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Identification and Validation of Genetic Variants
that Influence Transcription Factor
and Cell Signaling Protein Levels

Ronald J. Hause,1,2,3 Amy L. Stark,4 Nirav N. Antao,4 Lidija K. Gorsic,4 Sophie H. Chung,1

Christopher D. Brown,5 Shan S. Wong,4 Daniel F. Gill,1 Jamie L. Myers,4 Lida Anita To,1

Kevin P. White,1,2,6 M. Eileen Dolan,1,2,4,7,* and Richard Baker Jones1,2,3,7,8,*

Many genetic variants associatedwith human disease have been found to be associatedwith alterations inmRNA expression. Although it

is commonly assumed thatmRNA expression changes will lead to consequent changes in protein levels, methodological challenges have

limited our ability to test the degree to which this assumption holds true. Here, we further developed the micro-western array approach

and globally examined relationships between human genetic variation and cellular protein levels. We collected more than 250,000 pro-

tein levelmeasurements comprising 441 transcription factor and signaling protein isoforms across 68 Yoruba (YRI) HapMap lymphoblas-

toid cell lines (LCLs) and identified 12 cis and 160 trans protein level QTLs (pQTLs) at a false discovery rate (FDR) of 20%.Whereas up to

two thirds of cismRNA expression QTLs (eQTLs) were also pQTLs, many pQTLs were not associated with mRNA expression. Notably, we

replicated and functionally validated a trans pQTL relationship between the KARS lysyl-tRNA synthetase locus and levels of the DIDO1

protein. This study demonstrates proof of concept in applying an antibody-basedmicroarray approach to iterativelymeasure the levels of

human proteins and relate these levels to human genome variation and other genomic data sets. Our results suggest that protein-based

mechanisms might functionally buffer genetic alterations that influence mRNA expression levels and that pQTLs might contribute

phenotypic diversity to a human population independently of influences on mRNA expression.
Introduction

Our ability to sequence genomes at an ever-increasing rate

has resulted in the identification of many new common

and rare genetic variants across human populations.1–3

Much effort has been devoted to identifying relationships

between genetic variation and complex human pheno-

types, including susceptibility to disease and adverse

drug response.4–6 Developing a mechanistic biological

understanding of such statistical associations represents a

major ongoing challenge in human genomics.

Expression quantitative trait locus (eQTL) mapping has

been used to identify gene targets and mechanisms that

link genome variation with complex phenotypic traits.7–9

A fundamental assumption made in such studies is that

genome variants associated with mRNA expression varia-

tion will also be associated with protein-level variation

that impacts a trait. Although the influence of genetic vari-

ation on mRNA levels may extend to protein levels, many

posttranscriptionalmechanisms, suchasmRNAtranslation

efficiency, protein stability and function, and posttransla-

tional modification, can buffer changes in mRNA expres-

sion. Moreover, these same mechanisms can introduce

changes in protein levels under conditions of invariant

mRNA expression. Such protein-centric mechanisms can
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bedecipheredonly bymeasuring genetic-,mRNA-, andpro-

tein-level variation among a population of individuals.

Indeed, previous examinations of genetic influences on

protein-level variation have observed markedly nonover-

lapping loci regulating protein and transcript levels.10–12

Unfortunately, we have been unable to globally compare

mRNA and protein levels with genetic variation across

human populations primarily because of the nonoverlap-

ping gene sets typically collected with current mRNA and

protein analysis platforms. Although mass spectrometers

(MSs) and MS-based protein analysis methods continue to

improve and can quantify thousands of proteins per sam-

ple, they currently lack the sensitivity required to consis-

tently observemore than a fraction of thehumanproteome

without depleting highly abundant proteins.13 A major

problem for most population-level proteome-by-transcrip-

tome comparisons employing mass spectrometry is the

biased sampling of proteins across samples; typically, sub-

sets of proteins are detected andquantified in some samples

but undetected in others.10,11,14,15 This biased detection

issue coupled with bias to observe and quantify the most

abundant proteins within a sample16 results in reduced

power to assess the relative contributions of genome influ-

ences to the proteome. To better relate genomes to tran-

scriptomes and proteomes, we and others have developed
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and applied complementary antibody-based ‘‘protein-

omic’’ approaches to more reproducibly quantify targeted

sets of protein families across individuals provided the

availability of validated antibodies directed against the pro-

teins of interest.17 We previously coined the term protein-

omic to refer to studies that collect information on targeted

subsets of functionally related proteins, by contrast to pro-

teomic that refers to larger, more random sampling-based

analyses of the proteome, typically by mass spectrometry.

The first such large-scale protein-omic study in humans

quantified 42 proteins from blood fractions of individuals

from the inCHIANTI study using 20 commercially avail-

able protein analysis assays with varying sensitivities and

precisions.12 Eight cis and one trans pQTL were identified.

More recently, an aptamer-based approach was used to

quantify proteins in human plasma, resulting in the iden-

tification of cis-linked associations for 60 proteins.18 2D

gels and mass spectrometry were used to quantify hun-

dreds of the most highly abundant proteins across

HapMap cell lines and the Northern Sweden Population

Health Study cohort to identify cis but not trans genetic

associations.14,19,20 In this report, we developed a stan-

dardized protocol using micro-western arrays (MWAs)21

and reverse phase protein arrays (RPPAs) to quantify 441

proteins across 68 unrelated Yoruba (YRI) lymphoblastoid

cell lines (LCLs) with a panel of antibodies directed at

nearly all human transcription factors (TFs) and many dis-

ease-related cell-signaling proteins. We then identified

pQTLs and compared the genetic architecture underlying

mRNA and protein level variation. Our study systemati-

cally examined the relationships between pQTLs and

eQTLs, replicated the initial discoveries of pQTL associa-

tions, and for the first time functionally validated a trans

pQTL. Our results indicate that novel mechanisms under-

lying complex disease risk loci are likely to be revealed

through further systems-level protein-omic analyses of

cells and tissues across human populations.
Material and Methods

Cell Lines
Lymphoblastoid cell lines (LCLs, n ¼ 68) derived from unrelated

Yoruba individuals in Ibadan, Nigeria, were obtained from Coriell

Institute for Medical Research. They have been genotyped at more

than 3.1 million SNPs22 and had their RNA quantified by expres-

sion arrays,23,24 exon arrays,25 and RNA-seq.26 LCLs were cultured

in RPMI 1640 (Mediatech)/20 mM l-glutamine (Mediatech) plus

20% FBS (HyClone Laboratories) for the initial passage and then

passaged every 48 hr with LCL medium containing 15% FBS.

