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A B S T R A C T   

In the field of metastatic skeletal oncology imaging, the role of artificial intelligence (AI) is becoming more 
prominent. Bone metastasis typically indicates the terminal stage of various malignant neoplasms. Once iden-
tified, it necessitates a comprehensive revision of the initial treatment regime, and palliative care is often the only 
resort. Given the gravity of the condition, the diagnosis of bone metastasis should be approached with utmost 
caution. AI techniques are being evaluated for their efficacy in a range of tasks within medical imaging, including 
object detection, disease classification, region segmentation, and prognosis prediction in medical imaging. These 
methods offer a standardized solution to the frequently subjective challenge of image interpretation.This 
subjectivity is most desirable in bone metastasis imaging. This review describes the basic imaging modalities of 
bone metastasis imaging, along with the recent developments and current applications of AI in the respective 
imaging studies. These concrete examples emphasize the importance of using computer-aided systems in the 
clinical setting. The review culminates with an examination of the current limitations and prospects of AI in the 
realm of bone metastasis imaging. To establish the credibility of AI in this domain, further research efforts are 
required to enhance the reproducibility and attain robust level of empirical support.   

1. Introduction 

After lung and liver, bone is the third most common location for 
metastases, primarily originating from breast and prostate cancers, 
which constitute nearly 70% of the primary tumors [1,2]. Bone metas-
tases typically portend a grim short-term prognosis, as the full eradica-
tion of such lesions is rarely achievable. Consequently, life expectancy is 
markedly reduced; on average, patients with bone metastases from 
melanoma survive for merely six months, those with breast 
cancer-associated bone metastases may expect to survive between 19 
and 25 months, and prostate cancer can have an estimated survival of up 
to 53 months [3]. Palliative care is often used as the last resort to slow 
disease progression and relieve symptoms. 

Bone metastasis is commonly found in the axial skeleton due to its 
high content of red marrow [4]. Batson’s research revealed that venous 
blood from the breast and pelvis flows into the vena cava and the 
vertebral venous plexus, which runs from the pelvis to the epidural and 
peri-vertebral veins [5]. The blood drainage to the skeleton via the 
vertebral venous plexus may partially explain why breast and prostate 
cancers, as well as those originating from the kidney, thyroid, and lung, 
are prone to producing metastases in the axial skeleton and limb girdles, 
such as the pelvis, shoulder, and distal femur. 

The range of skeletal-related events associated with bone metastasis 
is highly diverse, varying from a complete lack of symptoms to severe 
pain, reduced mobility, pathologic fractures, spinal cord compression, 
bone marrow depletion, and hypercalcemia. Hypercalcemia, in turn, can 
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cause constipation, excessive urination, increased thirst, and fatigue, or 
cardiac arrhythmias and acute renal failure in advanced stages [6]. 

Hence, distinguishing metastatic lesions from primary bone tumors 
or benign lesions of the bone is crucial for the diagnosis, treatment, and 
management of cancer patients. Screening for bone metastases upon 
diagnosis of the primary tumor is important for choosing the most 
appropriate course of treatment. Conventional approaches for bone 
metastasis diagnosis include whole-body bone scintigraphy (WBS), 
computed tomography (CT), magnetic resonance imaging (MRI), and 
positron emission tomography (PET) [7]. However, not one modality is 
the once-and-for-all solution to bone metastasis imaging. The radiolog-
ical manifestation is related to the tumor-specific mechanisms of bone 
metastasis, though a complete understanding of which is still unclear. 
The biophysical stiffness that influences the dynamic interactions be-
tween tumor cells and the stroma may influence metastatic trans-
formation, which is a physical property that may be visible on various 
imaging modalities [8]. Constantly undergoing a process of remodeling, 
the bone maintains a state of dynamic equilibrium between osteoclastic 
and osteoblastic activity. When a metastatic focus grows within the 
marrow, reactive changes in both osteoclastic and osteoblastic activity 
occur simultaneously. Traditional classifications divide the radiographic 
manifestations of bone metastases into three types—osteoblastic, 
osteolytic, and mixed—depending on the predominant way in which the 
metastases disrupt normal bone remodeling processes and affect the 
uptake of radiotracers [6,9]. Thus, the imaging manifestation can be so 
variegated that sites of metastases could be very well mistaken for 
skeletal changes of other nature. A diagnosis of bone metastasis takes 
years of clinical experience, and the incidence of misdiagnosis is not 
uncommon. 

Recent advances in artificial intelligence (AI) have shown promising 
results in detecting osseous metastases on various imaging modalities. 
The use of labeled big data, along with markedly enhanced computing 
power and cloud storage, has catalyzed the deployment of artificial in-
telligence (AI), particularly within the discipline of radiology. Machine- 
learning-aided image processing tasks have become an integral part of 
everyday medical practice, such as the computer-assisted interpretation 
of electrocardiograms (ECGs), white-cell differential counts, analysis of 
retinal photographs, and cutaneous lesions [10]. Although these 
AI-driven tasks may not achieve perfection, they generally provide 
sufficiently accurate results for quick image interpretations, which is 
especially valuable in settings where local expertise is lacking. Similarly, 
it is hoped that AI-assisted image interpretation for bone metastasis will 
attain the same level of success with a skilled healthcare professional 
overseeing the process. The advantages of using AI for bone metastasis 
detection are manifold. AI algorithms can process large amounts of data 
quickly and accurately, enabling faster and more reliable diagnoses. As 
an objective measure, an AI-aided automatic diagnostic system for bone 
metastasis breaches the inter- and intra-observer variability, improves 
the consistency and reproducibility of diagnoses, and serves as a fail-safe 
device that guards against false negatives. A missed bone metastasis 
could very well misguide a series of clinical decisions, with devastating 
consequences. Moreover, AI can assist radiologists and oncologists in 
making treatment decisions by providing objective and quantitative 
information about the extent and severity of bone metastasis. 

