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Abstract: Single-connection in situ calibration using biocompatible solutions is demonstrated in
single-cell sensing from 0.5 to 9 GHz. The sensing is based on quickly trapping and releasing a live
cell by dielectrophoresis on a coplanar transmission line with a little protrusion in one of its ground
electrodes. The same transmission line is used as the calibration standard when covered by various
solutions of known permittivities. The results show that the calibration technique may be precise
enough to differentiate cells of different nucleus sizes, despite the measured difference being less than
0.01 dB in the deembedded scattering parameters. With better accuracy and throughput, the calibration
technique may allow broadband electrical sensing of live cells in a high-throughput cytometer.
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1. Introduction

With emerging broadband electrical sensing of a single biological cell [1], fast, accurate, and in situ
broadband electrical calibration is needed for incorporating the sensing technique in a high-throughput
cytometer [2]. In particular, the calibration is needed for deembedding the measured scattering (S)
parameters to reference planes as close to the cell as possible [3–5]. However, traditional coaxial or
on-wafer calibration based on short-open-load-through [6], load-reflect-match [7], and series-resistor [8]
standards requires measurement connections which are different from those used in cell sensing,
making traditional calibration impractical in a cytometer. Additionally, reconnection errors introduced
by moving probes or exchanging standards [9] are significant for single-cell sensing, which requires
changes in the S parameters to be measured with a precision better than 0.01 dB. In a cytometer with
probes fixed at the cell suspension, switches are needed to reconnect the network analyzer to traditional
co-axial or on-wafer standards. This not only introduces reconnection errors, but also lowers the
precision by moving the reference plane farther away from the probe tip to the switch. To overcome the
difficulty of traditional calibration techniques, we developed a single-connection calibration technique
using various liquid standards and validated it for liquid sensing [10]. The accuracy of the novel
technique is comparable to traditional calibration techniques. This paper expands on [10] mainly by
applying the calibration technique to cell sensing instead of liquid sensing.

Traditional broadband electrical sensing techniques [3–5] typically use uniform transmission lines
as calibration standards before sensing unknown liquids or randomly located cells [1,11]. However,
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they are not suitable for sensing a precisely located cell. By contrast, the present technique is based on
a coplanar waveguide (CPW) transmission line that is uniform except for a little protrusion in one of
its ground electrodes (Figure 1). The CPW, with such a defected ground, can double as the calibration
standard when covered by different liquids. This is because the protrusion is so little that, although it
can perturb the local field sufficiently to trap a cell at its tip by dielectrophoresis (DEP) [12], it does not
disturb significantly the overall characteristics of the CPW. Note that the protrusion of 6 µm is smaller
than one-thousandth of the wavelength between 0.5 and 5 GHz. In fact, the reflection coefficient |S11|

is below −10 dB and the transmission coefficient |S21| is over −2.5 dB between 0.5 and 9 GHz for a
centimeter-long CPW, even when its 200 µm long center section around the protrusion is covered by
deionized (DI), sucrose, or Roswell Park Memorial Institute (RPMI) 1640 solutions (Figure 2) [13].
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Figure 1. (a) Schematic illustration of the test chip comprising a microfluidic channel intersecting a
coplanar waveguide (CPW) at a right angle. (b) Micrograph showing one of the ground electrodes of
the CPW has a protrusion in the middle. (c) High-magnification micrograph showing a cell trapped by
dielectrophoresis (DEP) at the tip of the protrusion.
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Figure 2. (a) Magnitude and (b) phase of measured S parameters of the centimeter-long CPW with the
microfluidic channel filled with DI (–), sucrose (· · ·), or RPMI (- - -) solutions.

The precision of the present calibration technique was tested on different cells from the same
line, which were chemically treated to alter their nucleus size [14]. The test utilizes the capacity
of the microwave signal to noninvasively sense subtle changes inside a cell [1]. Morphological
changes of the cell nucleus are commonly used markers in cancer cytology for screening, diagnostics,
and prognostics [15]. Analysis of nuclear morphology is critical to identification of precancerous
and cancerous cells. Currently, nuclear morphological changes are often determined by fluorescence
microscopy, although it requires labeling and, hence, is invasive [16]. Label-free electrical sensing can
not only increase the speed and accuracy of cancer diagnosis over label-dependent optical techniques
but can also enable real-time dynamic monitoring of the nucleus for fundamental understanding of
cell development and malignancy progression.

In the following, Section 2 describes the experimental preparation, including the design of the test
chip and the preparation of cells and liquid standards. Section 3 briefly reviews the calibration technique,
leaving the details to [10]. Using the calibration technique, the resulted single-cell characteristics are
presented and discussed in Section 4.

