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Abstract

Dysregulation of CDK8 (Cyclin-Dependent Kinase 8) and its regulatory partner CycC (Cyclin

C), two subunits of the conserved Mediator (MED) complex, have been linked to diverse

human diseases such as cancer. Thus, it is essential to understand the regulatory network

modulating the CDK8-CycC complex in both normal development and tumorigenesis. To

identify upstream regulators or downstream effectors of CDK8, we performed a dominant

modifier genetic screen in Drosophila based on the defects in vein patterning caused by spe-

cific depletion or overexpression of CDK8 or CycC in developing wing imaginal discs. We

identified 26 genomic loci whose haploinsufficiency can modify these CDK8- or CycC-spe-

cific phenotypes. Further analysis of two overlapping deficiency lines and mutant alleles led

us to identify genetic interactions between the CDK8-CycC pair and the components of the

Decapentaplegic (Dpp, the Drosophila homolog of TGFβ, or Transforming Growth Factor-β)

signaling pathway. We observed that CDK8-CycC positively regulates transcription acti-

vated by Mad (Mothers against dpp), the primary transcription factor downstream of the

Dpp/TGFβ signaling pathway. CDK8 can directly interact with Mad in vitro through the linker

region between the DNA-binding MH1 (Mad homology 1) domain and the carboxy terminal

MH2 (Mad homology 2) transactivation domain. Besides CDK8 and CycC, further analyses

of other subunits of the MED complex have revealed six additional subunits that are required

for Mad-dependent transcription in the wing discs: Med12, Med13, Med15, Med23, Med24,

and Med31. Furthermore, our analyses confirmed the positive roles of CDK9 and Yorkie in

regulating Mad-dependent gene expression in vivo. These results suggest that CDK8 and

CycC, together with a few other subunits of the MED complex, may coordinate with other

transcription cofactors in regulating Mad-dependent transcription during wing development

in Drosophila.
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Author summary

CDK8 and its dedicated partner CycC are conserved subunits of the Mediator complex

that bridges transcription factors with RNA Polymerase II in eukaryotes. Here we explore

the function and regulation of the CDK8-CycC pair in Drosophila by performing a domi-

nant modifier genetic screen based on wing vein patterning defects caused by specific

alteration of CDK8-CycC activities. We have observed that multiple components of the

Dpp/TGFβ signaling pathway genetically interact with CDK8-CycC. CDK8 and CycC

positively regulate gene expression activated by Mad, the key transcription factor down-

stream of Dpp/TGFβ signaling, and CDK8 can directly interact with the linker region of

the Mad protein. We also identify additional, but not all, subunits of the Mediator com-

plex that play positive roles in regulating Mad-dependent gene expression. Given the fun-

damental role of Dpp/TGFβ signaling in regulating development and its misregulation in

a variety of diseases, understanding how Mad/Smad interacts with the Mediator complex

may have broad implications in understanding the pathogenesis of these diseases.

Introduction

Composed of up to 30 conserved subunits, the Mediator complex plays critical roles in modu-

lating RNA polymerase II (Pol II)-dependent gene expression by functioning as a molecular

bridge linking transcriptional activators and the general transcription machinery in almost all

eukaryotes [1–5]. Biochemical purification of the human Mediator complex has revealed the

Cyclin-Dependent Kinase 8 (CDK8) module, composed of CDK8 (or its paralogue CDK19,

also known as CDK8L), CycC, Med12 (or Med12L), and Med13 (or Med13L), and the small

Mediator complex, composed of 26 subunits that are divided into the head, middle, and tail

modules [6–9]. CDK8 is the only Mediator subunit with enzymatic activities. The CDK8

kinase module (CKM) has been proposed to function in two modes. First, it can reversibly

bind with the small Mediator complex to form the large Mediator complex, thereby physically

blocking the interaction between the small Mediator complex and the general transcription

machinery (notably with RNA Pol II itself). Second, CDK8 can function as a kinase that phos-

phorylates different substrates, particularly transcriptional activators such as E2F1 [10,11],

N-ICD (intracellular domain of Notch) [12], p53 [13], Smad proteins [14,15], SREBP (sterol

regulatory element-binding protein) [16], and STAT1 (signal transducer and activator of tran-

scription 1) [17]. These characterized functions of CDK8 highlight fundamental roles of the

CKM in regulating transcription.

