, and B/West
Virginia/13/2017 (Figure 3). Influenza B Yamagata-lineage was
separated previously into two major antigenically distinct clades
(clades 2 and 3), based on phylogenetic analysis of its HA and
NA genes (Barr et al., 2010, 2014). All of the B/Yamagata strains
circulating during January to March and the 2018–2019 vaccine
strain (B/Phuket/3073/2013) parsed into clade 3.

During the 2016–2018 seasons, the trivalent vaccine didn’t
include B/Yamagata lineage, so its effectiveness could not be
determined. However, it may be speculated that the absence of
B/Yamagata vaccine might have contributed to an influenza B
outbreak due to the low herd immunity.

The 19 B/Victoria strains clustered within two close sub-
branches, 16 of which were close phylogenetically to the 2018–
2020 vaccine strain (B/Colorado/06/2017) and three of which
were close to the 2016–2018 vaccine strain (B/Brisbane/60/2008)
(Figure 3). All of the 19 B/Victoria strains were members
of clade 1A.

Amino Acid Mutations and 3D Structure
Analysis of the HA Antigenic Sites
Indicate the Potential Effect on Vaccines
Current influenza vaccines provide important protection in
humans by inducing strain-specific neutralizing antibodies
targeting highly variable antigenic epitopes in the globular
domain of the HA protein that is in the virus envelope. They
play a critical role in host cell recognition, viral binding,
as well as the subsequent fusion and entry processes (Shen
et al., 2013; Qi et al., 2018). Amino acid mutations of the HA
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FIGURE 2 | Phylogenetic analysis of the HA (A) and NA (B) genes from influenza A/H1N1 viruses. The phylogenetic tree was generated by the maximum-likelihood
method with 1,000 bootstrap replicates using the MEGA X by applying default parameters. Bootstrap numbers shown at the nodes mean the percentages of 1000
replications producing the clade. The scale bar indicates the units of nucleotide substitutions per site. Nucleotide sequences of HA and NA genes retrieved from
Influenza Research Database (https://www.fludb.org/brc/influenza_sequence_search_segment_display.spg?method=ShowCleanSearch&decorator=influenza) are
used as references. Sequences of the isolates obtained in this study are noted (N), as well as sequences of the northern hemisphere vaccine strains of known clades
as reported by WHO as reference (•).
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FIGURE 3 | Phylogenetic analysis of the HA genes of influenza B/Yamagata isolates (A) and B/Victoria isolates (B). The phylogenetic trees were generated by the
maximum-likelihood method with 1,000 bootstrap replicates using the MEGA X by applying default parameters. Bootstrap numbers shown at the nodes mean the

(Continued)
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FIGURE 3 | Continued
percentages of 1000 replications producing the clade. The scale bar indicates the units of nucleotide substitutions per site Nucleotide sequences of the HA genes
retrieved from the Influenza Research Database (https://www.fludb.org/brc/influenza_sequence_search_segment_display.spg?method = ShowCleanSearch&
decorator = influenza) are used as references. Sequences of the isolates obtained in this study are noted (N), as well as sequences of the northern hemisphere
vaccine strains of known clades as reported by WHO as reference (•). 12 means two amino acid deletions (177K and 178N).

genes of circulating influenza isolates and the predicted 3D
structure were further analyzed, and compared to the northern
hemisphere vaccine strains.

When compared with the A/H1N1 2017–2019 vaccine strain
(A/Michigan/45/2015), there were three major amino acid
mutations within the HA gene of all 23 isolates (S91R, S181T, and
I312V), of which one mutation, S91R, located in the Cb antigenic
site was identified in all 23 isolates (Figure 4A). Another
mutation P154S in the Ca2 antigenic site was also found in two
isolates (SMU214 and SMU941). Except for these mutations,
no additional mutations were located within these antigenic
sites of HA gene: Sa, Sb, Ca1, Ca2, Cb (Huang et al., 2013;
Matsuzaki et al., 2014). S181T was identified in all the 23 isolates,
although the meaning of the mutation is unknown (Table 3).

