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Duality and quantum state 
engineering in cavity arrays
Nilakantha Meher1, S. Sivakumar1 & Prasanta K. Panigrahi2

A system of two coupled cavities with N − 1 photons is shown to be dynamically equivalent to an 
array of N coupled cavities containing one photon. Every transition in the two cavity system has a dual 
phenomenon in terms of photon transport in the cavity array. This duality is employed to arrive at the 
required coupling strengths and nonlinearities in the cavity array so that controlled photon transfer 
is possible between any two cavities. This transfer of photons between two of the cavities in the array 
is effected without populating the other cavities. The condition for perfect transport enables perfect 
state transfer between any two cavities in the array. Further, possibility of high fidelity generation of 
generalized NOON states in two coupled cavities, which are dual to the Bell states of the photon in the 
cavity array, is established.

Quantum theory provides for fundamentally newer ways of realizing secure communication, faster computation 
and precision metrology. Quantum networks are basic to implementing these ideas. Physical systems such as 
spin chains, cavity arrays, Josephson junction arrays, quantum dots, etc., have been investigated to explore their 
potential for network implementation.

Coupled-cavity arrays have been used extensively in generating nonclassical states of the electromagnetic 
field and quantum information processing1, 2. The technology has matured to such an extent that precise con-
trol of the cavity field dynamics is possible. Suitable tailoring of inter-cavity coupling has been put to use in 
entanglement generation3, quantum state preparation4, 5, state transfer between spatially separated cavities6, 7,  
exhibition of quantum interference8, 9, Rabi oscillation10, to mention a few. Consideration of cavities filled 
with nonlinear media has led to exploration of other quantum phenomena11, such as photon blockade12–14 and 
localization-delocalization related to bunching and antibunching of photons8, 15, 16. Interplay between intra-cavity 
nonlinearity and inter-cavity coupling strength has been exploited to control the photon statistics in cavity17. 
Engineering of coupling in arrays of cavities, spins and Josephson junctions offers the possibility of simulating the 
effects of disorder18, phase transitions19–23, etc. in condensed matter physics.

The identical and indistinguishable nature of photons require that the number of photons and the number of 
levels to be occupied by them are considered together. For example, on the consideration of blackbody radiation, 
Planck distribution is obtained for N photons to be distributed in g levels when the number of possible ways of 
distributing as (N + g − 1)!/N!(g − 1)!. It is interesting to note that the result is the same if there are g − 1 photons 
and N + 1 levels. This possibility of interchanging the roles of the number of particles and the number of levels 
is a duality. Another simple example of duality is in Euler characteristic V − E + F = 2, where V, E and F refer to 
the number of vertices, edges and faces respectively of a convex solid. In this expression the roles of V and F are 
interchangeable. Such duality relationships are very much sought after in physics, which often facilitates under-
standing of nontrivial aspects of one system in terms of easily accessible features of the other24. In this report, a 
duality is established between two dynamical systems, namely, one photon in an array of N cavities and N − 1 
photons in two coupled cavities, considering both linear and Kerr-nonlinear cavities. Every transition in the 
two cavity system has a dual phenomenon in terms of photon transport in the cavity array. This feature helps to 
identify the conditions required in the linear cavity array for a perfect transport of photon between two cavities 
equidistant from the respective ends. The result is generalized to nonlinear cavities which allows perfect trans-
port between any two cavities in the array. Another prospect that makes this study interesting in the context of 
information transfer is the possibility of perfect state transfer from one cavity to another. Our results also point 
to the possibility of generating NOON states, which have found diverse applications and relate to a Bell state of 
the dual system25–28.
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Model and Analysis
Consider a system of two linearly coupled cavities described by the Hamiltonian

ω ω= + + + .† † † †H a a a a J a a a a[ ] (1)A 1 1 1 2 2 2 1 2 1 2

Here ω1 and ω2 are the resonance frequencies of the respective cavities and J is the coupling strength. Suffix A 
has been used to refer to this system of two coupled cavities. Here a1(2) and †a1(2) are the annihilation and creation 
operators for the first(respectively, second) cavity. Let |n + 1〉 represent the bipartite state |N − 1 − n, n〉 of the two 
cavities corresponding to N − n − 1 quanta in the first cavity and n quanta in the second cavity. The total number 
of quanta in the two cavities is N − 1. If the number of photons is fixed to be N − 1, the Hamiltonian is expressed 
as
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where Ωn+1 = [(N − 1 − n)ω1 + nω2] and = + − −+J n N n J( 1)( 1 )n 1 .
Now consider a system of N linearly coupled cavities, described by