Cell suspensions were transferred to 25 cm2 flasks and incubated

at 37�C in a humidified 5%CO2 atmosphere. Cell lines weremain-

tained at a concentration of 3.5–4.0 3 105 cells/ml and harvested

after the fourth passage, if viability was R85%.
Protein Isolation
Three pellets from each of 68 YRI LCLs were independently

thawed, cultured, split, pelleted, and stored at �80�C. Pellets
The Amer
from each independent freeze-thaw were resuspended in 1.0 ml

of 1.5% SDS lysis buffer (240 mM Tris-acetate, 1.5% w/v SDS,

0.5% w/v glycerol, 5 mM EDTA) containing 50 mM DTT, protease

(1 mg/ml aprotinin, 1 mg/ml leupeptin, 1 mg/ml pepstatin), and

phosphatase inhibitors (1 mM sodium orthovanadate, 10 mM

b-glycerophosphate). To ensure complete protein denaturation,

samples were boiled for 10 min, sonicated for 10 min (alternating

30 s on, 30 s off) with a Bioruptor (Diagenode), and concentrated

to 5–10 mg/ml in a 96-well microconcentration device with a

10 kDa molecular weight cutoff (Millipore).
Antibody Screening
The first antibody set comprised 296 previously validated anti-

bodies directed against 200 unique cell signaling proteins.21,27,28

The second antibody set represented a completely uncharacterized

set of 4,070 antibodies directed against 1,848 unique TFs. Three

biological replicates for each of 11–12 individuals were pooled

together into 6 pools for screening of these 4,366 rabbit polyclonal

antibodies at a 1:1,000 dilution. Printing, gel fabrication, horizon-

tal semidry electrophoresis, transfer, blotting, and scanning were

performed as in Ciaccio et al.,21 permitting 96 antibodies to be

screened over six pooled lysates per MWA. Antibodies were probed

in the 800 channel using goat anti-rabbit IR800-conjugated sec-

ondary antibodies (1:5,000) (Invitrogen). A validated mouse

monoclonal antibody to b-actin (1:1,500) (Cell Signaling 3700)

was included on each blot as a printing control and was measured

using a goat anti-mouse Alexa Fluor 680-conjugated secondary

antibody (1:7,500) (Invitrogen) in the 700 channel. Fluorescence

was quantified using LI-COR Odyssey software (v.3.0) by drawing

features around the appropriately sized bands for each sample

with a fluorescent protein marker (LI-COR 928-40000) acting as

a standard for molecular weight. The raw integrated intensities

of each feature were background subtracted using the median of

the three pixels surrounding the feature as an estimate of local

background, the maximum number of pixels permitted by the

LI-COR Odyssey image analysis software to be used for local

background estimation. These corrected integrated intensities

were used to calculate the average background-corrected inte-

grated intensities of replicate spots. Antibodies that displayed a

single predominant band of the predicted size of the targeted pro-

tein isoform of interest that accounted for >75% of the entire

signal of the lane with a signal-to-noise ratio R3 were selected

for subsequent population-level quantification by RPPAs; anti-

bodies that displayed at least one band of the predicted size of

the targeted protein isoform of interest with a signal-to-noise ratio

R3 but also additional bands were selected for subsequent popu-

lation-level quantification by MWAs. Antibodies that passed this

screen are listed in Table S2 available online.
RPPA Protein Level Quantification
Four technical replicates of each of three biological replicates of

all 68 individuals were spotted using a noncontact piezoelectric

microarrayer (GeSiM Nanoplotter 2.1E) onto nitrocellulose mem-

branes (BioRad). Serial dilutions of each of the six pooled lysates

used for the original antibody screen and lysates from an A431 cer-

vical carcinoma cell line (which was used as a positive control for

antibodies) were also printed for each array to ensure linearity of

antibody signal. Features with a background-subtracted integrated

intensity<0 or signal-to-noise ratio<3 (z test p > 0.05) were iden-

tified in each array and excluded from further analysis. The distri-

butions of background-corrected integrated intensities for all
ican Journal of Human Genetics 95, 194–208, August 7, 2014 195



features on each array were first log2-quantile normalized using

the limma29 package in R to correct for overall antibody hybridiza-

tion efficiency differences in the signal. The relative level of a

given protein for a sample was then quantified using the linear

model yjp ~mjp þ lj þ e (Equation 1), where mjp is the log-quan-

tile-normalized, background-corrected integrated intensity of

sample j on array p, and lj is the effect due to sample j across all

arrays in a print (due to differing amounts of total protein spotted

on the array for each sample), estimated by medianj (mjp). Notably,

we performed an extension of median loading normalization30

and did not normalize to housekeeping proteins such as b-actin

or a-tubulin as is typically performed with traditional western

blotting to correct for sample load, because interindividual b-actin

mRNA levels varied by two orders of magnitude in the RNA-seq

data. Odyssey output text files were parsed in Python and quanti-

fied and normalized in R.
MWA Protein Level Quantification
Three technical replicates of each of the three biological replicates

of all 68 individuals were spotted as above onto polyacrylamide

gels. Gel fabrication, horizontal semidry electrophoresis, transfer,

and scanning were performed as in Ciaccio et al.21 with the excep-

tion of separating each blot into four quadrants rather than using a

96-well gasket. Thismethod allowed for 68 samples to be quantified

with a single antibody in triplicate from each of four quadrants.

Feature extraction and data normalization were performed the

same as with RPPAs. For antibodies that produced multiple signifi-

cant bands (signal-to-noise ratio > 3), all isoforms were quantified

and their relative molecular weights recorded. The level of a given

protein for an individual was quantified using the above linear

model (Equation 1) with the addition of a batch term (b) to correct

for global intensity distribution differences across multiple MWAs

for the same antibody. We averagedmeasurements across replicates

within platforms for the same antibody across the entire popula-

tion. For replicates across platforms, we selected the platform that

yielded the highest median background-corrected integrated inten-

sity. To reduce the inflated effect of technical noise because of low

antibody signals and provide more accurate interindividual protein

level measurements, antibodies in the bottom deciles of median

background-corrected integrated intensities or in the top deciles

of technical coefficients of variation for either platform were

flagged and eliminated from further analyses.
Quality Metrics of the Protein Measurements
To correct for differences in the total amount of protein deposited

for each sample for each array, we estimated a sample load effect

by regressing out the median protein measurement for each sam-

ple. This measurement was highly correlated with the first prin-

cipal component of the protein data, as the overall concentration

of each sample was directly related to the amount of each protein

(R2> 0.95). To assess the quality of our protein data, we plotted the

coefficients of variation for each antibody quantified versus the

median signal-to-noise ratios and background-corrected inte-

grated intensities (Figure S1). Similar to the effect observed with

expressionmicroarrays, we observed relatively high technical vari-

ation for antibodies of low fluorescence signal and a trend toward

decreased variation as fluorescence signal began to exceed the

noise floor of our proteomic platform. Therefore, we removed pro-

tein measurements in the bottom quartiles of signal-to-noise ratio

and background-corrected integrated intensity and the top quar-

tile of coefficient of variation. The application of these filters
196 The American Journal of Human Genetics 95, 194–208, August 7
reduced the effect of technical variation on our later inferences.

We observed a median s of 0.47 between interindividual protein

levels quantified by RPPAs andMWAs from seven antibodies quan-

tified across both platforms (example shown in Figure S2).

Comparatively, the median s between expression arrays and

RNA-seq for any given transcript across the same population of

YRI individuals has been shown to be approximately 0.12.26

To validate that the antibodies generated against epitopes

within each protein were targeting the protein of interest, we per-

formed two analyses. First, for the 57 pairs of antibodies directed at

different epitopes for the same protein that passed our screen, we

tested for correlated measurements between interindividual pro-

tein levels measured by both antibodies. We observed that 44 of

the 57 had correlated measurements (r> 0). Discordance between

multiple antibodies to the same protein could be because of tech-

nical variation or differential isoform levels, because each epitope

is directed to a unique region of each protein. Second, approxi-

mately 50 amino acids surrounding known antibody epitopes

(because exact epitope information was proprietary) were remap-

ped to the human genome (UCSC Genome Browser build hg18)

using BLAT31 and epitopes that contained at least one nonsynon-

ymous SNP from dbSNP (release 132)32 or matched multiple re-

gions in the genome with at least 95% identity were flagged but

retained, because the proprietary nature of epitope disclosure pre-

vented us from knowing which ~5–8 amino acid fragment of the

50 amino acids was used to create the antibody.
Gene Expression Data
Expression array data for 53 individuals included in our study

from Illumina’s human whole-genome expression arrays (WG-6

v.1) from Stranger et al.24 were downloaded fromGene Expression

Omnibus (GSE6536). Probes were remapped to the human

genome (UCSC Genome Browser build hg18) using BLAT31 and

probes that mapped to a single location with less than 100%

sequence identity or mapped to multiple locations with up to

two mismatches were discarded. We then excluded probes that

contained at least one SNP in dbSNP (release 132)32 or our

imputed common SNP genotypes for our cohort or overlapped

copy-number variants in the YRI population.33

Exon array data for 52 individuals overlapping our study from

the Affymetrix GeneChip Human Exon 1.0 ST Array platform

from Zhang et al.34 were downloaded from Gene Expression

Omnibus (GSE9703). Probes were mapped to UCSC Genome

Browser build hg18 and probes containing at least one SNP were

removed from probe set signal intensity files. Gene-level expres-

sion of transcript clusters was summarized with RMA35 and aver-

aged within unique Ensembl gene annotations.