Besides its roles in specific developmental and physiological contexts, the CKM subunits

are dysregulated in a variety of human diseases, such as cancers [18–22]. For example, CDK8

has been reported to act as an oncoprotein in melanoma and colorectal cancers [10,23,24].

Moreover, CDK8 and CDK19 are overexpressed in invasive ductal carcinomas, correlating

with shorter relapse-free survival in breast cancer [25]. Gain or amplification of CDK8 activity

is sufficient in driving tumorigenesis in colorectal and pancreatic cancers in human, as well as

in skin cancer in fish [14,23,26–28]. Because of these discoveries, there is a considerable inter-

est in developing drugs targeting the CDK8 kinase for cancer treatment in recent years

[29,30]. However, exactly how CDK8 dysregulation contributes to tumorigenesis remains

poorly understood. Thus it is essential to reveal the function and regulation of CDK8 activity

in different developmental, physiological, and pathological processes.

The major bottleneck for addressing these critical gaps in our knowledge is the lack of in
vivo readouts for CDK8-specific activities in metazoans. We overcame this challenge by
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generating tissue-specific phenotypes caused by varying CDK8 activities in Drosophila. After

validating the specificity of these phenotypes using genetic, molecular, and cell biological

approaches, we performed a dominant modifier genetic screen to identify factors that interact

with CDK8 in vivo based on these unique readouts for CDK8-specific activities. From the

screen, we identified Dad (Daughters against dpp), which encodes an inhibitory Smad in the

Dpp (Decapentaplegic)/TGFβ (Transforming Growth Factor-β) signaling pathway, as well as

additional components of the Dpp signaling pathway including dpp, tkv (thickveins, encoding

the type I receptor for Dpp),Mad (Mothers against dpp) andMedea (encoding the Smad1/5

and Smad4 homologs, respectively) in Drosophila. Consistent with the previous biochemical

analyses suggesting that CDK8 may phosphorylate DrosophilaMad or human Smad1

[14,15,31], thereby regulating their transcriptional activities [14,15,31], our results have vali-

dated and further advanced our understanding of this conserved regulatory mechanism in
vivo. Furthermore, our analyses have revealed additional Mediator subunits and protein

kinases involved in regulating the Mad/Smad-dependent transcription. These results, together

with previous studies, suggest that concerted recruitment of the Mediator complexes and

other cofactors play a pivotal role in regulating Mad/Smad-dependent gene expression, a criti-

cal process for TGFβ signaling to function in a variety of biological and pathological contexts.

Results

Wing vein patterning defects caused by varying the levels of CDK8, CycC,

or both

To study the function and regulation of CDK8 and CycC in vivo, we have generated transgenic

lines to either deplete them by RNAi (RNA interference) or conditionally overexpress the

wild-type CDK8 kinase using the Gal4-UAS system [32,33]. Normal Drosophila wings display

stereotypical vein patterns, consisting of six longitudinal veins, dubbed L1 to L6, and two

crossveins, the anterior crossvein and the posterior crossvein (Fig 1A). Knocking down of

CDK8 using the nub-Gal4 (nubbin-Gal4) line (see Materials and Methods for details), which is

specifically expressed in the wing pouch area of the wing imaginal discs [34], results in the for-

mation of ectopic veins in the intervein region, especially around L2 and L5 (Fig 1B). Similar

phenotypes were observed with the depletion of CycC (Fig 1C) or both CDK8 and CycC (Fig

1D). In contrast, overexpression of wild-type CDK8 (UAS-Cdk8+) disrupts the L3 vein, the L4

vein, and the crossveins (Fig 1E), opposite to the phenotypes caused by depleting CDK8,

CycC, or both. However, overexpression of a kinase-dead (KD) form of CDK8 (UAS-Cdk8KD)

using the same approach does not affect the vein patterns (Fig 1F), suggesting that the effects

of CDK8 on vein phenotypes are dependent on the kinase activity of CDK8. These observa-

tions show that CDK8 and CycC are involved in regulating the vein patterning in Drosophila.