∑ ∑ω= + +
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where ω
l is the cavity resonance frequency for the lth cavity, bl and †bl  the annihilation and creation operators for 

the lth cavity. The strength of coupling between the l and (l + 1) cavities in the array is Jl . This form of the 
Hamiltonian can be mapped to that of a spin network which has been studied in the context of state transfer and 
entanglement generation29. For a single quantum in the system, the possible states are |l〉〉, which represents one 
photon in the lth cavity while the other cavities are in their respective vacuua. Then the Hamiltonian is

∑ ∑ω= | 〉〉〈〈 | + | 〉〉〈〈 + | + | + 〉〉〈〈 | .
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Duality of the two systems described by HA and HB respectively is identified if = −J l N l J( )l , 
ω ω ω= − + −


N l l[( ) ( 1) ]l 1 2  and l = n + 1. The transition − − → − − +N n n N n n1 , 2 , 1  in the system 
of two cavities corresponds to photon transport from |n + 1〉〉 → |n + 2〉〉 in the array. In essence, transitions in the 
two-cavity system are equivalent to transport of a photon across the cavities in the array.

If the initial state of the two cavity system at resonance (Δ = ω1 − ω2 = 0) is N-n−1, n > it evolves to
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at time t. It is worth noting that the time-evolved state is an atomic coherent state30.
At t = π/2J the time-evolved state is − −n N n, 1 , corresponding to swapping the number of photons in the 

cavities. Time evolution of the respective probabilities for −N 1,0  to become −N0, 1  corresponding to N = 2, 
4 and 6 are shown in Fig. 1. Complete transfer of photons between the end cavities of the array corresponds to 
|N − 1, 0〉 → |0, N − 1〉 transition in the coupled cavity system. By the duality between HA and HB, these profiles 
also represent the probability of transferring a photon from one end to the other in an array of 2, 4 and 6 cavities 
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Figure 1. Time evolution of probability for the coupled cavity to be in −N0, 1  on evolution from the initial 
state −N 1, 0 , with J = 10−2π. By duality, these profiles show the probability of detecting a single photon in 
Nth (end) cavity in the cavity array. Different curves correspond to N = 2 (continuous), 4 (dashed)and 6 (dot-
dashed).
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respectively. It may be noted that the probabilities attain their peak value of unity, corresponding to complete 
transport of a quantum between the end cavities, when t = π/2J.

It is essential that Jl are related to J in the specified manner. It is of interest to note that the requirement for such 
inhomogeneous couplings in linear quantum spin networks  and optical waveguide arrays has been explored31, 32.  
If the coupling strengths Jl are equal and all the cavities are identical, the average number of quanta at time t in 
the j-th cavity is given by
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Here ω is the resonance frequency of the cavities in the array. If the quantum is initially in the first cavity, that 
is, δ=†b bl l l0 1, , then

= =†n b b G , (8)N t N N t N1
2

is the average photon number in the last cavity. For large N, sin(Nkπ/N + 1) ≈ sin(kπ) = 0 and GN1 tends to zero. 
This indicates that complete transfer is not possible. Time evolution of the average number of quantum 〈nN〉 in 
the end cavity for arrays with N = 3, 4, 5 and 10 cavities respectively are shown in Fig. 2. From the figure, it is clear 
that complete transfer occurs if the array has three cavities. Maximum of |GN1|2 decreases with increasing the 
number of cavities. Hence, complete transfer does not occur if the homogeneously coupled array has more than 
three cavities whereas inhomogeneous coupling achieves complete transfer in shorter time31, 33.

It is to be further noted that complete transition is possible only between the states − −N n n1 ,  and 
− −n N n, 1  of the coupled cavities. Analogously complete transfer of a single photon can occur only in 

between (n + 1)th and (N − n)th cavities in the cavity array. With linear coupling, it is not possible to achieve 
complete transfer between two arbitrary cavities in the array.