2. Experimental Preparation

2.1. Test Chip Design

Similar to [13], Figure 1 illustrates the present test chip, which is based on a microfluidic channel
overlaying a CPW at 90◦. The microfluidic channel is 200 µm long, 4 mm wide, and 20 µm high, with its
length and width defined along the same directions as the CPW. The microfluidic channel is formed
between SU8 walls and a polydimethylsiloxane (PDMS) cover. Both the SU8 and the PDMS are 5 mm
long and 5 mm wide. The SU8 is 20 µm thick. The PDMS is 3 mm thick to allow 250 µm diameter
inlet and outlet tubes to be inserted for the microfluidic channel. The CPW is fabricated on a 0.5 mm
thick quartz substrate with 1 cm long and 200 µm wide gold lines that are 0.5 µm thick. The lines are
generally spaced 16 µm apart, except for one of the ground lines which has a 6 µm long protrusion to
reduce the spacing to 10 µm. As a result, the electric field is enhanced at the tip of the protrusion for
trapping of a cell of approximately 10 µm in diameter by DEP. When trapped, a cell shunts the center
line to the ground line (Figure 1), which perturbs the measured S parameters of the CPW.

2.2. Electrical Measurement Setup

Figure 3a is a photograph of the electrical measurement setup. It is based on a microwave
probe station (homemade) on top of an inverted fluorescence microscope (Nikon, Eclipse Ti-E, Tokyo,
Japan). The microscope has a video camera (three-color, 100 frames/s) to allow automated optical
microscopy and electrical measurement simultaneously [17]. The test chip is a pair of wafer probes
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(Cascade Microtech, ACP40 GSG, Beaverton, Oregon, USA), which are connected to a vector network
analyzer (VNA, Keysight Technologies, E5080A, Santa Rose, California USA) for 2-port S-parameter
measurements. Rapidly successive measurements are performed in about one minute by programing
the power and frequency of the same VNA through a sequence of DEP trapping (0 dBm, 10 MHz),
electrical sensing (−18 dBm, 0.5-9 GHz), DEP releasing (3 dBm, 10 kHz), and electrical sensing again
after the cell is released [18]. The power and frequency are carefully chosen for each function based
on previous experiments. For example, the cell is released by not only lowering the frequency to
switch from positive DEP to negative DEP, but also by doubling the power to compensate for the
lower value of the Clausius-Mossotti factor at the lower frequency [12]. The sensing power level
is orders-of-magnitude lower than that required for reversible electroporation, let alone heating or
otherwise affecting the vitality of the cell [17]. Because the VNA can quickly switch between trapping
and sensing, S parameters can be measured with the cell remaining trapped and without the interference
of the DEP signal. The measured S parameters at the probe tips (1 cm apart) are deembedded to the
edges of the microfluidic channel (200 µm wide) using liquid standards as described in Section 3.
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Figure 3. Photographs of measurement setup for (a) S parameters of the test chip and (b) permittivity
of the liquid standard using the same vector network analyzer.

2.3. Liquid Standards Preparation

For liquid standards, DI water, sucrose solution and RPMI-1640 culture medium are chosen for
their compatibility with the test chip and cells. The isotonic sucrose solution contains sucrose (8.5%)
and dextrose (0.3%) to keep the cells alive. The RPMI-1640 medium is from Sigma-Aldrich and is mixed
with fetal bovine serum (10%), penicillin (100 units/mL), and streptomycin (100 µg/mL). The standards
are freshly made and characterized on the day of cell sensing. Figure 3b shows that the liquid standards
are characterized by using a dielectric probe (Keysight Technologies 85070E) with the same VNA used
for cell sensing. Although liquid characterization involves a 1-port measurement instead of the 2-port
measurement used for cell sensing, it is also based on in situ single-connection calibration using a
Keysight Technologies N4691-60006 E-Cal module. During the calibration, the module is set to “short”
and “open.” After the calibration, the module is set to “through” for liquid characterization. Figure 4
shows that the liquid standards have similar permittivities ε = ε’ − jε”, except ε” for the RPMI solution
is much higher below 1 GHz due to its higher ionic content. The DI water result is in agreement with
the literature [19].