To be clear, it is not known if these patients were vaccinated
for influenza. Whether these mutations actually changed the
immunogenicity of these isolates needs to be investigated further.
However, the incidence of influenza A was significantly lower
than influenza B in Jan-Mar 2018. The use of the influenza A
vaccine appears to have been effective in controlling the potential
influenza A outbreak.

Because there was no influenza B/Yamagata vaccine used
during the 2017–2018 season, the 2018–2019 influenza
B/Yamagata vaccine strain (B/Phuket/3073/2013) was used
as reference. The HA gene of most of the isolates was conserved.
Only five out of 80 isolates contained one non-synonymous
substitution, located in the 120-loop, 150-loop, 160-loop, and
190-helix sites (Wang et al., 2008), respectively (marked in red

FIGURE 4 | Structural modeling of the HA mutations. The hemagglutinin structures of influenza A/H1N1 (A), B/Yamagata (B), and B/Victoria (C) vaccine strains are
presented, in which the antigenic epitopes of the protein are mapped and marked in yellow. Amino acid mutations of the isolates are either marked in pink, if not
located in antigenic sites, or in red, if located in antigenic sites. The frequency was also noted.
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TABLE 3 | Amino acid mutations in the HA genes of A/H1N1 isolates.

A/H1N1 strain Cb Ca2

Positions (frequency) 10 (2) 17 (1) 62 (1) 83 (1) 89 (1) 91 (23) 130 (1) 154 (2) 155 (4) 163 (1) 181 (23) 200 (6) 230 (1) 250 (2) 273 (4) 284 (2) 289 (4) 299 (1) 312 (23) 389 (2) 496 (1) 513 (1)

A/Michigan/45/2015/
vaccine
(2017–2019)

Y A R E T S R P H K S S E L T I V P I I V N

SMU683 S R T V

SMU619 R T T V

SMU581 R T K V

SMU244/671/862 (3) R T P I V

SMU560 R T P V H

SMU666 C R T P I V I

SMU647 C T R T P I V

SMU214 R S T D T V L

SMU941 K R S T T S V L

SMU73 R K Y T A V

SMU639 D R Y T A V

SMU651/54 (2) R Y T A V

SMU47/454/629/649/
765/909/912/917 (8)

R T V

Twenty-three isolates were included for analysis. The northern hemisphere 2017–2019 vaccine strain (A/Michigan/45/2015) was used as reference. Amino acids highlighted in red indicate the mutations in the antigenic
sites. Bold letterings represent amino acids comprising the HA protein of the vaccine strain. The HA antigenic epitopes of Cb are located at the amino acid residues 87–88, 90–92, and 132; Ca2 is located at the amino
acid residues 154, 157, 159, and 238–239.
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in Table 4). One isolate (SMU926) harbored four mutations in
the 160-loop site. Except for these mutations, no other changes
were found in the HA antigenic sites (Table 4). The mutation
L187Q was noted in all 80 isolates, but it was not found in any
antigenic sites and therefore may not affect the antigenicity. At
amino acid residue 179, three of eighty isolates had amino acid
mutations in the antigenic epitopes (Figure 4B). For the other six
mutations, they were only found in one isolate for each mutation.
These indicated that the 2018–2019 B/Yamagata vaccine strain
was antigen-specific and appropriate for the 2018 circulating
B/Yamagata strains.

When compared with the B/Victoria 2016–2018 vaccine strain
(B/Brisbane/60/2008), all 19 isolates had one common amino acid
mutation (K180N), located in the HA 160-loop (Table 5). Five
mutations located in the HA antigenic epitopes were identified in
the 19 B/Victoria isolates: K180N (19/19), I132V (16/19), N144D
(15/19), I161V (3/19), H137Q or H137N (1/19), respectively
(Figure 4C). Note that the mutations K180N, I132V, and N144D
occurred in most of the isolates. In the 150-loop, three isolates
contained a mutation I161V. Additionally, 17 of 19 isolates had
three mutations located in the three antigenic sites (120-loop,
150-loop, and 160-loop). When compared with the B/Victoria
2018–2020 vaccine strain (B/Colorado/06/2017), surprisingly, all
19 isolates had K180N mutation in the 160-loop and 15 of 19
isolates had a G144D mutation in the 120-loop. A previous
study found that the amino acid substitution N180K altered the
epitope and affected the viral antigenicity. Human antibodies
did not substantially inhibit the hemagglutination reaction in
the hemagglutination inhibition tests (Nakagawa et al., 2005).
Such variants may be important in future epidemics. Except for
the B/Colorado/06/2017/vaccine strain, which had two deletions
(12) in the HA antigenic sites (177K and 178N), the other isolates
had no amino acid deletions at any of the antigenic sites (Table 5).