RNA-sequencing data were obtained for all individuals in our

study from Pickrell et al.26 Gene expression values were calculated

as the number of GC-corrected reads mapping to a gene in an

individual, divided by the length of the gene in kilobases and

the number of mapped reads across all lanes for that individual

in millions (RPKM).
Cellular Covariates and Hidden Confounders
We quantified the EBV copy number in all LCLs. EBV copy

number was assessed with a Taqman Gene Expression Assay

(Pa03453399_s1). Intrinsic growth rates for each cell line from

Im et al.36 and baseline ATP and mitochondrial DNA levels from

Choy et al.37 were also included in the analyses. To identify poten-

tial additional unobserved confounders, we applied surrogate
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variable analysis (SVA) to the matrix of 68 3 3 protein level mea-

surements after including the effects of known nongenetic con-

founders to identify 16 additional significant surrogate variables.

Covariate Modeling
For each protein measurement, we constructed a linear mixed

effects model y ~p þ E þ M þ A þ G þ S þ P þ TjI þ SVi..n þ e, in

which p is the array- and sample-load-normalized integrated in-

tensity for all biological replicates in the population, E is the fixed

effect of individual EBV copy number,M is the fixed effect of indi-

vidual mitochondrial DNA copy number, A is the fixed effect of in-

dividual baseline ATP levels, G is the fixed effect of individual

intrinsic growth rate, S is the fixed effect of individual sex, P is

the fixed effect of individual phase, TjI is the random thaw effect

per individual, SVi..n are the effects of amatrix of 16 significant sur-

rogate variables, and e is the residual error. The model was fitted to

each protein by residualmaximum likelihood using the lmer func-

tion in the R package lme4 (v 0.999999-0). Fixed effect p values

for covariates were estimated using the pamer.fnc function in

the LMERConvenienceFunctions package (v.1.6.8.3). The signifi-

cances of covariate effects were assessed by estimating false discov-

ery rates using Storey’s q value method.

Genotype Data
HapMap genotypes were obtained from the 1000 Genomes June

2011 phase I low-pass whole-genome SNP genotype release and

transformed to UCSC Genome Browser (hg18) coordinates.

Missing values were imputed by BIMBAM (v.1.0) using the default

parameters to derive mean imputed genotypes. SNVs with MAF <

0.05 and SNVs with significant deviation from Hardy-Weinberg

equilibrium (Fischer’s exact test, p < 0.001) were excluded,

reducing the set to 9,345,571 SNPs and indels for association

analyses.

Association Analyses
For each protein and transcript trait, interindividual levels were in-

verse normal transformed and tested for association with all

markers genome-wide. Association testing was performed by

linear regression implemented in Python and R using custom

scripts. For each trait, we selected the most significantly associated

SNV within each recombination window, defined by splitting the

genome into 25,307 blocks flanked by>10 cM/Mb recombination

rates estimated fromHapMap.22 All SNV-protein associations with

p< 10�4 for proteins with more than one biological replicate were

validated with the linear mixed-effects model y ~p þ G þ TjI þ e

with a fixed genotype variable, G.

Significant Associations
We performed genome-wide permutations to assess the signifi-

cance of the association results. We permuted the 468 protein

values for each biological replicate for all individuals, performed

genome-wide association on the permuted and normalized phe-

notypes, and repeated this procedure for three replicates, selecting

each time the best signal per phenotype. Permuted SNV-protein

associations with p < 10�4 were tested with a linear mixed-effects

model as above. False discovery rate (FDR) was calculated as the

fraction of significant hits in the permuted versus the observed

data at a given p value threshold. FDR was calculated separately

for cis and trans pQTLs. Results are presented at FDRs of 5% and

20%, meaning that an estimated 5% and 20% of the pQTLs

correspond to false positives, respectively. We chose to perform as-
The Amer
sociation analyses on protein and mRNA measurements without

covariate and SV correction because correction for known covari-

ates, SVs, or both did not improve RNA-protein correlations (p >

0.05, Wilcoxon rank sum test). We observed fewer cis and trans

pQTLs at an FDR< 0.20 after correction (suggesting that we might

be discarding some fraction of genetic variation associated with

protein level variation, as has been previously demonstrated in

methods to optimize cis eQTL discovery by iteratively removing

PCs to maximize the number of eQTLs discovered26,38) and to be

consistent with all previous pQTL studies to date10–12,14,19,20 to

allow more direct comparison of our results. The association ana-

lyses and FDR calculations were performed for all autosomal surro-

gate variables (n ¼ 16), protein values, and genes in the mRNA

expression data sets.

Enrichment of Specific Types of SNVs in pQTLs

and eQTLs
The annotation of all SNVs was performed using SeattleSNPAnno-

tation 129. For each unique annotation (‘‘coding-synonymous,’’

‘‘intergenic,’’ ‘‘intron,’’ ‘‘missense,’’ ‘‘near-gene-3,’’ ‘‘near-gene-5,’’

‘‘nonsense,’’ ‘‘splice-3,’’ ‘‘splice-5,’’ ‘‘utr-3,’’ and ‘‘utr-5’’), we used

a Fisher exact test to test the null hypothesis that the fraction of

that annotation type in either recombination-block-filtered eQTLs

or pQTLs for overlapping genemodels at p< 10�4 was equal to the

fraction in all annotated SNVs.

Genome-wide Association Study Results and

Enrichment Analyses
All SNPs published by 02/01/2012 were downloaded from the

catalog of GWASs maintained by the NHGRI and filtered for

5,570 common variants (MAF > 5%) in the YRI samples exam-

ined. For overlap with eQTLs and pQTLs, we considered all

SNPs in linkage disequilibrium (LD) (R2 > 80%) with the com-

plex-trait-associated SNPs and filtered for common variants

(MAF > 5%) in the YRI samples examined. To determine the

enrichment for SNPs associated with each complex trait to be

eQTLs or pQTLs, we focused on only the 7,222 primary-trait-asso-

ciated SNPs before LD imputation to correct for LD-driven infla-

tion of enrichment results. We then generated 1,000 randomized

SNP sets each of size 7,222 and matched on MAF distribution by

proportions in discrete 5% MAF bins. For each set, we determined

the number of eQTLs and pQTLs at p < 10�4 for traits with at

least three observed expression QTL overlaps and derived an

empirical p value by comparing the proportion of random simu-

lations in which the number of random overlaps exceeded the

observed overlap.

siRNA Knockdown
LCLs were seeded at a density of 550,000 cells/ml 24 hr before nu-

cleofection. Amaxa’s Cell Line 96-well Nucleofector Kit SF (Lonza)

was used to perform the transfection. Cells were centrifuged at

90 3 g for 10 min at room temperature and resuspended at a con-

centration of 1,000,000 cells in 20 ml of SF/supplement solution

(included in SF Kit Lonza Catalog #V4SC2096) and 2 mMfinal con-

centration of AllStars negative Control siRNA labeled with Alexa

Fluor 488 (QIAGEN) or a pool of siRNA (QIAGEN) (Table S1).