2.4. Cell Preparation Protocol

To demonstrate the feasibility of in situ single-connection calibration, Jurkat T-lymphocytes human
cells are used due to their large diameter (~10 µm), simple structure (with a relatively large nucleus) and
non-adherent nature. These cells, which are obtained from ATCC (commercial cells lines), are cultured
in the RPMI solution under 37 ◦C and 5% CO2. To reduce the nucleus size by approximately 30% [14],
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some cells undergo additional treatment by a solution of staurosporine (460 µg/mL) in dimethyl
sulfoxide up to three hours [20]. Cells without this additional treatment are used as a control. The cells,
treated or not, are washed twice then re-suspended in the sucrose solution and diluted (3 × 106 cell/mL)
for electrical measurement. A separate experiment using Trypan blue dye confirms that more than half
of cells are vital after ten hours [1]. For electrical measurement, cell suspensions are flown through the
microfluidic channel on the test chip. The flow rate is controlled by a syringe pump at 0.1 µL/min. For
calibration, cell suspensions are sequentially replaced by sucrose, RPMI, and DI solutions without
lifting the probes or otherwise changing the electrical connection. The last flow of DI water cleans the
microfluidic channel allowing it to be reused.Sensors 2020, 20, x FOR PEER REVIEW 5 of 11 
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3. Calibration Technique and Standards

For 2-port in situ single-connection calibration, cascading T matrixes X and Y are used to represent
the error matrixes at each port as illustrated in Figure 1b. The X and Y matrixes can then be used to
relate the matrix A of the CPW in the microfluidic channel to the measured matrix M of the entire CPW:

M = XAY; A = X−1MY−1 (1)

All the T matrixes X, Y, A, and M can be related to their respective S matrixes in a standard form:

T =
1

S21

[
S12 · S21 − S11 · S22 S11

−S22 1

]
. (2)

Following [10], the deembedding procedure can be simplified by setting X in the form [8]

X = r
(

1 a
b c

)
(3)

where r = (c − ab)−1/2. Once X is known, Y can be calculated from A−1X−1M.
To solve for a, b, and c, at least two measurements using two different liquid standards (M1 =

XA1Y and M2 = XA2Y) can be used to form the following four independent equations:

− TA
21a + TM

12b + TM
11 − TA

11 = 0, (4)(
TM

11 − TA
22

)
a + TM

12c− TA
12 = 0, (5)(

TM
22 − TA

11

)
b− TA

21c + TA
12 = 0, (6)

TM
21a− TA

12b− (TM
22 − TA

22)c = 0, (7)
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where TA = A2A1
−1 and TM = M2M1

−1. Since there are only three unknowns, the fourth equation can
be used for checking consistency. In addition, more equations from measurements of more than two
standards can ensure convergence in the iterative solution of these nonlinear equations even with poor
initial values. For the results described in Section 4, three standards of DI, sucrose, and RPMI solutions
are used. Detailed derivations, explanations, and examples of this calibration technique can be found
in [10].

The standards such as A1 and A2 are generated by using the electromagnetic simulator HFSS with
the structure of the microfluidic channel and the permittivities from Figure 4. Figure 5 illustrates the
simulated distribution of the electric field along the cross section through the protrusion in the ground
electrode as indicated by A’–A” in Figure 1c, with DI water in the microfluidic channel. The simulation
also generates the S matrixes for the 200 µm long CPW section covered with DI, sucrose, and RPMI
solutions, respectively, as shown in Figure 6. It can be seen that although the characteristics with
DI and sucrose are similar, the characteristics with RPMI are significantly different from that with
DI or sucrose. (The same difference appears in measured S parameters of the centimeter-long CPW
characteristics as shown in Figure 2, although it is not as prominent because the 200 µm long CPW
section in the microfluidic channel is a small fraction of the centimeter-long total length.) Therefore,
in practice, calibration can be performed with only DI and RPMI, or only sucrose and RPMI, with the
third solution used to check for consistency or to expedite convergence as discussed earlier.
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Figure 6. Simulated (a) magnitude and (b) phase of S parameters of the 200 µm long CPW section
under DI (—), sucrose (· · ·), or RPMI (- - -) solutions.

The S matrixes of Figure 6 can be converted to the T matrixes ADI, ASUCROSE, and ARPMI by
Equation (2). Presently, finite-element simulation [21,22] is necessary because a relatively thin (20 µm)
microfluidic channel is used to facilitate cell trapping, so that the field penetrates into the PDMS cover
as shown in Figure 5. This multi-dielectric channel precludes analytical modeling such as conformal
mapping [4,23,24].