A larger than expected number of mutations found within HA
multiple antigenic epitopes of B/Victoria isolates suggest that
the HA gene may be more variable than previously thought
(Lindstrom et al., 1999). The isolates accumulated mutations at
several antigenic sites, which may reduce the protective efficacy of
the vaccine. Therefore, the B/Vitoria vaccine strain used in 2018–
2020 might not be appropriately selected for Southern China
should this be the case. According to the report of the National
Health Commission of China, the B/Victoria strain re-dominated
in China in 20198. In the context of our study, this indicates that
the protective efficacy of 2018–2019 B/Victoria vaccine is likely
reduced due to the mutations in the antigenic sites of the HA
protein, particularly if the vaccination rate in China remained at
the same level in 2019 as in prior years.

CONCLUSION

According to the report of the National Health Commission of
China, from January through March of 2018, 487,773 people
were infected with influenza, of which 119 died. During the
outbreak, both influenza A and B dominated in Northern China.
In contrast, our study found that influenza B, rather than
influenza A, dominated in Southern China. Throughout the
years, influenza A viruses have attracted a great deal of attention
and have caused several global pandemics due to their strong
transmission capacity and great variability. In contrast, there is
less literature focused on the epidemiology and societal burdens
of influenza B, particularly outside the United States and Europe
(Caini et al., 2015). Nevertheless, influenza B remains an critical
respiratory pathogen that imparts an important and large public

8http://www.chinaivdc.cn/cnic/zyzx/lgzb/

TABLE 4 | Amino acid mutations in the HA genes of B/Yamagata isolates.

B/Yamagata
strain

120-loop 150-loop 160-loop 190-helix

Positions
(frequency)

103 (1) 127 (1) 129 (1) 133 (1) 156 (1) 165 (1) 169 (1) 179 (3) 181 (1) 182 (1) 187 (80) 199 (1) 212 (1)

B/Phuket/3073/
2013/vaccine
(2018–2019)

R R Y R G I A N K N L E K

SMU06/294 (2) K Q

SMU926 C G S R D Q

SMU981 R Q

SMU882 V Q

SMU622 Q E

SMU369 K Q

SMU536 Q D

SMU806 S Q

SMU911 G Q

The other 70
isolates

Q

Eighty isolates were included for analysis. The northern hemisphere 2018–2019 vaccine strain (B/Phuket/3073/2013) was used as reference. Amino acids highlighted in
red indicate the mutations in the antigenic sites. Amino acids residues of the vaccine strain are in bold. For reference, the antigenic epitopes of the HA protein are located
at the amino acid residues 131–152 (120-loop); 156–165 (150-loop); 177–186 (160-loop); and 211–219 (190-helix).
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TABLE 5 | Amino acid mutations in the HA genes of B/Victoria isolates.

B/Victoria strain 120-loop 150-loop 160-loop

Positions (frequency) 132 (16) 137 (2) 144 (15) 161 (3) 169 (1) 177 (0) 178 (0) 180 (19)

B/Brisbane/60/2008/vaccine (2016–2018) I H N I A K N K

B/Colorado/06/2017/vaccine (2018–2020) V G deletion deletion

SMU130/253 (2) V N

SMU126 Q V N

SMU690 V N N

SMU985 V D T N

SMU237/308/400/424/441/432/836/998/641/
699/775/878/886/936 (14)

V D N

Nineteen isolates were included for analysis. The northern hemisphere 2016–2018 vaccine strain (B/Brisbane/60/2008) was used as reference. The northern hemisphere
2018–2020 vaccine strain (B/Colorado/06/2017) was also used for comparison. The amino acids in red indicate the mutations in the antigenic sites. Amino acids
comprising the vaccine strain are in bold. The antigenic epitopes of the HA protein are located at amino acid residues 131–152 (120-loop); 156–165 (150-loop); and
177–185 (160-loop).