The cells were nucleofected using Amaxa’s DN-100 program. Cells

were allowed to rest for 10 min before the addition of prewarmed

(in 37�C water bath for a minimum of 20 min) RPMI media and

then another 5 min after the addition of warm RPMI media. Cells

were then plated for protein harvest. Cells were harvested at 24
ican Journal of Human Genetics 95, 194–208, August 7, 2014 197
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Figure 1. Schematic Representation of the Experimental Design
(A) Three biological replicates from each of 68 YRI lymphoblastoid cell lines were passaged, pelleted, and lysed.
(B) These lysates were aggregated into six pools for screening 4,366 polyclonal antibodies at a 1:1,000 dilution.
(C and D) Antibodies that produced only a single (C) or at least one (D) predominant band the size of the target protein with a signal-to-
noise ratio R3 were subsequently scaled up for population-level quantification by RPPAs and MWAs, respectively.
(E) Sample load and batch effects were then regressed out to derive a final matrix of 68 individuals by 441 protein levels.
(F) Residuals were inverse normal transformed and associated with 9,345,571 SNVs genome-wide to identify pQTLs. Triangles, circles,
and diamonds correspond to biological replicates.
(G) A random subset of antibodies was validated by siRNA knockdown and pQTLs were tested for replication in an independent cohort
of 17 unrelated YRI LCLs.
and 48 hr postnucleofection for protein measurement by MWAs.

Protein levels were quantitated as above with three technical

replicates per individual per time point and normalized within

an individual across time points to the relative b-actin protein

levels. Percentage knockdown was then calculated by dividing

the relative targeted protein levels in the targeted siRNA sample

by those in the scrambled siRNA control sample for each time

point. A knockdown was declared significant if protein levels

were reduced after knockdown by greater than two times the per-

centage standard error (p < 0.05).
Results

Study Design and Protein Quantification

To characterize the genetic architecture of a targeted subset

of proteins in humans, we measured protein levels from

three independently cultured replicates (hereafter termed

biological replicates) of 68 HapMap YRI LCLs for which

genotypes, mRNA expression,24,26,34 and pharmacologic

data39 were available. A common problem encountered

with contemporary affinity-based protein-omic studies17

is the lack ofwell-validated antibodies at economical prices.

We therefore took a two-pronged approach tomaximizeour

ability to collect high-quality protein data and to compre-

hensively collect data on poorly characterized and lowly
198 The American Journal of Human Genetics 95, 194–208, August 7
expressed transcription factors (TFs). Our antibody set

comprised 4,366 antibodies directed against 1,848 unique

TFs and 200 unique cell signaling proteins. We screened

these antibodies against six pools of lysates comprising 68

YRI individuals (Figures 1 and S3; Table S2). A total of 207

antibodies produced a single predominant signal at the pre-

dicted molecular weight and were subsequently used to

quantify protein levels via the RPPA approach (representa-

tive array shown in Figure S4 and Table S3). Because RPPAs

lack the ability ofMWAs to electrophoretically separate pro-

teins, sample throughput and image analysis are more

rapid. However, much higher selectivity antibodies are

required for RPPAs than for MWAs to obtain meaningful

data.40 A total of 234 antibodies that produced signals in

addition to those at the predicted molecular weight were

measuredat thepopulation level viaMWAs (Figure S5; Table

S4). This approach ultimately allowed us to quantify pro-

tein levels from 441 antibodies (341 TF and 100 signaling)

directed at 391 unique protein isoforms (Table S5) across

68 LCLs cultured on three independent occasions.

We established the quantitative accuracy of our

approach by several independent methods. First, to

address sources of technical variation in our measure-

ments, we established methods to normalize and filter

the protein data as described in the Methods. Second, we
, 2014
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observed that 13 pairs of antibodies targeting different epi-

topes for the same proteins resulted in significantly corre-

lated measurements for their intended targets across all

individuals (p < 0.05) (Figure S6). Third, we observed

a strong preservation of interindividual rank order for

the same protein quantified by both RPPAs and MWAs

(example illustrated in Figure S2). Fourth, we verified that

the antibodies faithfully reported on the levels of their in-

tended targets by performing siRNA knockdown of 18 pro-

teins, 15 of which were randomly selected and 3 of which

were pQTL targets. Of the 18, 17 exhibited a significant

reduction in protein levels relative to a scrambled control

in at least one YRI LCL at one time point (Table S6).

Low Preservation of Rank Order between mRNA and

Protein Levels across All Individuals

We first compared the correlations between mRNA expres-

sion levelswithin individualsmeasured by three expression

platforms: Affymetrix exon arrays,25 Illumina expression

arrays,24 and RNA-sequencing (RNA-seq).26 We observed a

strong correlation between these independent measures

of transcript abundance for all genes (Figure 2A; RNA-seq

versus Illumina expression array, median r ¼ 0.67; RNA-

seq versus Affymetrix exon array,median r¼ 0.82; Illumina

expression array versus Affymetrix exon array, median r ¼
0.62). These observations support previous reports that

have demonstrated similarly highly correlated mRNA

expression measurements between RNA-seq and expres-

sion array technologies whenmeasuringmRNA expression

from a single individual (r ¼ 0.60–0.77).

However, for expression QTL analysis, the more relevant

comparison is how well expression levels correlate for each

gene measured across individuals. We examined the pres-

ervation of rank order between 173 overlapping gene-level

protein and mRNA measurements across the 52 individ-

uals that were examined in each study (Figure 2). Notably,

the correlation of interindividual mRNA expression mea-

surements was low across mRNA expression platforms

and laboratories (median r ¼ 0.09–0.17), consistent with

results from a previous eQTL analysis on this cohort using

all genes (median r ¼ 0.12).26 The correlation between
The Amer
mRNA levels was significantly higher between microarray

platforms (median r ¼ 0.17) than between microarrays

and RNA-seq (median r¼ 0.10, p¼ 2.803 10�4, Wilcoxon

rank sum test), indicating that either biological or platform

variance contributed substantial variability to previous

mRNA expression studies. Similarly to previous observa-

tions in yeast and mice,10,11,15 little correlation was

observed between transcript and protein levels within

genes, across individuals (exon array median r ¼ 0.03,

expression array median r ¼ 0.01, RNA-seq median r ¼
0.02) (Figure 2B). Although global mRNA and protein

levels were not strongly correlated across individuals,

they were enriched to be correlated with 12% of genes dis-

playing significant preservation of interindividual rank

order between mRNA and protein levels, even in the pres-

ence of biological variation associated with the propaga-

tion of cells across different laboratories.

Several cellular characteristics including intrinsic growth

rate, ATP levels, and EBV copy number have previously

been shown to associate with gene expression levels and

cellular phenotypes measured in LCLs.37,41,42 mRNA

expression data sets have previously been adjusted for

these cellular covariates to increase the ability to observe

relationships between genotypes and mRNA expression

levels.8,26,37 We surmised that these cellular variables

might also be related to protein levels. We therefore tested

for association between interindividual variation in these

variables andwith protein levels.We identified 197 protein

variants that were nominally associated with at least one of

six variables (Table S7). At an FDR of 5%, we found that 36

proteins were associated with intrinsic growth rate,35 28

proteins were associated with baseline ATP levels, and

21 proteins were associated with EBV copy number.