2. AI-assisted detection of bone metastases on Whole-body Bone 
scintigraphy (WBS) 

Whole-body Bone Scintigraphy (WBS) with 99 mTc-MDP is one of the 
most commonly used diagnostic techniques to detect cancer metastasis 
to the bone, known for its high sensitivity and ability to examine the 
whole body [11]. Radioactive tracers preferentially accumulate in areas 
of increased osteoblastic activity, making WBS reliable for detecting 
metastases in a range of malignancies such as breast, prostate, and lung 
cancer, with reasonable sensitivity (79–86%) and specificity (81–88%) 
[12]. 

Zhao et al. developed an AI model based on a deep neural network to 
assist nuclear medicine physicians in interpreting WBS for bone metas-
tasis [13]. 12222 cases of bone scintigraphy images from patients with 
definitive diagnoses were included in the study, with 9776 cases in the 
training cohort, 1223 in the validation group, and 1223 cases as the test 
set. Without excluding potentially misleading cases, such as patients 
with large bladder, sternotomy, or fracture, the dataset approximated a 
real index better than those from the previous studies [14,15]. 
Compared to experienced nuclear medicine physicians, the AI model 
had a time savings of 99.88% for the same workload of 400 cases. Not 
only was the AI model faster, it also had better diagnostic performance, 
with improved accuracy (93.5% vs. 89.00%) and sensitivity (93.5% vs. 
85.00%), and comparable specificity (93.50% vs. 94.50%). The size, 
number of lesions, and adjacent diffused signals were the primary fac-
tors contributing to false-negative results, while fractures, inflamma-
tion, degeneration, and postoperative changes were the primary reasons 
for false-positive results in their study. By consulting the AI results, 
physicians were able to adjust their misdiagnoses and found 
false-negative lesions that either were too small or had insufficient 
radioactive uptake. Lung cancer was also analyzed, for the first time, as 
an individual subgroup, the model of which had a diagnostic accuracy of 
93.36%. Their use of a multi-input deep convolutional neural network, 
as opposed to traditional hand-crafted feature methods, allowed the AI 
model to follow natural distributions better, reduce the subjective 
judgment of physicians, improve generalization performance, and pro-
vide a closer approximation to the typical clinical environment. 

Just like the previous study focused solely on the AI model’s ability 
to assist nuclear medicine physicians in detecting bone metastasis, 
Papandrianos et al. built a robust convolutional neural network (CNN)- 
based model to identify bone metastasis in prostate cancer patients on 
WBS [16]. Their model was constructed to solve a simple two-way 
classification problem based on unprocessed plain WBS. The original 
images, as acquired from the scanning device of WBS, are in an RGB 
format with 3-channel color information. These images in RGB structure 
only appear as a grayscale due to an absence of color components in the 
image. The authors applied a 2D CNN for each color channel and 
aggregated the inputs into the final dense layer of the network. The 
best-performing RGB-CNN model had an overall classification accuracy 
of 91.42% ± 1.64%, versus other architectures with classification ac-
curacies ranging from 89.78% to 93.06%. The efficacy of RGB mode was 
better than or at least comparable to other state-of-the-art CNN archi-
tectures in literature, like ResNet50 [17], VGG16 [18], Inception V3, 
and Xception. An additional perk of the less complex RGB-CNN model is 
that it can train on a relatively small dataset, as opposed to the widely 
acknowledged fact that CNN can only work when fed with a huge 
dataset. Likewise, Papandrianos et al. also built a CNN model, trained in 
408 samples, to detect bone metastasis in WBS in breast cancer patients 
[19]. Compared to that in grayscale mode, the classification accuracy 
was higher in RGB images at 92.50%, which is better than some other 
well-known CNN architectures like ResNet50, VGG16, MobileNet, and 
DenseNet [20]. 

2D-CNN modeling, having a small number of trainable parameters 
compared to labeled data, is the best fit for planar nuclear medicine 
scans like WBS, if there is a massive amount of training data available. 
However, the use of deep learning on WBS is usually constrained by the 
time-consuming effort needed to create precise labels for large datasets. 
Trying to overcome this constraint, Han et al. proposed a 2D CNN 
classifier- tandem architecture integrating whole body and local 
patches, named as “global–local unified emphasis” (GLUE) for WBS of 
prostate cancer patients [21]. Compared to a whole-body (WB)-based 
2D CNN model, the GLUE model models had significantly higher AUCs 
than the WB model (0.894–0.908 vs. 0.870–0.877) when the dataset 
used for training was limited (10%:40%:50% for training:validation:test 
sets; 9113, the total number of WBS), with comparable overall accu-
racies (GLUE: 0.900, WB: 0.889). The authors proved that creating local 
patches to increase the volume of sample data and integrating them with 
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the sliding patches and conventional whole-body input could boost the 
performance of 2D CNN in a setting with limited data while minimizing 
the risk of overfitting. 

Trying to overcome the computational burden of conventional CNN, 
Ntakolia et al. built a new WBS-based architecture with a significantly 
lower number of floating-point operations (FLOPs) and free parameters 
[22]. Variations in multiscale feature extraction and the small number of 
free parameters boost the ability of the network to generalize, even for a 
small training set. Their LB-FCN light model was employed to solve the 
three-class classification problem (malignant bone metastasis, degen-
erative changes, and normal) with BS images from prostate cancer pa-
tients. The classification accuracy reached 97.41%, which was higher 
than any of the state-of-the-art networks (InceptionV3 88.96%, 
ResNet50 90.74%, Xception 91.54%) when tested on the same set of 
data. The computational requirement of LB-FCN light was at least ten 
times lighter than other CNN networks, with respect to the number of 
trainable free parameters and FLOPs, which allows for its application on 
mobile and embedded devices. 

As with all other deep learning networks, the LB-FCN light model is a 
black box, with no explanation for its decision, whereas lesion-based 
analysis might shine a light on the thought processes employed by an 
AI model. Liu et al. employed a 2D CNN model to conduct a lesion 
number-based per-group analysis in WBS [23]. A total of 14,972 visible 
bone lesions on 99 mTc-MDP WBS images from 3352 patients were 
manually delineated and identified as either benign or metastatic. Based 
on the number of lesions per WBS image, the cases were divided into 
three groups: the few-lesions group: 1–3; the medium-lesions group: 
4–6; the extensive-lesions group: > 6. Based on the subgroup analysis, 
their CNN model indicated significantly higher accuracy (82.79%) in the 
extensive-lesions group than that in the few-lesions group (81.78%) and 
medium-lesions group (78.03%). This finding indicates that the CNN 
model’s inference mechanism approximates, to a certain extent, the 
cognitive process that nuclear medicine physicians employ to identify 
metastatic lesions. For instance, a physician might find it challenging to 
evaluate an isolated lesion, but the likelihood of malignancy increases 
when multiple lesions occur in close proximity to one another. Although 
the internal mechanisms of the CNN may remain opaque, the discernible 
patterns it recognizes could validate its utility as a diagnostic instrument 
in clinical settings. 