health impact (Paul Glezen et al., 2013), and studies such as this
provide important context for both influenza A and B, as well
as insights into the dynamics of their epidemiology. It should
be noted that a domination of influenza B/Yamagata in both
Northern and Southern China has occurred twice, in the past
2007–2008 and in 2014–2015 (Yu et al., 2013; Yang et al., 2018).
In this study, we found that, 3 years later, influenza B/Yamagata
dominated once again in Southern China.

The highest incidence of influenza infection occurred among
the 5–14-year-old children, which indicates that children
and adolescents were more susceptible to influenza viruses.
Outpatients accounted for more than 95% of influenza cases,
which suggested that the illness was not particularly severe
during this outbreak. H1N1 was the major subtype of influenza
A (95.8%) and the Yamagata lineage was the major lineage
of influenza B (80.8%). The outbreak of influenza viruses in
Southern China in 2018 was mainly caused by Yamagata lineage,
which was phylogenetically close to other influenza B strains
circulating worldwide in the same timeframe.

With respect to the phylogenetic, mutation, and 3D structure
analysis of HA genes, the A/H1N1 vaccine strain used in 2017–
2018 was antigen-specific and appeared to be effective in this
season. However, the low influenza vaccination rate in China
might have contributed to the emergence of H1N1 cases9. Due to
the lack of the influenza B/Yamagata vaccine during 2016–2018,
the outbreak of the influenza B/Yamagata virus in 2018 might
have been expected. According to our analysis, the influenza
B/Yamagata vaccine strain used during the subsequent season
(2018–2019) was antigen-specific for the circulating strains. An
outbreak of influenza B/Yamagata infections did not occur in
2019 perhaps due to the use of the inactivated B/Yamagata
vaccine. However, the HA gene of the 2018 B/Victoria isolates
had accumulated mutations in several antigenic sites, which
may have potentially changed the immunogenicity. Furthermore,
when compared with the B/Vitoria 2018–2019 vaccine strain,
more HA mutations were found in the circulating isolates, which
may have reduced the protective efficacy of B/Vitoria 2018–2019
vaccine. This is an indication that the vaccine strain might not

9http://www.chinacdc.cn/mtbd_8067/201810/t20181030_196735.html

have been the best candidate vaccine for Southern China in future
influenza seasons. According to the reports of the United States
CDC, although the influenza vaccination rate for adults was as
high as 45.3% in 2018–2019, an increase of 8.2% from the 2017–
2018 influenza season, a severe influenza infection still broke
out in 2019–2020, causing more than 10,000 deaths, primarily
caused by influenza B/Victoria lineage (Owusu et al., 2020)10.
HA gene variations may and should be considered for evaluating
potential vaccine efficacy.

Previous studies demonstrated that vaccination with the
live and attenuated influenza vaccine elicited lung CD4+ and
virus-specific CD8+ T cell responses, similar in phenotype to
those generated by influenza virus infection, and ultimately
established lung Tissue-resident memory T cells (TRM) capable
of providing long-term, hetero-subtypic protection to multiple,
non-vaccine influenza strains. In contrast, vaccination with
inactivated influenza vaccine generated durable, strain-specific
humoral immunity but failed to elicit T cell responses (Zens et al.,
2016). In China, all the influenza vaccines approved and used are
inactivated vaccines. Therefore, the effect of mutations on HA T
cell epitopes was not analyzed.

The epidemiological, phylogenetic, mutation, and 3D
structural analyses presented in this study, contribute to a better
understanding of circulating influenza strains by revealing
critical mutations, allowing for an evaluation of vaccine efficacy,
and providing a basis for the improved selection of more
specific and effective influenza vaccine candidate strains.
A continuing surveillance of the sequence variations of the
HA genes is important for managing, controlling, and limiting
future influenza outbreaks and pandemics. These surveys and
characterizations of circulating influenza strains are especially
important should there be emergent or re-emergent influenza
viral pathogens crossing the human-animal interface.
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