Levels of phospho-S6 ribosomal protein (RPS6) and struc-

tural maintenance of chromosomes protein (SMC1A)

were negatively correlated with cell growth (R ¼ �0.33,

p ¼ 1.86 3 10�6 and R ¼ �0.19, p ¼ 2.62 3 10�4, respec-

tively). Notably, we found that b-actin and a-tubulin pro-

tein levels were positively correlated with intrinsic growth

rate (R ¼ 0.12, p ¼ 1.36 3 10�5 and R ¼ 0.02, p ¼ 0.04,

respectively), suggesting that their use in total protein
ican Journal of Human Genetics 95, 194–208, August 7, 2014 199



Table 1. Summary of Results for Association Analyses of Protein
Levels

SNP Protein Type p Value R

rs60664312 DIDO1 trans 5.55 3 10�17 0.65

chr10.18096250 ZNF529 trans 4.21 3 10�11 0.45

rs751473 p-Raf(S338) trans 8.91 3 10�11 0.45

rs7232517 ZNF645 trans 9.94 3 10�11 �0.44

rs72918427 ZNF414 trans 1.05 3 10�10 �0.44

rs145614393 ZMYND11 trans 2.80 3 10�10 �0.58

rs4691394 STAT3B trans 5.66 3 10�10 �0.42

rs17020269 RUNX1 trans 6.72 3 10�10 0.52

rs141517138 OVOL1 trans 7.31 3 10�10 0.50

rs2016050 p-PDK1(S241) trans 7.44 3 10�10 0.44

rs3893175 EP300 trans 7.85 3 10�10 0.50

rs11663180 GATA4 trans 1.16 3 10�9 �0.58

rs7331659 p-GAB1(Y659) trans 1.18 3 10�9 0.42

rs16911722 TFAP2 trans 1.77 3 10�9 �0.45

rs4490893 IRF4 trans 2.28 3 10�9 �0.41

rs16870965 TFAP2 cis 2.72 3 10�8 �0.41

rs1638320 MED16 cis 1.22 3 10�7 0.44

rs10864374 ENO1 cis 1.22 3 10�7 0.40

rs7256500 ZNF266.75-100 cis 1.68 3 10�7 0.37
load normalization as housekeeping proteins, rather than

the median sample load normalization we performed,

would have resulted in an erroneous adjustment for

intrinsic growth rate differences between cell lines.

Nominally associating with 21% of protein-level and

25% of RNA-seq-derived mRNA-level measurements, in-

trinsic growth rate was correlated with the highest number

of mRNA and protein levels (Table S8). Indeed, of the 18

significant surrogate variables (SV) identified in the protein

data set, the first SV was significantly associated with

intrinsic growth rate (p ¼ 0.03) and EBV copy number

(p ¼ 0.05), and the third SV was associated with intrinsic

growth rate (p¼ 7.03 10�4), underscoring the high degree

of association between global protein levels, intrinsic

growth rate, and EBV copy number in LCLs.

pQTL Mapping and Replication in an Independent

Cohort of LCLs

We performed global pQTL mapping by testing for associa-

tion between the 441 protein level measurements and

genotypes at 9,345,571 single-nucleotide variants (SNVs).

At an FDR < 0.20, we identified 12 cis pQTLs (here defined

as within 1 Mb upstream of the transcription start site

[TSS] to 1 Mb downstream of the transcription end site

[TES] of the RefSeq genemodel) and 160 trans pQTLs (corre-

sponding to p< 3.263 10�6 for cis and p< 3.423 10�8 for

trans) (Table S9). Themost significant cis and trans pQTLs at

an FDR < 0.05 corresponded to 18 unique RefSeq gene
200 The American Journal of Human Genetics 95, 194–208, August 7
models (Table 1). This observationof largernumbers of trans

than cis pQTLs corroborates similar observations from pre-

vious pQTL studies in yeast11 and mice.15 We constructed

Circos plots to visually depict significant associations be-

tweenSNVs, protein levels (Figure3), andmRNAexpression

levels (Figure S7). The 12 most significant pQTLs as well as

the SNP associated with the most protein levels are illus-

trated in Figure 3; similarly, the ten most significant eQTLs

aswell as the SNPassociatedwith themostmRNA transcript

levels are shown in Figure S7. For example, rs60343174 was

significantly associated with the relative levels of eight pro-

teins, including OVOL1, ZNF414, and RUNX1 (Figure 3A).

To further validate the pQTL associations, we randomly

selected 20 proteins for quantification in three biological

replicates of a separate, unrelated cohort of 17 YRI LCLs

from Coriell and tested for replication of pQTLs for all as-

sociations discovered at p < 10�4 (Table S10). Of the eight

pQTLs (FDR of 0.20) that were associated with proteins

quantified in our replication cohort, seven had consistent

effect directions, and for two, the replications were

also nominally significant (rs145614393 and ZMYND11;

rs60664312 and DIDO1). The rs60664312-DIDO1 associa-

tion was the largest effect size pQTL in the discovery

cohort, whereas the rs145614393-ZMYND11 association

was of moderate effect size (Table S10). None of the 30

pQTL SNVs identified at an FDR < 0.05 was also signifi-

cantly associated with cellular covariates, suggesting that

cellular covariates did not confound pQTL identification.

Additionally, we observed more pQTLs before regressing

out known covariates and/or unknown confounding

effects as estimated by surrogate variable analysis. We

therefore chose to perform all further analyses using the

unadjusted protein values, identical in approach to all pre-

vious pQTL studies to date.10–12,14,19,20 Although no RNA-

seq eQTLs identified at an FDR < 0.05 correlated at simi-

larly stringent p values in our protein data as pQTLs, the

most significant cis eQTL identified at an FDR < 0.05 was

also a nominally significant pQTL: an association between

variation at rs2116843, an intergenic SNP approximately

20 kb upstream of the transcription start site (TSS) of

ZNF266 (MIM 604751), and variation in ZNF266 expres-

sion at themRNA (p¼ 1.543 10�9, b¼�0.65) and protein

level (p ¼ 0.003, b ¼ �0.21) (Figure 3B). This observation

provided an example of a genetic variant that associated

with both the mRNA and protein level, as would be ex-

pected if the genetic variant causally influenced mRNA

and subsequently influenced protein level variation. We

also observed another, more significant cis pQTL for

ZNF266, rs7256500 (p ¼ 1.68 3 10�7, b ¼ 0.37), which is

an intronic SNP located approximately 0.8 Mb upstream

of the TSS of ZNF266 within MYO1F (MIM 601480) that

was not in LD with rs2116843 (r2 ¼ 0.04). This pQTL was

not significantly associated with mRNA expression levels,

although the effect trend was in the same direction (p ¼
0.15, b ¼ 0.18). Additionally, rs6695435, an intergenic

variant located 4 kb upstream of the TSS of TBX19 (MIM

604614), had a subtle but not significant association with
, 2014
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Figure 3. Genetic Variants Affecting Protein Levels Globally and in cis
(A) Circos plot for the pQTL association results. The rims, in order from outside inward, are (1) a karyotype defining chromosome co-
ordinates, (2) a Manhattan plot of the –log10(P) for each pQTL identified at p < 10�4 (for plotting clarity) with the red line designating
p ¼ 10�8, and (3) the top 12 (constrained due to space) significant pQTLs (p < 10�10) and the top master regulatory pQTL SNV
rs60343174. The innermost network depicts spokes between pQTLs and their regulated genes, with dark blue spokes depicting the
top pQTL interactions (such as rs6834with DIDO1 protein levels) and light blue spokes depicting proteins associatedwith the topmaster
regulatory pQTL.
(B) RNA-seq and protein measurements (y axis) for each sample plotted by SNP genotype for a replicated cis eQTL for ZNF266.
Error bars represent 95% confidence intervals.
(C) RNA-seq and protein measurements for TBX19 versus SNP genotype for a representative cis pQTL.
mRNA expression as measured by RNA-seq (p ¼ 0.28, b ¼
0.14) (Figure 3C), but a significant association with concor-

dant effect direction on TBX19 protein levels (p ¼ 5.17 3

10�6, b ¼ 0.33) and was one of the closest cis pQTLs to

the TSS of the gene model that we identified.