In the hope of avoiding false negatives and alleviating physicians’ 
annotation workload, Liao et al. went one step ahead of simply solving a 
classification problem and built an object detection model that labels the 
location of metastatic lesions on WBS images [24]. A total of 870 images, 
of which 450 were confirmed with bone metastases, were used for 
training. Their model was built on a backbone of Faster R-CNN (faster 
region-based convolutional neural network with region proposal 
network) combined with R50-FPN (ResNet50-backboned feature pyra-
mid network). A set of 50 images (20 with bone metastases) were used 
for testing. The Dice similarity coefficient (DSC) is used to measure the 
similarity between two bounding boxes for object detection, with values 
ranging from 0 to 1, where 1 indicates the best and 0 the worst overlap. 
The highest DSC of their object detection model was 0.6640. In com-
parison to the highest DSC of 0.7040 among the physicians, a minuscule 
difference of only 0.04 suggests that the performance of the model could 
well approximate that of a proper physician. Even though the DSC 
among physicians may be underestimated as the annotation was per-
formed in a blinded manner without reference to any other clinical data, 
the result demonstrated that the fully automated object detection 
technology can safely assist in the detection of bone metastases, 
providing a fail-safe against careless omission. 

3. Automated detection of skeletal metastases on computed 
tomography (CT) and magnetic resonance imaging (MRI) 

The CT scan, which has a sensitivity of 74% and specificity of 56%, 
can serve as a helpful reference during interventional diagnostic 

procedures. It can clearly display bone destruction and sclerotic deposits 
and detect any soft tissue extension of osseous metastases with ease [6]. 
Furthermore, CT scanning enables simultaneous assessment of bone and 
systemic staging, reducing the need for multiple imaging examinations 
for patients. MRI, on the other hand, has excellent contrast resolution for 
both bone and soft tissue and boasts a sensitivity and specificity of 95% 
and 90%, respectively. It is a radiation-free technique and is regarded as 
the preferred imaging method for bone marrow metastasis [25]. 

Radiomics, a branch of AI, entails converting digital medical images, 
which contain information on tumor pathophysiology, into measurable 
and quantifiable data. These mineable datasets can be integrated with 
clinical information and qualitative imaging findings to improve medi-
cal decision-making and establish prognostic correlations between im-
aging characteristics and patient outcomes. Kumar outlines the classic 
radiomics process involving five steps: (1) acquiring and reconstructing 
images, (2) segmenting and rendering images, (3) extracting and qual-
ifying features, (4) creating databases and sharing data, and (5) con-
ducting ad hoc informatic analyses [26]. Hong et al. built a 
radiomic-based random forest (RF) model for differentiating benign 
bone islands from osteoblastic bone metastases in contrast-enhanced 
abdominal CT scans [27]. Bone islands refer to foci of compact bone 
that occur within the more porous spongiosa, whereas osteoblastic 
metastasis is characterized by an excess of osteoid tissue with a high 
concentration of tumor cells and an incomplete deposition of calcium 
salts. Due to these distinct pathological features, osteoblastic metastasis 
tends to be more variegated in texture on CT scans (Fig. 1), which makes 
radiomics, specialized in quantitatively analyzing image heterogeneity, 
a perfect tool for the task. The model was built on a training set of 177 
patients, among whom 89 were diagnosed with benign bone island and 
88 with metastasis. The AUC of the trained RF model was 0.96 (sensi-
tivity, 80%; specificity, 96%; and accuracy, 86%), which is comparable 
to those of musculoskeletal radiology experts (AUC, 0.95 and 0.96) and 
higher than that obtained by an inexperienced radiologist (0.80). The 
diagnostic performance of the RF model was better than that of a single 
imaging feature, such as CT attenuation or shape of the lesion (AUC, 
0.79 and 0.51, respectively). Likewise, Yin et al. developed a 
triple-classification multiparametric MRI-based radiomics model to 
preoperatively differentiate primary sacral chordoma, giant cell sacral 
tumor, and metastatic sacral tumor [28]. The best-performing radiomics 
model was extracted from joint T2w FS (T2-weighted Fat-Suppressed) 
and CE T1w (Contrast-Enhanced T1-weighted) images, with an AUC of 
0.773, and an accuracy of 0.711. 

Using texture analysis, Acar et al. built a CT imaging-based radiomic 
model to differentiate metastatic and completely responded sclerotic 
bone lesions in prostate cancer patients [29]. Using Ga-68 PSMA PET for 

Fig. 1. An example of automatic bone metastasis segmentation on CT images 
by YOLOv5 [38]; the green box was outlined by a nuclear medicine physician, 
and the red box was the segmented lesion as predicted by the algorithm. (a): the 
predicted lesion was smaller than the actual one; (b): the algorithm falsely 
segmented the lesion-free cross-section. 
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validation (an absence of PSMA expression in the lesion was treated as a 
complete response to treatment), they compared differences in textural 
features between the metastasis and completely responded lesions on CT 
by various machine learning measures, such as decision tree, discrimi-
nant analysis, support vector machine (SVM), k-nearest neighbor (KNN), 
and ensemble classifier. The model based on the weighted KNN method 
had the highest accuracy (73.5%) and AUC (0.76) in differentiating 
metastatic and sclerotic lesions on CT. Twenty-five of the total 35 ac-
quired textural features were statistically significantly different between 
the two groups, among which GLZLM_SZHGE and histogram-based 
kurtosis values were the most important parameters in classification 
and were significantly higher in the completely responded group. In 
addition, the HU and mean HU levels were significantly higher in the 
healed sclerotic lesions than in the metastatic areas. This phenomenon 
might be associated with a surge in osteoblastic activity following a 
complete response to treatment. In a similar manner but on a different 
imaging modality, Filograna et al. did an in-depth investigation on the 
nature of significant predictors of metastasis in oncological patients with 
spinal metastasis [30]. Predictors were selected among the features of 
MRI-based radiomic analysis: 16 were found to differ between the 
metastatic vs. non-metastatic vertebral bodies with statistical signifi-
cance. Internal cross-validation showed an AUC of 0.814 for T1w images 
and 0.911 for T2w images. One morphological feature (center of mass 
shift) for both imaging modalities, plus one histogram feature (minimum 
grey level) and one textural feature (matrix joint variance of the 
grey-level co-occurrence matrix) for T1w and T2w images respectively 
were found to be the best predictors of metastasis. 