To check for self-consistency, Figure 7 shows the deembedded S parameters of the 200 µm
CPW section under DI, sucrose or RPMI. The S parameters are deembedded from the as-measured
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S parameters shown in Figure 2 using the calibrated error matrixes X−1 and Y−1 as described in the
above. It can be seen that the deembedded S-parameter magnitudes agree with the simulated values
of Figure 6a, whereas the deembedded S-parameter phases are too small and noisy to be useful as seen
in previous experiment [13] and analysis [25].
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4. Result and Discussion

The 60 dB scale of Figure 7 is so coarse that the deembedded S parameters of the CPW section
under a sucrose-filled microfluidic channel are indistinguishable whether a cell is trapped or not.
The two cases are difficult to distinguish because the impedance of a cell is on the order of 1 MΩ and
its shunting effect is on the order of 0.01 dB [13]. To make the difference more visible, the difference is
replotted by itself in Figure 8 as

∆|S11| = 10 log(|S11|w/ cell) − 10 log(|S11|w/o cell); (8)

∆|S21| = 10 log(|S21|w/ cell) − 10 log(|S21|w/o cell). (9)
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Figure 8. (a) ∆|S11| and (b) ∆|S21| measured on treated (#) and untreated (N) cells individually.

Additionally, averages and standard deviations of ∆|S11| and ∆|S21| of repeated measurements
are evaluated for treated and untreated cells, respectively. Altogether the measurements are repeated
nine times on three treated cells and six untreated cells, with each cell measured only once. In general,
whether a cell is treated or not, ∆|S21| increases with increasing frequency and ∆|S21| < ∆|S11|. This is
consistent with the theoretical analysis [25], independent of the calibration technique.
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To make the difference between treated and untreated cells even more visible, Figure 9 plots the
average ∆|S11| and ∆|S21| on an expanded vertical scale. Despite the noises, average ∆|S11| and ∆|S21|

of treated cells appear smaller than that of untreated cells. This trend seems reasonable considering
that in terms of permittivity, the cytoplasm is closer to the sucrose solution than is the nucleus [26].
Therefore, with a smaller nucleus, the treated cells would be more similar to the sucrose solution they
displace in the trap than the untreated cells would. However, this trend is opposite of that extracted by
using conventional on-wafer short-open-load-through calibration standards [14]. Without systematic
investigation, it is presently difficult to determine which calibration technique is more reliable for
sensing the nucleus size. The contribution of this paper is mainly in demonstrating another calibration
technique that can be conveniently incorporated into a cytometer. Much more work is needed to
demonstrate its validity and to improve its accuracy. For example, more sets of treated and untreated
cells should be measured in the future with improved accuracy and throughput. This would allow
more statistical results including the percentage of correctly classified cells to be presented.
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lines by 6th-order polynomial fitting are shown to aid visibility. 
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by 6th-order polynomial fitting are shown to aid visibility.

Presently, three liquid standards are used in the calibration to ensure convergence in the iterative
solution of Equations (4)–(7). When only two standards are used, the deembedded |S21| as shown in
Figure 7 can exceed 0 dB at some frequencies, which is obviously unreasonable. The slow-wave effect of
these solutions allows the 200 µm wide microfluidic channel to significantly perturb the characteristics
of the 1 cm long CPW. By contrast, air is not used as a standard because with the microfluidic channel
empty, its 200 µm length is too short to significantly perturb the CPW characteristics. Moreover, under
air, more field radiates outside the microfluidic channel resulting in greater simulation uncertainty.

Presently, we use two-tier calibration mainly because the liquid standards have rather similar
permittivities. As illustrated in Figure 1a, we used first-tier calibration by on-wafer calibration
standards to deembed the measured S parameters from the VNA to the probe tips which are 1 cm
apart. We then used second-tier calibration by liquid standards to further deembed the S parameters
from the probe tips to the edges of the microfluidic channel, which are 200 µm apart. Had the liquid
standards been more different, we could use them for single-tier calibration from the VNA directly to
the microfluidic channel, making it more suitable for the eventual use in a cytometer. We can improve
the present calibration technique by adding nonaqueous calibration standards, such as methanol or
ethanol, whose permittivity differs significantly from that of water especially at high frequencies.
However, we must consider their poisonous effect on live cells.

With improved calibration accuracy to deembed the S parameters to the edges of the microfluidic
channel, the channel width can be shortened to enhance the contrast of ∆|S11| and ∆|S21|. This should,
in turn, increase the sensitivity of single-cell sensing to above 0.01 dB. However, if the microfluidic
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channel is too short compared to the total length of the CPW, the perturbation to its characteristics by
different liquids is reduced, thereby increasing the calibration error.

5. Conclusions

For the first time, in situ single-connection calibration by multiple liquid standards is demonstrated
in broadband sensing of a live cell. The sensing is based on quickly trapping and releasing the cell
by DEP on a CPW with a little protrusion in one of its ground electrodes, as well as using the
same CPW as the calibration standard when covered by different liquids. The results show that the
calibration technique may be precise enough to differentiate cells of different nucleus sizes. With further
improvement in accuracy and throughput, the technique may allow broadband electrical sensing of a
single cell in a high-throughput cytometer.
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