Interestingly, depletion of CDK8 (Fig 1B), CycC (Fig 1C), or both (Fig 1D) increase the size

of the wings, correlating to a significant increase of total cell numbers but a reduction of cell

sizes (S1 Fig). In contrast, overexpression of wild-type CDK8 reduces the size of wings and

total cell numbers, but no obvious effects on cell size (Fig 1E and S1 Fig). The effects of CDK8

on wing size can also be visualized using ap-Gal4 (apterous-Gal4), which is specifically

expressed within the dorsal compartment of the wing discs (Fig 2A) [35]. Ap-Gal4-induced

depletion of CDK8 and CycC caused the adult wing to curl downwards (S2C Fig), indicating

the overgrowth of the dorsal compartment compared to the ventral compartment; while over-

expression of CDK8 led to the adult wing to curl upwards (S2D Fig), suggesting reduced

growth of the dorsal compartment. We have previously reported that CDK8 inhibits the tran-

scriptional activity of E2F1, a key transcription factor that controls the expression of factors
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Fig 1. Wing vein patterning defects caused by varying the levels of CDK8, CycC, or both. Adult female wings of (A) nub-Gal4/+ (control), note the

longitudinal veins L1-L6, anterior crossvein (ACV), and posterior crossvein (PCV); (B) w1118/+; nub-Gal4/+; UAS-Cdk8-RNAi/+; (C) w1118/+; nub-Gal4/+;
UAS-CycC-RNAi/+; (D) w1118/+; nub-Gal4/+; UAS-Cdk8-RNAi CycC-RNAi/+; (E) w1118/+; nub-Gal4>UAS-Cdk8+/+; (F) w1118/+; nub-Gal4/UAS-Cdk8KD; (G)

w1118/+; nub-Gal4>UAS-Cdk8+/+; cdk8K185; and (H) w1118/+; nub-Gal4/+; UAS-Cdk8-RNAi/cdk8K185.

https://doi.org/10.1371/journal.pgen.1008832.g001

Fig 2. Validation of the specificity of the vein defects caused by depletion or overexpression of CDK8-CycC.

Representative confocal images of the wing pouch area of a L3 wandering larval wing disc: (A) ap-Gal4/UAS-2XGFP
with DAPI (blue) and GFP (green); (B) ap-Gal4/+ with anti-CDK8 (red) staining; (C) ap-Gal4/+ with anti-CycC (red)

staining; (D) ap-Gal4/+; UAS-Cdk8-RNAi/+ with anti-CDK8 (red) staining; (E) ap-Gal4/+; UAS-CycC-RNAi/+ with

anti-CycC (red) staining; (F) ap-Gal4/+; UAS-Cdk8-RNAi CycC-RNAi/+ with anti-CDK8 (red) staining; (G) ap-Gal4/
+; UAS-Cdk8-RNAi CycC-RNAi/+ with anti-CycC (red) staining; (H) ap-Gal4/UAS-Cdk8+ with anti-CDK8 (red)

staining; and (I) ap-Gal4/UAS-Cdk8KD with anti-CDK8 (red) staining. Note that the gain for confocal imaging in H

and I is lower than the others to avoid over saturation of the signals. At least five wing discs were examined for each

genotype. The dorsal/ventral (D/V) boundary is shown in A, D and H. Scale bar in I: 25μm.

https://doi.org/10.1371/journal.pgen.1008832.g002
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required for the G1 to S-phase transition of the cell cycle [10,11]. Thus, the effects of CDK8

levels on wing size and cell numbers are likely through E2F1-regulated cell-cycle progression.

Validation of the specificity of the vein defects caused by depletion or

overexpression of CDK8-CycC

To verify the specificity of these phenotypes, we recombined the nub-Gal4 line with the

CDK8-RNAi, CycC-RNAi, or CDK8-overexpression lines, and then tested whether these vein

phenotypes could be dominantly modified by cdk8K185, a null allele of cdk8 [36]. As shown in

Fig 1G, reducing CDK8 by half in a ‘cdk8K185/+’ heterozygous background suppresses the vein

defects caused by CDK8 overexpression. However, heterozygosity of cdk8K185 does not obvi-

ously enhance the vein phenotype caused by CDK8-RNAi (Fig 1H), indicating that the RNAi

of CDK8 may have depleted most of the CDK8 protein pool.