Taking one step ahead of determining the nature of in-situ bone le-
sions, radiomic analysis offers the potential to reveal prognostically 
valuable imaging features that remain imperceptible to the naked eye. 
Wang et al. determined that texture features derived from the original 
site of prostate cancer on multiparametric prostate MRI (mp-MRI: T2w 
and DCE T1w) before treatment, in combination with clinicopathologic 
risks (free PSA level, Gleason score, and age) could predict bone 
metastasis in prostate cancer patients [31]. The integrated model yiel-
ded a specificity of 89.2% (AUC 0.916) in the training cohort, which was 
confirmed in the validation cohort. Their work represents an interesting 
attempt to use radiomics to identify patients at high risk for bone met-
astatsis. If proven reliable by more evidence, this model can select pa-
tients who may benefit from closer radiographic monitoring or early 
ADT/CT for a better prognosis. Their work is important as prostate 
cancer’s prognosis changes drastically if one is diagnosed with skeletal 
metastasis: survival in patients is highly variable depending on the 
burden of the metastatic tumor [32]. The number of bone metastasis 
counted on bone scintigraphy, as the extent of disease, is a reported 
prognostic factor. As suggested by Hayakawa et al. who conducted an 
image analysis of pelvic bone metastasis in prostate cancer patients, 
shape-based features had prognostic value for OS (overall survival) [33]. 
Thus, putting early brakes on BM may have a profound clinical impact. 

Not only could radiomics accomplish the given classification task to 
detect osseous metastases with relatively high efficacy and extract a 
large amount of advanced quantitative imaging features, it might be 
able to determine the presence of underlying genetic diagnosis as well. 
This study of the relationship between the genetic makeup of tumors and 
their radiographic or imaging characteristics is referred to as “radio-
genomics”, which is the intersection between genomics and radiology in 
essence. The main premise behind radiogenomics is that the genetic 
variations or mutations in a tumor can influence its appearance on 
medical imagings. Several studies were conducted to investigate 
whether radiogenmoics could be used to predict the presence of 
epidermal growth factor receptor (EGFR) mutation in spinal metastases 
of primary lung adenocarcinoma. Ren et al. produced a nomogram (AUC 
0.888) using multiparametric MRI-based radiomics signature and 
smoking status to preoperatively predict EGFR mutation for patients 
with thoracic spinal metastases from adenocarcinoma of the lung on 
T2w, T2w-FS, and T1w images [34]. They essentially devised a 

convenient tool to calculate the probability of EGFR mutation for indi-
vidualized evaluation, which affects the choice of treatment. Aside from 
the nomogram, they found that the textural features related to the 
matrix-based gray level changes reflected intratumoral non-uniformity, 
implying the intra-tumor heterogeneity of spinal metastatic lesions was 
associated with the EGFR status. In line with Ren’s work, Fan et al. 
conducted a radiogenomic analysis of thoracic spinal metastasis sub-
regions to determine the presence of EGFR mutation [35]. Spinal me-
tastases were divided into phenotypically consistent subregions based 
on population-level clustering that reflects the spatial heterogeneity of 
the metastatic tumor: marginal, fragmental, and inner subregions. 
Radiomics features were extracted from both the subregions’ and the 
whole tumor regions’ T2w-FS and T1w images. The radiomic signature 
derived from the inner subregions from T1w and T2w-FS had the best 
detection capabilities in terms of AUC in both training and test sets. The 
results suggest that the inner region, with more discriminant informa-
tion on EGFR mutation, may hold more metastatic tumor cells, while the 
outer edge is composed more of the residuals of bone destruction from 
cancer-associated osteolysis, which confirms metastatic tumor’s het-
erogeneous distribution centered around the vessel-rich red marrow 
[36]. The inner subregion may be more biologically aggressive than the 
others. 

Brigding the gap between radiomics and the more advanced deep 
learning algorithms, Lang et al. tried to differentiate metastatic spinal 
lesions originating from primary lung cancer from spinal metastasis of 
other cancers using both radiomics and deep learning [37]. Radiomics 
analysis extracted histogram and texture features from three dynamic 
contrast-enhanced (DCE) parametric MRI maps. DCE-MRI can assess 
tumor angiogenesis. These maps were used as inputs into a conventional 
convolutional neural network (CNN), and all 12 sets of DCE images were 
also fed into a convolutional long short-term memory (CLSTM) network 
for deep learning. CLSTM has the additional merits of tracking the 
changes of signal intensity in pre- and post-contrast images in DCE-MRI. 
Without the use of predefined metrics, the deep learning-based CLSTM 
network using the entire sets of DCE images had an accuracy of 0.81, 
which was better than that of either the radiomics analysis (accuracy, 
0.71) or the hot-spot ROI-based method (accuracy, 0.79). The classifi-
cation accuracy was deemed acceptable; still, a better model is desired, 
which may be difficult to develop since metastatic lesions are often 
accompanied by soft tissue masses. The appearance of these lesions on 
imaging can vary significantly due to various factors, such as local 
myelofibrosis, infarction, edema, pathological compression fracture, 
and infection, which further complicates the differential diagnosis 
(Fig. 2). 