To see if nonlinearity helps in steering the evolution of states to achieve perfect transfer, we consider the 
Kerr-type nonlinearity. We present the analysis of two coupled nonlinear cavities. The required Hamiltonian is

ω ω χ χ′ = + + + + +† † † † † †H a a a a a a a a J a a a a[ ], (9)A 1 1 1 2 2 2 1 1
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which describes two linearly coupled Kerr cavities.
If it is required to evolve from |m, n〉 to |p, q〉, consider the superposition = ±±X m n p q1/ 2 ( , , ). These 

two states become approximate eigenstates of the ′HA if J ≪ χ1, χ2, ω1, ω2, and

χ χ
∆ =

− − − + − − −

−
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This condition is equivalent to

′ = ′ .m n H m n p q H p q, , , , (11)A A

This equality of average energy in the two states is another way of stating the requirement that the states |X±⟩ 
are approximate eigenstates of ′HA. In the discussion that follows it is assumed that χ1 = χ2 = χ > 0 and the condi-
tion simplifies to Δ = 2χ(n − p).
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Figure 2. Average number of photon in the end cavity as a function of t in cavity array. Number of cavities in 
the array is N = 3 (solid line), 4 (dashed), 5 (dotted) and 10 (dot-dashed). All the cavities are identical and 
homogeneously coupled with coupling strength =J 2 /10. The system parameters are normalized in the unit 
of ω.
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If the initial state is | = | + |+ −⟩ ⟩ ⟩m n X X, 1/ 2 ( ), the state of the system at a later time is, ψ ≈t( )
θ θ| 〉 −t m n i t p q[cos( ) , sin( ) , ]a a , with θ λ λ= −( )/2a s

a
n
a . Here λs

a and λn
a are the eigenvalues of ′HA correspond-

ing to the approximate eigenvectors |X+〉 and |X−〉 respectively. At π λ λ= −t /( )s
a

n
a , the time-evolved state is |p, 

q〉. This is the minimum time required to switch from |m, n〉 to |p, q〉. Thus, the state switching (SS) condition 
given in Eq. (10) ensures that there is complete transfer from the initial state |m, n〉 to the desired final state |p, q〉.

It is immediate that detuning Δ and nonlinear coupling strength χ can be properly chosen for a given value for 
n − p. As the value of n is specified in the initial state |m, n〉, the two parameters Δ and χ fix the number of quanta 
say s, that can be transferred and the target state becomes = ± = p m s q n s, . It needs to be emphasized that 
for a given Δ and χ satisfying the SS condition, no more than two states can have their average energies equal as 
shown in Fig. 3. Once these parameters are fixed, probability of transition to any state other than the target state is 
negligible. Hence, Δ and χ provide control to steer the system from the initial state |m, n〉 to the final state |p, q〉.

In Fig. 3, ′m n H m n, ,A  is plotted as a function of m, keeping m + n = 28 fixed. From Fig. 3(a), it is seen that 
every state has only one partner state with equal average energy. So, SS can occur between these partner states. It 
is observed from Fig. 3(b) that not every state has a partner state with equal average energy. Essentially, states 
without partner states are approximate eigenstates of H′A and, therefore, do not evolve. This brings out another 
control aspect available in the system, namely, the possibility of inhibiting evolution of certain states with properly 
chosen values of the control parameters χ and Δ.

Consider the initial state of the coupled cavity system to be 50 . In Fig. 4, the probability of detecting the sys-
tem in the state 14  at later times is shown when the required SS condition is satisfied. The values have been 
generated from the approximate evolved state |φ(t)〉 and also by exact numerical solution of the evolution corre-
sponding to ′HA. It is seen that the quanta are exchanged periodically driving the system between |14〉 and |50〉 and 
transfer to other states is insignificant.

In order to effect transition to other states, the value of Δ can be chosen properly. The maximum probabilities 
of detecting the target state p q,  with p = 1, 2, 3, 4, 5 and p + q = 5 from |50〉 are shown in Fig. 5 as a function of 
Δ. The value of χ has been chosen to be 0.2. Depending on the value of detuning, exchange of quanta is precisely 
controlled to different target states.