We observed significantly more trans associations

with protein levels than with mRNA levels (160 trans
The Amer
pQTLs for 78 unique proteins versus 0 trans eQTLs at an

FDR ¼ 0.20). The most significant pQTL identified was

the association between SNP rs60664312 and DIDO1 pro-

tein levels (p¼ 5.553 10�17, b¼ 0.65). We observed an in-

tergenic indel on chromosome 6 (rs60343174) that was

associated with eight different protein levels at p < 10�4

and that was most significantly associated with LMX1A
ican Journal of Human Genetics 95, 194–208, August 7, 2014 201
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Figure 4. Comparison of the Genetic Regulation of Transcript and Protein Levels
(A) Proportion of annotations other than ‘‘intron’’ and ‘‘intergenic’’ for all SNVs, eQTL SNVs, and pQTL SNVs.
(B and C) Log odds that an eQTL (B) or a pQTL (C) is a particular annotation type versus all SNVs in the study.
(D and E) cis-eQTL (D) and trans-eQTL (E) replication rate (y axis) is depicted as a function of the p value in transcriptome sequencing (x
axis) for Illumina expression array (green), Affymetrix exon array (blue), and protein data (purple). The black dashed lines denote the
number of eQTLs at each discovery p value. The gray dashed line denotes the null expectation of replication rate at p< 0.05 with concor-
dant effect direction.
(p¼ 5.663 10�9, b¼ 0.51) (Figure 3A). Consistent with re-

sults from Wu et al.,14 we observed that measurements

of protein variation were not significantly influenced by

posttranslational modifications for the proteins for which

both pan- and phospho-specific validated antibodies were

available. However, three of the most significant trans

pQTLs were intergenic variants affecting the levels of a

phosphorylated isoform of three proteins but not their

overall abundances as inferred using pan-specific anti-

bodies (p > 0.05): rs7331659 and p-Gab1 (Y659),

rs751473 and p-Raf (S338), and rs2016050 and p-PDK1

(S241) (Figure 3A). This observation represents, to our

knowledge, the first evidence of genetic variants associated

with the phosphorylated version of a protein and repre-

sents a first step toward identifying common genetic vari-

ants associated not only with protein levels, but also with
202 The American Journal of Human Genetics 95, 194–208, August 7
their modification states, which often serve as proxies for

their activation states.

Comparison of Genetic Variants Associated with

mRNA and Protein Levels

Wenext examined the functional classifications, locations,

and reproducibility of genetic loci affecting protein abun-

dances. We compared the newly identified pQTL loci

with eQTL loci that we identified using RNA-seq expres-

sion for the 373 genes with overlapping protein and

mRNA measurements (Figure 4). We first compared the

relative proportions of annotations of eQTLs and pQTLs

versus all SNVs used in our study (Figure 4A; Table S11).

eQTLs were significantly enriched near the 50 and 30 ends
of genes and at the 50 UTR (p ¼ 6.63 3 10�9, p ¼ 1.49 3

10�3, and p ¼ 6.27 3 10�13, respectively) and depleted in
, 2014
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Figure 5. Identification and Validation
of a trans pQTL for DIDO1
(A–C) Protein discovery (A), replication
cohort (B), and transcriptome sequencing
expression (C) measurements (y axis) for
each sample plotted by SNP genotype for
a replicated trans pQTL for DIDO1.
(D) Regional association plot of the genic
region associated with DIDO1. The
–log10(p value) for SNVs in this region
(left y axis) and recombination rate (right
y axis) are depicted with respect to
genomic position (x axis) using Locus-
Zoom.45 SNVs in LD with the most associ-
ated SNP are plotted according to the color
scale.
(E) KARS protein levels versus genotype in
the replication cohort of 17 YRI LCLs.
(F) DIDO1 protein, but not mRNA, expres-
sion levels were significantly reduced 24 hr
after siRNA knockdown of KARS. Error bars
indicate the SEM of three technical repli-
cates for each condition.
introns (p ¼ 1.42 3 10�3) (Figure 4B). This finding is

consistent with observations from previous global eQTL

studies that eQTLs tend to cluster near the TSSs of

genes24,26 and in exons relative to introns.43 pQTLs were

enriched near gene 30 ends (1.14 3 10�3), in 50 or 30

UTRs (p ¼ 0.03, p ¼ 0.03), in synonymous coding variants

(p ¼ 0.02), and notably, in missense variants (p ¼ 1.58 3

10�5) (Figure 4C). These observations indicated that ge-

netic variants associated with protein level variationmight

involve protein stability or miRNA-mediated regulation of

mRNA translational efficiency. We next examined the

reproducibility of eQTLs across platforms and at the pro-

tein level (defined as a nominal p< 0.05 with a concordant

effect direction) as a function of the p value of the discov-

ery association in RNA-seq. We observed that cis and trans

eQTLs discovered at p < 10�4 were more likely to replicate

across platforms and as pQTLs than expected by chance
The American Journal of Human G
(Figures 4D and 4E). All four of the

most significant cis eQTLs (p < 10�6)

replicated by both the Illumina

expression array and Affymetrix

exon array, and three were nominally

significant cis pQTLs. Two of these cis

eQTLs were located in adjacent

recombination blocks and associated

with ZNF266; indeed, despite being

split by an average 29 cM/Mb recom-

bination rate across the 20 kb gene

transcription region centered at

chr19: 9,348,911,22 these SNPs re-

mained in high LD (r2 ¼ 0.99). How-

ever, trans eQTLs failed to replicate

well across mRNA expression plat-

forms or between mRNA and protein

measurement platforms (Figure 4E).

This observation was consistent with
previously reported examples demonstrating the difficulty

in replicating trans eQTLs.8,44 Only 1 of the 10 cis pQTLs

(rs7256500 and ZNF266) and 6 of the 49 trans pQTLs iden-

tified at an FDR < 0.20 replicated at the mRNA level, indi-

cating that few genetic variants that were strongly associ-

ated with protein levels were also associated with mRNA

expression (Figure S8). These observations suggested that

many of these genetic variants might affect protein levels

independently of their effect on transcript levels.