Fig. 2. An example of automatic bone metastasis segmentation on MRI images 
by YOLOv5; the green box was outlined by a nuclear medicine physician, and 
the red box was the segmented lesion as predicted by the algorithm. The upper 
right zoomed area in (a): the predicted lesion matched the actual outline; The 
lower right zoomed corner in (a) and the zoomed box in Fig. 2(b): the algorithm 
falsely segmented those lesions as metastatic. 
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Because no single window setting can properly depict all bone me-
tastases on CT scans, Noguchi et al. developed a deep learning–based 
algorithm (DLA) to automatically detect bone metastases in all scanned 
areas [39]. The training set was composed of 269 thin-sliced CT scans (of 
≤ 1 mm thickness) with confirmed bone metastasis and 463 negative 
scans. The algorithm consisted of three CNNs: a 2D UNet-based network 
for bone segmentation, a 3D UNet-based network [40]for candidate 
region segmentation, and a 3D ResNet-based network to reduce the 
false-positive rate. The DLA achieved a lesion-based sensitivity of 89.8% 
(44 of 49) for the validation set, with 0.775 false positives per case, and 
82.7% (62 of 75) for the test set, with 0.617 false positives per case. The 
diameter had the clearest correlation with sensitivity by subgroup 
analysis, which may be due to the fact that a smaller lesion contains 
fewer image features to be extracted, making extraction more difficult. 
They also conducted an observer study with nine board-certified radi-
ologists to evaluate the clinical efficacy of the algorithm. With the DLA, 
the overall performance of the radiologists with respect to the mean 
weighted alternative free-response AUC figure of merit (wAFROC-FOM) 
improved from 0.746 to 0.899 (p < .001), and the mean interpretation 
time per case decreased from 168 to 85 s (p = .004). The sensitivity in 
detecting bone metastasis by radiologists improved from 51.7% to 
71.7% in lesion-based analysis and 74.4–91.1% in case-based analysis. 
This result proved a better performance of the radiologists aided by DLA 
in less amount of time. The DLA algorithm is clinically useful as a 
diagnostic adjuvant for the automatic detection of bone metastases on 
CT. 

There has been an increasing emphasis on the value of volumetric 
measurements in assessing treatment response. The volume of bone 
metastasis assessed on MRI-DWI is correlated with the established 
prognostic biomarkers and the overall survival in metastatic castration- 
resistant prostate cancer [41]. To reduce the burden of handicraft, Liu 
et al. established a deep learning model consisted of two-step 3D U-Net 
algorithms for the automatic segmentation of pelvic bone and detection 
of prostate cancer metastases on DWI and T1-w images [42]. Two deep 
learning 3D U-Net models in cascade have been widely adapted to 
improve the accuracy and systemic stability, as in lymph node detection 
and prostate cancer segmentation [43,44]. Three sets of patients were 
included in the training set: 349 patients with PI-RADS scores of 1–2 or 
biopsy-proven benign prostate hyperplasia (set 1), 280 biopsy-proven 
prostate cancer patients without bone metastases (set 2), and 230 
biopsy-proven prostate cancer patients with bone metastases (set 3). All 
three sets of patients were enrolled for the first 3D U-Net to segment 
pelvic bony structures, and prostate cancer patients of sets 2&3, 
excluding those with primary bone tumors, definite benign findings such 
as hemangiomas and bone island, or who had undergone prostate cancer 
treatment, were selected to train the model detecting metastatic lesions. 
Using the manual annotations by a physician as the reference standard, 
the mean DSC and volumetric similarity (VS) values of pelvic bone 
segmentation were above 0.85, and the Hausdorff distance (HD) values 
were < 15 mm. As a reliable foundation for the subsequent analysis, the 
volume of interest predicted by the model that segments pelvic bone was 
fed into the second network as the mask. This measure, together with 
rejecting all structures less than 0.2 cm3 in volume, i.e. smaller than the 
smallest annotated metastasis, effectively reduced the false positive rate. 
The AUCs of metastases detection at the patient level were 0.85 and 0.80 
on DWI and T1w images, respectively. The overlaps between manual 
and automated segmentation as gauged by DSCs were 0.79 and 0.80 on 
DWI and T1w-IP images, respectively. As for the external evaluation 
comprised of 63 patients, the respective AUCs of the model for M-staging 
were 0.94 and 0.89 on DWI and T1w images. By subgroup analysis, the 
model works best on patients with few metastases (≤5) in terms of recall 
and precision, boosting the utility of using CNN as an aid in M-staging in 
clinical practice. Focusing on the pelvic bone for proof-of-concept, this 
deep learning-based 3D U-Net network was able to accurately segment 
lesions of prostate cancer metastasis on DWI and T1w images, paving the 
way for outlining skeletal metastasis on a broader scope. 

4. AI-assisted interpretation of positron emission tomography 
(PET) images 

PET is an imaging technique that utilizes radioactive isotopes that 
decay through positron emission. The procedure involves binding an 
isotope, like fluorine-18 [18F], to a biological compound to create a 
diagnostic PET radiopharmaceutical that can be intravenously injected 
into patients, which identifies functional processes within the body on a 
biochemical level. Quantitative information in standardized uptake 
values (SUVs) measures the activity normalized for the volume of dis-
tribution (body weight/surface area) and the dose of the injected 
radiopharmaceutical [45]. The radiopharmaceutical [18F] sodium 
fluoride seeks out bones and is used to locate areas with increased bone 
turnover. [18F] Fluoride is more effective than 99 mTc-labeled 
diphosphonates used in WBS due to its higher bone uptake, faster blood 
clearance, and higher target-to-background ratio. PET metabolic imag-
ing with [18F] fluoride is highly sensitive and specific in diagnosing 
distant bone metastases (Fig. 3). CT and bone scintigraphy techniques 
lack the ability to differentiate between active or therapy-burnout le-
sions, causing ambiguity in prognosis. PET-based imaging, specifically 
PET/CT, provides a promising alternative that can accurately detect 
active bone metastasis by increased [18F] fluoride uptake, regardless of 
the morphological appearance of the bone, and predict subsequent 
pathological fracture in metastatic cancer patients [46]. Structural im-
aging techniques often face limitations in detecting metastatic diseases 
at early stages and in assessing responses to treatments. Conversely, 
molecular imaging with PET aligns closely with the principles of pre-
cision medicine and personalized care. This alignment positions PET 
imaging as a critical modality for tailoring treatment strategies to indi-
vidual patient profiles in the context of bone metastasis. 