A duality relation of the two cavity system with the cavity array system is possible in this nonlinear case too. 
Consider the nonlinear cavity array Hamiltonian
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which includes Kerr nonlinearity in each cavity of the array. This is dual to ′HA if ω χ ω+ = − − ++ + 
N k( 1 )k k1 1 1

ω χ+ − − − − + −k N k N k k k[( 1 )( 2 ) ( 1)]2 . With this identification, transitions among levels in the two 
Kerr cavity system can be mapped to transfer of photon in the Kerr cavity array.

In particular, transition from − −N n n1 ,  to − −N q q1 ,  in the coupled cavities corresponds to trans-
ferring a photon between (n + 1)-cavity to (q + 1)-cavity in the cavity array. The condition to realize this transfer 
is + ′ + = + ′ +n H n q H q1 1 1 1B B , whose dual relation for the coupled cavities is given in Eq. (11). For 
the Hamiltonian ′HB, this condition yields,
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Figure 3. Average energy ′m n H m n, ,A  as a function of m, with Δ = 0, χ = 0.1 (Left) and Δ = −2, χ = 0.1 
(Right). The system parameters are expressed in units of ω1.
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χ ω ω χ χ+ = − − + + − + − − − − + −+ + 
N k n q N N k N k k k( 1) 2 ( 1 ) [( 1 )( 2 ) ( 1)] (13)k k1 1 1

to realize complete transfer of photon occurs between the cavities. On employing cavity-dependent nonlinearity 
χ
l, controlled transfer of photons between selected cavities is achievable. Such site-dependent nonlinearity has 
been realized recently by embedding quantum dots in each photonic crystal cavities34–36.

In the limit of weak coupling strength J, + ± +n q( 1 1 )1
2

 are eigenstates of ′HB and the corresponding 
eigenvalues are denoted by λs

b and λn
b. The initial state +n 1  evolves under ′HB to ψ θ≈t t( ) cos( )b

θ+ − +n i t q1 sin( ) 1 ,b  where θ λ λ= −( )/2b s
b

n
b . It is seen that the photon is exchanged periodically 

between the cavities. An important feature of this process is that the other cavities in the array are not populated 
to any appreciable extent during the evolution. This conclusion is based on the observation that the states other 
than +n 1  and +q 1  do not contribute appreciably to ψ t( ) .

If the coupling term in the Hamiltonian ′HA is taken to be +η η−† †J e a a e a a[ ]i i
1 2 1 2  making the coupling constants 

complex, then the initial state |m, n〉, evolves to ψ θ θ| 〉 ≈ | 〉 − | 〉η− −t t m n ie t p q( ) [cos( ) , sin( ) , ]a
i q n

a
( ) . These states 

are of the form ψ θ θ= + φm n e p qcos , sin ,i , if θ = θat and φ = −(π/2 + (q − n)η).
If m ≠ p and θ ≠ 0, ±π/2, then ψ  is entangled. Additionally, if m, q = N and θ = π/4, the resultant state is

ψ = + φN e N1
2

( 0 0 ),i

the generalized NOON state. In the case of cavity array this is equivalent to generating the Bell state 
ψ θ θ| 〉〉 = | + 〉〉 + | + 〉φn e qcos 1 sin 1i .

Another important outcome of the complex coupling in the context of single photon in cavity array is the 
possibility of state transfer between any two cavities. Consider the initial state of the cavity array to be 
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Figure 4. Probability of detecting the state |14〉 from |50〉 as a function of t. Detecting other states are 
practically zero. Continuous black(dashed) and continuous green (dashed-dot) line corresponds to P50 and P14 
calculated numerically (approximate analytical solution ψ t( ) ). We set Δ = −0.2, χ = 0.1, J = 0.035. The system 
parameters are used in the unit of ω1.
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Figure 5. Maximum probability of detecting quantum states |p, q〉 as a function of Δ for χ = 0.2 and J = 0.05 
from the initial state |5, 0〉. Note that, complete switching occurs from |5, 0〉 to |41〉 (circle), |32〉 (dot-dashed), 
|23〉 (dotted), |14〉 (dashed) and |05〉 (continuous) at Δ = −8χ, Δ = −6χ, Δ = −4χ, Δ = −2χ and Δ = 0 
respectively satisfying the relation Eq. (10). The system parameters are expressed in the unit of ω1.
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α β+ +nvac 1 , which corresponds to the (n + 1)-th cavity in the superposition α|0〉 + β|1〉 and the other 
cavities are in their respective vacuua. If the SS condition is satisfied, the time-evolved state is 
α β θ θ| 〉〉 + | + 〉〉 − | + 〉〉λ η− − −e t n ie t qvac (cos 1 sin 1 )i t