The Lysyl-tRNA Synthetase KARS Underlies a trans

pQTL for DIDO1

Above, we noted the identification of the SNP rs60664312

as a significant trans pQTL for Death Inducer-Obliterator 1

protein (DIDO1) (p ¼ 5.55 3 10�17, Figure 5A) and subse-

quently validated the trans pQTL relationship for DIDO1

in a replication cohort (Figure 5B). This pQTL was not an
enetics 95, 194–208, August 7, 2014 203



Table 2. Selected Overlap between pQTLs and GWAS SNPs

Trait SNP PMID Chr Protein p Value

Conduct disorder
(case status)

rs2184898 20585324 10 PRDM2 1.44 3 10�8

LDL cholesterol rs2738459 20864672 19 ZNF207 1.32 3 10�7

Metabolic
syndrome
(bivariate traits)

rs320 21386085 8 ZMYND11 4.88 3 10�7

Platelet
aggregation

rs1659838 20526338 10 ZMYND11 5.55 3 10�7

HIV-1 viral
setpoint

rs6997496 22174851 8 FAK 1.15 3 10�6

Leprosy rs10792430 22019778 11 OSR1 1.37 3 10�6

Primary biliary
cirrhosis

rs10792430 21399635 11 OSR1 1.37 3 10�6

Blood pressure rs17417407 21909110 10 TWIST1 1.39 3 10�6

Response to
interferon
beta therapy

rs9272105 21502966 6 SRC 1.44 3 10�6

Cytomegalovirus
antibody
response

rs931547 21993531 1 NCKAP1L 2.24 3 10�6

LDL cholesterol rs4971544 21059979 2 NKX3-2 2.33 3 10�6

Cytomegalovirus
antibody
response

rs211228 21993531 6 MYST4 2.80 3 10�6
eQTL (p > 0.05, Figure 5C) based on previous mRNA

expression data. DIDO1 is involved in limb development

and the induction of apoptosis in mice.46 This pQTL exists

in a linkage disequilibrium (LD) block that contains the

genes ADAT1 (MIM 604230), KARS (MIM 601421), and

TERF2IP (MIM 605061) (Figure 5D) but was not described

as a cis eQTL for any of these genes in previous mRNA

expression studies (p > 0.05). However, rs60664312 is

located 4 kb upstream of the TSS of KARS and is in high

LD (r2 ¼ 0.87) with rs6834 (RefSeq accession number

NP_001123561.1; p.Thr623Ser, DIDO1 pQTL p ¼ 2.66 3

10�15, b ¼ �0.63), a nonsynonymous variant for KARS

that would be predicted to influence the ability of the pro-

tein to be phosphorylated by a protein kinase. To examine

whether this variant was expected to be functionally sig-

nificant, we assessed Genomic Evolutionary Rate Profiling

(GERP),47 and Sorting Intolerant From Tolerant (SIFT)48

scores. GERP scores address nucleic acid sequence preserva-

tion during mammalian evolution. Scores >2 are consid-

ered ‘‘constrained’’ and are more indicative of a deleterious

polymorphism. SIFT scores attempt to predict whether an

amino acid substitution will affect protein function based

on the degree of conservation of amino acid residues in

sequence alignments derived from closely related se-

quences, with scores<0.05 being considered ‘‘deleterious.’’

RefSeq NP_001123561.1 (p.Thr623Ser) was predicted to be

extremely deleterious at the nucleic acid level (GERP score

¼ 5.82), despite being predicted to be well tolerated at the
204 The American Journal of Human Genetics 95, 194–208, August 7
protein function level (SIFT score ¼ 0.47). We next quanti-

fied KARS protein levels in a replication cohort and exam-

ined whether the SNP rs60664312 was a pQTL for KARS.

We observed a significant correlation with KARS protein

levels for both rs60664312 and rs6834 (p < 0.002 for

both comparisons) in the same effect direction as DIDO1

levels. The minor allele of rs6834 was associated with

higher DIDO1 and KARS protein abundances, respectively

(Figure 5E). To examine the causality of this relationship

between DIDO1 and KARS protein levels, we performed

siRNA-mediated knockdown of KARS and observed a

concomitant reduction in DIDO1 protein levels (p <

0.001) without effects on DIDO1 mRNA levels (p > 0.05)

as measured by qRT-PCR (Figure 5F). To address whether

knockdown of KARS would affect DIDO1 protein levels

specifically, we included ZNF569 as a negative control

and observed no reduction in ZNF569 protein levels after

KARS knockdown (Table S6). In summary, we identified a

SNP that appeared to influence DIDO1 protein levels

through the abundance and activity of KARS in a manner

that was independent of underlying KARS mRNA levels

and that was detectable only throughmeasurement of pro-

tein levels.
Overlap of Complex Trait QTLs and pQTLs

Previous studies have demonstrated that common genetic

variants associated with complex traits significantly over-

lapped with eQTLs.7 Genetic risk factors have often been

assumed to influence complex traits through their effects

on mRNA expression. However, many posttranscriptional

mechanisms exist that could influence phenotypic vari-

ability through unique effects on protein abundances. To

explore this notion, we tested for overlap between pQTLs

identified here and complex-trait-associated SNPs in the

NHGRI GWAS catalog. Of the 7,222 SNPs associated with

612complexphenotypes anddiseases atp<10�8, 197over-

lapped with at least one pQTL at p < 10�4 (Table S12). We

identified several notable overlaps between pQTLs and

complex trait SNPs offering potential insights into the mo-

lecularmechanismsunderlying these phenotypes (Table 2).

For example, we identified an intergenic pQTL associated

with HOXB7 levels (rs991258) and two intergenic pQTLs

(rs731905 and rs9398038) for HOXB10 levels that overlap-

ped with SNPs that were previously found to be associated

with hip geometry,49 height,50 and primary tooth develop-

ment.51 HOXB7 and HOXB10 are members of the homeo-

box gene family and function to regionalize the embryo

along its major body axes.52
Discussion

We utilized the MWA approach to screen more than 4,300

antibodies. From this screening effort we identified 441

antibodies against 391 unique proteins that we used for

subsequent quantification of relative protein levels within

a population of YRI LCLs. We performed comparative
, 2014



analysis of the relationship between genetic variation and

between subsets of the transcriptome and proteome. We

replicated and functionally validated a significant trans

pQTL from our proteomic association analyses. Because

of the difficulties in comparison of existing large-scale

genomic and proteomic data sets, our study represents

one of the first to examine large-scale relationships be-

tween genome variation, mRNA expression, protein levels,

and protein modifications in human cells.

Our data complement studies that have been previously

undertaken in yeast and mice11,15 that indicated relatively

low interindividual correlations between mRNA and pro-

tein levels. Compared to studies conducted in yeast or

mice, we observed a slightly lower protein-transcript

concordance, but still approximately zero (median r ¼
0.02 for humans versus 0.07 for yeast). This lack of correla-

tion between mRNA and protein levels could partially be

because of technical variation, particularly limitations in

accurately quantifying lowly expressed mRNA transcripts

or protein abundances. However, the comparative analysis

of three separate mRNA expression platforms with a MWA-

derived protein data set enabled us to better address this

issue. The general lack of correlation between mRNA and

protein levels could be explained biologically by molecular

mechanisms such as mRNA translation efficiency, protein

folding, protein stability, protein assembly into complexes,

transport and localization, or covalent modification, all of

which affect proteins independently from mRNA tran-

scripts. Taken together, our data suggest that cells may

have the capacity to buffer effects on protein that genetic

variation has on mRNA expression levels.