Metastatic lesions and completely responded sclerosis areas in 68Ga- 
PSMA PET could be distinguished with good accuracy using texture 
analysis and machine learning (Weighted KNN algorithm) in prostate 
cancer [29]. The weighted KNN algorithm succeeded to differentiate 
sclerotic lesions from metastasis or completely responded lesions with a 
0.76 AUC. Employing the more advanced deep learning methods, Lin 
et al. constructed multiple classifiers based on deep neural networks to 
identify bone metastasis on SPET [47]. They first cropped the original 
whole-body SPECT bone image based on a curve-fitting approach to 
extract the thoracic area. The authors utilized deep learning algorithms, 
VGG, ResNet, and DenseNet, to build two-way classifiers, which were 
tested on three different datasets, including an original dataset and two 
augmented datasets (with and without normalization). The augmenta-
tion techniques involved image manipulation, while normalization 
limited the radiation dosage range in thoracic SPET to an interval of 0–1. 
The results showed that all classifiers performed better on the 

Fig. 3. An example of automatic bone metastasis detection on PET images by 
YOLOv5; the green box was outlined by a nuclear medicine physician, and the 
red box was the detected lesion as predicted by the algorithm. (a): the predicted 
lesion matched the actual outline; (b): the algorithm falsely detected the upper 
high uptake lesion as metastatic. 
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augmented datasets, while normalization did not contribute to the 
overall performance. Experimental results demonstrated that, after 
finetuning their parameters and defining new network structures, the 
self-defined 21-layer classifier SPECS V21 (SPECT ClaSsifier with 
VGG-21) based on VGG worked best on identifying metastasis in 
thoracic SPECT bone images with augmentation, having a score of 
0.9807, 0.9900, 0.9830, 0.9890, 0.9802 and 0.9933 for accuracy, pre-
cision, recall, specificity, F-1 Score, and AUC, respectively. False nega-
tives happen a lot more often in the augmented dataset with 
normalization, hence, it can be concluded that the size of the dataset is 
critical for the performance of the deep learning-based algorithm in 
SPECT image classification. Less radionuclide absorption in elderly pa-
tients also contributed to miss-classified metastasized images. The au-
thors also pointed out that to perfect the algorithm, some 
post-processing operations should be done after classification to alle-
viate the negative impact of the interpersonal difference in radiation 
dosage. 

As an attempt to quantify the burden of bone metastasis, Lindgren 
Belal et al. generated a PET15 index, which is calculated by dividing the 
total volume of segmented suspicious uptake in the PET scan by the 
skeletal volume measured from the CT scan in prostate cancer patients 
with confirmed bone metastasis, [48]. The skeletal volume (33% of the 
total skeletal volume) was measured by CNN-based automated seg-
mentation of the thoracic and lumbar spines, sacrum, pelvis, ribs, 
scapulae, clavicles, and sternum in the CT images [49]. This deep 
learning-based method was developed as the first step of a research 
series focusing on the quantification of skeletal metastases. The accuracy 
of this fully automated CNN-based segmentation was validated in 5 
cases by the Sørensen-Dice index (SDI) that assessed the spatial overlap 
between the CNN-based method and manual segmentations. Setting 15 
as the threshold SUV value, only lesions of SUV 15 or more was 
segmented and factored into the PET15 index, though this choice of 
threshold may seem a bit arbitrary. According to a previous study, the 
mean SUVmax of bone metastases was 5.5 ± 2.7 (0.4–30.4), which is a 
lot lower than this set point [50]. A manual PET index reflecting a nu-
clear physician’s binary classification (benign or metastatic) of indi-
vidual hotspots was used to gauge the clinical interpretations of PET/CT 
scans. Just like the bone scan index (BSI) from planar whole-body bone 
scans [51], they proved that the PET15 index, a quantitative imaging 
biomarker from PET-CT, not only constitutes a surrogate for the tumor 
burden but is also significantly associated with overall survival (OS), 
with a concordance index of 0.70. This association was also seen in a 
retrospective clinical study done by Harmon et al.: Total functional 
burden, a metric derived from NaF-PET/CT, assessed after three cycles 
of androgen deprivation therapy or chemotherapy was predictive of 
progression-free survival (PFS) for men with mCRPC [52]. A comparison 
was made among the BSI, the manual PET index, and the PET15 index. 
The differences in the C-index between any two of the three were not 
statistically significant, proving the credibility of this fully automated 
measure of metastatic disease burden. Compared to the more widely 
accepted BSI derived from a two-dimensional technique, the PET15 index 
may be more accurate in depicting metastatic burden as the skeleton is a 
3D structure. 

A phase III randomized clinical trial showed that the automated bone 
scan index (aBSI) that overcomes the reader subjectivity is an inde-
pendent predictive imaging biomarker for overall survival in castrate- 
resistant PCa with skeletal metastasis [53]. This RCT proves the 
concept that quantifiable information extracted from an otherwise 
subjectively interpreted imaging study has profound prognostic value. 
Hoping to create a PET/CT counterpart of aBSI, Lindgren Belal et al. 
improved on the PET15 index and developed a deep learning-based PET 
index as an imaging biomarker that assesses the whole-body skeletal 
tumor burden in prostate cancer patients to predict the course of the 
disease and influence clinical decision-making [54]. A total of 168 pa-
tients were included. 3D U-Net was employed to build the CNN that 
classifies each voxel as either bone metastasis or background to form the 

lesion mask. To calculate the PET index, the volume of all tracer uptake 
marked as metastatic by the model is summed and divided by the total 
skeletal volume calculated by the CNN-based automatic quantification 
method mentioned above. The PET index, void of the caveat of reader 
subjectivity, measures the skeletal tumor burden in percentage. There 
was no case in which all readers agreed on the existence of metastatic 
lesions that the AI model failed to detect. Due to the fact that false 
negatives may have more serious clinical consequences, a decent model 
should avoid missing lesions even at the expense of a higher false pos-
itive rate. Spearman correlation coefficients between the PET indices 
calculated by physicians, the PET index, and the PET15 index are 
calculated: the PET index had a fair-moderately strong correlation 
(mean r = 0.69) to reader PET indices in the same patient, whereas the 
PET15 index correlated fairly with the physician PET index (mean 
r = 0.49). The PET index was generally higher than the manual PET 
index, which probably reflected the AI model’s propensity to segment 
individual lesions as larger volumes, or due to the higher number of false 
positives. The sensitivity for lesion detection was 65–76% for the AI 
model, 68–91% for physicians, and 44–51% for the PET15 threshold 
method depending on which physician was considered a reference. The 
result proved a leap toward developing an objective PET/CT imaging 
biomarker for skeletal metastases of prostate cancer. A larger sample 
could further improve this model’s performance. The PET index for 
quantification of tumor burden in PET/CT has the potential to 
risk-stratify patients with metastatic prostate cancer, providing prog-
nostic information in the clinic. 