b
i q n

b
( ) , where λ λ λ= +( )/2s

b
n
b . At 2θbt = π, the state of 

the (q + 1)-th cavity is the superposition α|0〉 + β|1〉 and the other cavities in their respective vacuua for the suit-
able value of η. Thus, the SS condition ensures the state of the field in the (n + 1)-th cavity is transferred to the 
(q + 1)-th cavity.

It is possible to implement the above scheme for photon transport and state transfer in arrays of high quality 
photonic crystal cavities (PCC)37. Typical values for the cavity resonance frequencies of PCC are in the range of 
mega-Hertz to tera-Hertz. The Q values of PCC are of the order of ~106 with low modal volume38. High value of 
Q implies that the dissipation is less. Kerr nonlinearity in PCC is realized by embedding two level atoms (quan-
tum dots) in the cavities with the advantage that the realizable nonlinearity is much larger compared to the optical 
nonlinearities in solids39. Using these typical values, the effect of dissipation on the photon transport and state 
transfer is shown to be negligible. For the purpose of demonstration, an array of six identical cavities, whose res-
onant frequency is 62.5 THz, has been considered. The Kerr nonlinearity parameters χ

l are determined using the 
relation given in Eq. (13) for χ = 1.25 THz and ω1 = 12.5 THz. The coupling strength is chosen to be J = 70 GHz, 
which is easily achievable in PCC40. The effect of dissipation is quantified by the fidelity between the state realized 
at the target cavity (penultimate cavity in this study) in the presence and absence of dissipation. The state of the 
target cavity has been determined by numerically solving the Lindblad evolution equation and the estimated 
fidelity is 0.98. This clearly shows that the choice of the inter-cavity couplings and Kerr nonlinearities given by the 
duality principle is robust enough to achieve near perfect transfer with the currently available technology. Similar 
results are possible with other platforms such as the Josephson junction arrays41–43.

Summary
Dynamics of a single photon transport in an array of N cavities is dual to the problem of sharing of (N − 1) photons 
between two coupled cavities. This duality is extendable even if the cavities are of Kerr-type, which, in turn, 
requires the couplings to be inhomogeneous. Duality between the two systems makes it transparent to identify the 
correct combination of the coupling strengths and local nonlinearities in the array for complete photon transfer 
between any two cavities. In the linear case, perfect transport is possible only between the cavities which are sym-
metrically located from the end cavities of the array. With Kerr nonlinear cavities, perfect transport between any 
two cavities, without any restriction whatsoever, is possible. Importantly, this transfer is effected without populat-
ing the other cavities in the array, so that the transfer cannot be viewed as a continuous hopping of photon from 
one cavity to the other. Another interesting result of the analysis is the possibility of perfect transfer of states of the 
form α β+0 1 , achieved by a combination of Kerr nonlinearity and complex coupling strengths among the 
cavities in the array. This feature is important in the context of encoding and transfer of information. Further, high 
fidelity generation of entangled states θ θ+ φm n e p qcos , sin ,i  is possible in the coupled Kerr nonlinear cavi-
ties provided the conditions for state switching are satisfied. By duality, this implies that Bell states 

θ θ+ φecos 10 sin 01i  are realizable with high fidelity on account of perfect state transfer in the cavity array, 
which is the dual process corresponding to state switching in the coupled cavities. These results are pertinent in the 
context of quantum information processing using cavity arrays as they are scalable. The ideas presented here are 
applicable to coupled spin chains as well to achieve controlled transfer of states between any two spins in the chain.
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