We identified 12 cis and 160 trans pQTLs at an FDR <

0.20 (compared with 11 cis and 0 trans eQTLs at the

same threshold). Although up to two thirds of cis eQTLs

also were also nominally significant cis pQTLs, the major-

ity of cis pQTLs were not nominally significant cis eQTLs.

trans eQTLs and pQTLs did not replicate well across any

platform. This result is consistent with previous studies

that have demonstrated difficulty in reproducing trans

eQTLs across mRNA expression platforms.8,53 However,

16 of 18 of the most significant trans pQTLs (p < 10�7,

FDR ¼ 0.29) had reproducible effect directions in the

additional cohort of unrelated YRI LCLs that we examined

during the functional validation phase of our project. We

identified similar numbers of cis eQTLs versus cis pQTLs

for the same gene models examined by both platforms

(11 cis eQTLs for 10 genes versus 12 cis pQTLs for 11 genes,

FDR ¼ 0.20), consistent with previously observations

of ~4% of genes having cis eQTLs in the same cohort.26

Consistent with Foss et al.11 in yeast, we identified a larger

number of trans pQTLs than trans eQTLs. These results

suggest that genetic variants affecting mRNA levels tend

to have stronger effects in cis, whereas variants affecting

protein levels tend to have stronger effects in trans. Because

this study is one of the first human studies to publish

on both cis and trans pQTLs, there may truly be more

trans than cis variants affecting the proteome, or this
The Amer
observation could be biased because of our targeted

quantification of human transcription factors and dis-

ease-related signaling proteins. The observation of an

enrichment of trans, rather than cis, regulatory variants

in complex human diseases such as type 2 diabetes and

glucose homeostasis traits has supported the notion that

many weak trans effects can influence mRNA (and puta-

tively protein) levels and contribute to phenotypic vari-

ability.54 However, we appreciate that the shallower read

depths of the RNA-sequencing data set (~11 million map-

ped reads/individual) could have contributed to reduced

power to detect eQTLs across this population and result

in an underestimate in the proportion of true eQTLs

present.

To assess pQTL reproducibility, we compared our results

with those from a recent pQTL study that consistently

quantified 2,279 proteins by isobaric tandem mass tag-

based quantitative mass spectrometry across LCLs derived

from 74 unrelated individuals from four populations in

the HapMap Consortium.14 None of the 13 pQTLs identi-

fied in the YRI population from the Wu et al.14 study over-

lapped proteins quantified in our study, and two of the

four pQTLs identified in our study at an FDR < 0.05 for

proteins overlapping between both studies were in a

concordant effect direction in the Wu et al. study. Howev-

er, because of the small overlap of proteins (n ¼ 61) and

samples (n ¼ 22) between studies, we do not feel that

these conclusions are sufficient to make any larger infer-

ences about pQTL reproducibility between studies. The

fundamental differences between our approach and that

of Wu et al.14 are in the methodology (mass spectrometry

versus targeted antibody-based methods); the proteins

chosen for measurement (highly abundant proteins de-

tected by the mass spectrometer versus a smaller subset

of targeted transcription factors and disease-related

signaling molecules for which we had high-quality anti-

bodies); and the population (68 YRI individuals versus a

collection of four different ethnic panels with 1–53 indi-

viduals in each). However, 12% of cis and trans pQTLs

identified in LCLs in this study at p < 10�6 replicate

(here defined as concordant effect direction and nominal

significance) in an unrelated cohort of 129 human cere-

bellum samples of European ancestry (data not shown),

suggesting that many of these pQTLs are indeed real, tis-

sue-independent associations (versus the null expectation

of 2.5% replication).

We replicated a trans pQTL between rs60664312 and

DIDO1 in an additional cohort of unrelated YRI LCLs

and determined that this association was also a cis pQTL

for the tRNA synthetase KARS in the same direction as

DIDO1. We then performed siRNA knockdown on KARS

and observed a concomitant reduction in DIDO1 protein

levels for multiple cell lines. These data suggested that

the trans pQTL for DIDO1 was a strong, reproducible asso-

ciation with a mechanism of action that involved alter-

ation of KARS protein activity. KARS encodes Lysyl-tRNA

synthetase (LysRS), which was originally described to
ican Journal of Human Genetics 95, 194–208, August 7, 2014 205



catalyze the aminoacylation of lysyl-tRNAs in the cyto-

plasm and mitochondria.55 We hypothesize that RefSeq

NP_001123561.1 (p.Thr623Ser) in LysRS could potentially

affect its ability to be phosphorylated and subsequently its

efficiency to aminoacylate lysyl-tRNAs. Altered KARS pro-

tein levels or function could result in concomitant altered

abundances of downstream proteins such as DIDO1 that

contain codons for this tRNA.

We identified many pQTLs that overlapped SNPs associ-

ated with complex traits and diseases, supporting previous

mechanistic relationships and providing testable hypothe-

ses about functional relationships that require further

investigation. For example, we identified an intronic

pQTL (rs1177283) associated with increased interferon reg-

ulatory factor 5 (IRF5) levels that was previously associated

with increased risk of ulcerative colitis56 (MIM 266600)

and celiac disease57 (MIM 212750). IRF5 is known to

regulate type I interferon response and has been causally

linked to autoimmune disease through variants driving

elevated expression of multiple unique IRF5 iso-

forms.58,59 rs2738459 was previously associated with LDL

cholesterol levels in a population of European descent60

and was associated in our study with ZNF207, a relatively

uncharacterized zinc finger protein. We also identified

many pQTLs that affected not only relative protein levels,

but also the relative protein phosphorylation states,

many of which overlapped with disease-associated loci.

rs16852086 was associated with RPS6 (S240/244) protein

phosphorylation levels in this study and previously with

risk for chronic kidney disease (CKD) in a population of

67,093 Europeans,61 consistent with previous reports of

altered basal RPS6 phosphorylation in CKD-induced

rats.62 pQTLs offer the possibility that causal variants asso-

ciated with complex diseases manifest their effects, at least

in part, by altering protein levels. We suggest that pQTL

analyses may be helpful for gaining additional biological

insight into multidimensional phenotypes that is separate

from that seen when performing eQTL analyses.

Lastly, we have provided a robust and scalable method

for annotating human genetic variation that regulates

the proteome. We demonstrate that meaningful informa-

tion can be gained by a population-level assessment of the

proteome along with the transcriptome. Although we

examined only a subset of the proteome in this study,

our focus on transcription factors will be of great utility

for understanding genetic components of gene expression

regulation by integrating ENCODE TF binding data, and

our approach has no inherent limitation on the numbers

of proteins or individuals that can be examined. Extend-

ing our approach to additional populations, cell types,

and tissues will facilitate the identification of regulatory

variation in complex traits and diseases. Incorporating

this protein-omic data set with other ‘‘omic’’ data sets

will provide a clearer understanding of the links between

complex human traits and diseases with proteins and pro-

vide additional insight into global mechanisms of gene

regulation.
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Web Resources

The URLs for data presented herein are as follows:

1000 Genomes, http://browser.1000genomes.org

BIMBAM, http://stephenslab.uchicago.edu/software.html#bimbam

CRAN – Package lme4, http://cran.r-project.org/web/packages/

lme4/index.html

CRAN – Package LMERConvenienceFunctions, http://cran.

r-project.org/web/packages/LMERConvenienceFunctions/index.

html

dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/

eqtl.uchicago.edu, http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl

Gene Expression Omnibus (GEO), http://www.ncbi.nlm.nih.gov/

geo/

GWAS Catalog, http://www.genome.gov/gwastudies/

International HapMap Project, http://hapmap.ncbi.nlm.nih.gov/

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org/

Python, https://www.python.org/

R statistical software, http://www.r-project.org/

RefSeq, http://www.ncbi.nlm.nih.gov/RefSeq

SeattleSeq Annotation 138 (129 used in this study), http://snp.gs.

washington.edu/SeattleSeqAnnotation138/

UCSC Genome Browser, http://genome.ucsc.edu
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