Previous approaches in semi-automatic and automatic PET seg-
mentation based on artificial intelligence are subject to the impediment 
of low contrast or heterogeneity in lesions [55]. To overcome their 
drawbacks, Moreau et al. adopted a deep learning algorithm and 
compared different approaches to segment bones and metastatic lesions 
in metastatic breast cancer on PET/CT images [56]. The authors utilized 
two deep learning methods based on convolutional neural networks 
(CNN)-the “not new U-Net” (nnU-Net [57]) implementation that in-
ternalizes recent improvements of the original U-Net such as leaky ReLU 
activation, instance normalization, and padded convolutions- to 
segment bone lesions: the first one used expert lesion annotations as the 
ground truth solely (U-NetL), while the second used reference bone 
masks during training to constrain the network to focus on the region 
with lesions (U-NetBL). Their model was tested on 24 breast cancer 
patients. U-NetBL-based bone segmentation achieved a mean DSC of 
0.94 ± 0.03, while the traditional approach, in comparison, failed to 
dissociate metabolically active organs such as the heart, and the kidneys 
from the bone draft. Of the two methods, U-NetBL had the best perfor-
mance in bone lesion segmentation in terms of precision (0.88) and 
mean DSC (0.61 ± 0.16). The authors agreed that this segmentation can 
be further improved upon: a large PET SUV heterogeneity tends to lower 
the DSC as low 18FDG-fixing lesions with small SUV values tend to be 
ignored by the present architecture. Mimicking the PET15 index and the 
PET index, they also transposed BSI to PET imaging and calculated the 
percentage of total skeletal mass taken up by the metastases to quantify 
the metastatic burden of breast cancer in bones. There is a good agree-
ment between the ground truth and the automatic PET Bone index as 
generated by their model. 

5. Summary and outlook 

AI empowers machines to execute functions traditionally associated 
with human intelligence, such as perception, reasoning, learning, and 
decision-making. Pertaining to bone metastasis, AI has the capability to 
scrutinize imaging modalities, including WBS, CT, MRI, and PET/CT. It 
can detect nuanced variations in bone tissue texture, segment respective 
lesions, and derive quantifiable data from images to serve as biomarkers. 
The application of AI in detecting bone metastasis of various tumors has 
shown great promise in improving the diagnosis and treatment of cancer 
patients. Deep learning algorithms, in particular, have demonstrated 
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high sensitivity and specificity in analyzing medical images and iden-
tifying osseous metastasis. Taking one step ahead, machine learning and 
deep learning methods have successfully predicted metastasis onset with 
omics data as features, aside from analyzing medical images [58]. 

However, there are also challenges and limitations to using AI in 
bone metastasis detection. Large and diverse datasets are required to 
train and validate AI algorithms, especially deep learning algorithms. 
Researchers can try to overcome this issue by employing various stra-
tegies such as data augmentation, cross-modal image translation, multi- 
center collaboration, and the construction of semi-supervised or self- 
supervised models. As an attempt to solve the aforementioned prob-
lem, we once proposed a multimodal metric that employed deep 
learning methods and a cross-modal image fusion technique to detect 
cervical cancer, proving the clinical efficacy of cross-modal image fusion 
[59]. Other notable challenges encompass the risk of bias and over-
fitting, as well as the absence of standardized evaluation metrics for AI 
models. The lack of a standardized metric that transcends various AI 
approaches remains a significant hurdle. Even when specific evaluation 
metrics are in place, the appropriateness of these metrics within the 
medical domain are often called into question. Consequently, it is 
imperative to formulate evaluation metrics that are meticulously 
adapted to medical imaging and the intricacies of its applications. Doing 
so would greatly enhance the precision and trustworthiness of the al-
gorithms employed in this field.Moreover, the black-box nature of deep 
learning algorithms has much controversy [60]. It may not be possible to 
understand how the output is determined, especially in the case of 
DNNs. This opaqueness has led to demands for “explainability”, such as 
the European Union’s General Data Protection Regulation requirement 
for transparency— deconvolution of an algorithm’s black box—before 
an algorithm can be used for patient care [61]. This demand gives rise to 
the notion of “interpretable machine learning”, which is an approach 
aimed at making the decision-making process of neural networks 
transparent. Techniques like heat maps and occlusion testing, where the 
"Region of Interest" (ROI) is intentionally obscured to observe changes in 
the model’s output, are employed to trace and understand the focus 
areas of the DNN. These methods are particularly useful in clinical di-
agnoses, as they can help clinicians see which parts of the image the AI is 
considering most relevant when making its predictions, thereby 
providing insights into the AI’s "thought process.". 

Ultimately, major progress in artificial intelligence will come about 
through systems that combine representation learning with complex 
reasoning. The excitement that lies ahead, albeit much further along 
than many have forecasted, is for software capable of digesting massive 
sets of data quickly, accurately, and inexpensively and for machines that 
can scrutinize images, discern intricate features, and identify patterns 
within nature that surpass human capabilities. This capability will ul-
timately lay the foundation for high-performance medicine, which is 
truly data-driven, decompressing our reliance on human resources. The 
symbiosis will eventually take us well beyond the sum of the parts of 
human and machine intelligence. 
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diagnosis system for bone scintigrams from Japanese patients: Importance of 
training database. Ann Nucl Med 2012:26. https://doi.org/10.1007/s12149-012- 
0620-5. 

[15] Nakajima K, Nakajima Y, Horikoshi H, Ueno M, Wakabayashi H, Shiga T, et al. 
Enhanced diagnostic accuracy for quantitative bone scan using an artificial neural 
network system: a Japanese multi-center database project. EJNMMI Res 2013;3: 
1–9. https://doi.org/10.1186/2191-219X-3-83. 

[16] Papandrianos N, Papageorgiou EI, Anagnostis A. Development of convolutional 
neural networks to identify bone metastasis for prostate cancer patients in bone 
scintigraphy. Ann Nucl Med 2020:34. https://doi.org/10.1007/s12149-020- 
01510-6. 

[17] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc 
IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016;vol. 2016. https://doi. 
org/10.1109/CVPR.2016.90. 

[18] Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image 
recognition. 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., 2015. 

[19] Papandrianos N, Papageorgiou E, Anagnostis A, Feleki A. A deep-learning 
approach for diagnosis of metastatic breast cancer in bones from whole-body scans. 
Appl Sci 2020;10:997. https://doi.org/10.3390/app10030997. 

[20] G. Huang Z. Liu L. Van Der Maaten K.Q. Weinberger. Densely connected 
convolutional networks. Proc. - 30th IEEE Conf. Comput. Vis Pattern Recognit, 
CVPR 2017 vol. 2017 2017 doi: 10.1109/CVPR.2017.243. 

[21] Han S, Oh JS, Lee JJ. Diagnostic performance of deep learning models for detecting 
bone metastasis on whole-body bone scan in prostate cancer. Eur J Nucl Med Mol 
Imaging 2022:49. https://doi.org/10.1007/s00259-021-05481-2. 

[22] Ntakolia C, Diamantis DE, Papandrianos N, Moustakidis S, Papageorgiou EI. 
A lightweight convolutional neural network architecture applied for bone 
metastasis classification in nuclear medicine: a case study on prostate cancer 
patients. Healthc 2020:8. https://doi.org/10.3390/healthcare8040493. 

[23] Liu Y, Yang P, Yong P, Jiang L, Zhong X, Cheng J, et al. Automatic identification of 
suspicious bone metastatic lesions in bone scintigraphy using convolutional neural 
network. BMC Med Imaging 2021;21:1–9. https://doi.org/10.1186/s12880-021- 
00662-9. 

[24] Liao CW, Hsieh TC, Lai YC, Hsu YJ, Hsu ZK, Chan PK, et al. Artificial intelligence of 
object detection in skeletal scintigraphy for automatic detection and annotation of 
bone metastases. Diagnostics 2023:13. https://doi.org/10.3390/ 
diagnostics13040685. 

[25] Talbot JN, Paycha F, Balogova S. Diagnosis of bone metastasis: recent comparative 
studies of imaging modalities. Q J Nucl Med Mol Imaging 2011;55:374–410. 

[26] Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: 
the process and the challenges. Magn Reson Imaging 2012:30. https://doi.org/ 
10.1016/j.mri.2012.06.010. 

[27] Hong JH, Jung JY, Jo A, Nam Y, Pak S, Lee SY, et al. Development and validation of 
a radiomics model for differentiating bone islands and osteoblastic bone metastases 
at abdominal CT. Radiology 2021:299. https://doi.org/10.1148/ 
radiol.2021203783. 

[28] Yin P, Mao N, Zhao C, Wu J, Chen L, Hong N. A triple-classification radiomics 
model for the differentiation of primary chordoma, giant cell tumor, and metastatic 

X. Dong et al.                                                                                                                                                                                                                                    

https://doi.org/10.1053/ctrv.2000.0210
https://doi.org/10.1053/ctrv.2000.0210
https://doi.org/10.1016/j.euus.2005.09.006
https://doi.org/10.1016/j.euus.2005.09.006
https://doi.org/10.1016/j.critrevonc.2005.03.011
https://doi.org/10.1158/1078-0432.CCR-06-0931
https://doi.org/10.1158/1078-0432.CCR-06-0931
http://refhub.elsevier.com/S2001-0370(23)00421-X/sbref5
http://refhub.elsevier.com/S2001-0370(23)00421-X/sbref5
https://doi.org/10.2174/1874471011306010007
https://doi.org/10.2174/1874471011306010007
https://doi.org/10.4329/wjr.v7.i8.202
https://doi.org/10.1016/j.csbj.2018.07.003
https://doi.org/10.1016/j.csbj.2018.07.003
https://doi.org/10.1007/s11033-020-05684-0
http://refhub.elsevier.com/S2001-0370(23)00421-X/sbref10
http://refhub.elsevier.com/S2001-0370(23)00421-X/sbref10
https://doi.org/10.1007/s00259-016-3415-4
https://doi.org/10.1007/s00330-011-2221-4
https://doi.org/10.1038/s41598-020-74135-4
https://doi.org/10.1007/s12149-012-0620-5
https://doi.org/10.1007/s12149-012-0620-5
https://doi.org/10.1186/2191-219X-3-83
https://doi.org/10.1007/s12149-020-01510-6
https://doi.org/10.1007/s12149-020-01510-6
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3390/app10030997
https://doi.org/10.1007/s00259-021-05481-2
https://doi.org/10.3390/healthcare8040493
https://doi.org/10.1186/s12880-021-00662-9
https://doi.org/10.1186/s12880-021-00662-9
https://doi.org/10.3390/diagnostics13040685
https://doi.org/10.3390/diagnostics13040685
http://refhub.elsevier.com/S2001-0370(23)00421-X/sbref23
http://refhub.elsevier.com/S2001-0370(23)00421-X/sbref23
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1148/radiol.2021203783
https://doi.org/10.1148/radiol.2021203783


Computational and Structural Biotechnology Journal 23 (2024) 157–164

164

tumor of sacrum based on T2-weighted and contrast-enhanced T1-weighted MRI. 
J Magn Reson Imaging 2019:49. https://doi.org/10.1002/jmri.26238. 

[29] Acar E, Leblebici A, Ellidokuz BE, Başbinar Y, Kaya GÇ. Full paper: machine 
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