To further validate the specificity of the CDK8-directed phenotypes at the cellular level, we

analyzed the protein levels of CDK8 and CycC in wing discs at the third instar wandering lar-

val stage by immunostaining with CDK8 or CycC specific antibodies. Normally, both the

CDK8 (Fig 2B) and CycC (Fig 2C) proteins are uniformly distributed in the nuclei of all wing

disc cells. Depletion of CDK8 (Fig 2D), CycC (Fig 2E), or both (Fig 2F and 2G) using the ap-
Gal4 line significantly reduced CDK8 or CycC proteins in the dorsal compartment. The ven-

tral compartment of the same discs serves as the internal control. In contrast, overexpression

of either wild-type (Fig 2H) or kinase-dead (Fig 2I) CDK8 using ap-Gal4 specifically increased

the levels of CDK8 protein in the dorsal compartment. Taken together, these genetic and cell

biological analyses have validated the specificity of both the antibodies and transgenic lines,

demonstrating that these vein phenotypes are caused by a specific gain or reduction of CDK8

activity in vivo.

Identification of deficiency lines that can dominantly modify the vein

phenotypes caused by varying CDK8

Based on these CDK8-specific vein phenotypes, we performed a dominant modifier genetic

screen to identify gene products that can functionally interact with CDK8 in vivo. The idea of

using phenotypic modifications to identify multiple genes involved in determining a specific

trait or a phenotypic endpoint was initially developed by Calvin B. Bridges, when he analyzed

mutant genes that could interact with the eosinmutant in regulating eye color in flies [37].

This genetic modifier approach has been employed to reveal the functional and inter-molecu-

lar networks for proteins of interest in Drosophila (for instances, [38–42]), and to provide

insights into the phenotypic and genetic variability in mammals [43,44]. The approach posits

that if a protein interacts with CDK8-CycC in vivo in defining the wing vein patterns, then

reducing its level by half may either enhance or suppress the sensitized wing vein phenotypes

caused by specific alteration of the CDK8 activities. Accordingly, we can survey through the fly

genome to search for factors that interact with CDK8-CycC using single genetic crosses.

To facilitate this screen approach, we generated three stocks with the following genotypes:

“w1118; nub-Gal4; UAS-Cdk8-RNAi” (designated as “nub>Cdk8-i” for simplicity), “w1118;
nub-Gal4; UAS-CycC-RNAi” (“nub>CycC-i”), and “w1118; nub-Gal4, UAS-Cdk8+/CyO”

(“nub>Cdk8+”). We then conducted a dominant modifier genetic screen by crossing these

three lines in parallel with a collection of 490 deficiency (Df) lines (S1 Table), which uncovers

the majority of the euchromatic genome [45,46]. Any alteration of the wing vein patterns can

be readily discerned under dissecting microscopes, allowing us to search for Df lines that could

modify the vein phenotypes caused by specific alteration of CDK8 activities.

PLOS GENETICS Interactions between CDK8-CycC and Dpp signaling

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008832 May 28, 2020 5 / 30

https://doi.org/10.1371/journal.pgen.1008832


We inspected the vein patterns of the F1 females for enhancers and suppressors based on

the following criteria: suppressors of the CDK8- or CycC-RNAi phenotypes are expected to

display fewer or no ectopic veins (e.g., Fig 3A and 3C), while enhancers of the CDK8- or

CycC-RNAi phenotypes show more or longer ectopic veins (e.g., Fig 3B and 3D). To score the

strength of the modifications, we define strong suppressors as the Df lines that eliminate all of

the ectopic veins, while the Df lines that only shorten the length of the ectopic veins are scored

as weak suppressors. Similarly, we define strong enhancers to cause more or longer ectopic

veins than CDK8- or CycC-RNAi phenotypes, while the Df lines causing less severe vein

defects are designated as the weak enhancers. Conversely, the strong suppressors of the

CDK8-overexpression phenotype are expected to have vein patterns similar to those of wild-

type wings (particularly the L3/L4; e.g., Fig 3E, compared to the control shown in Fig 1E). If

the Df lines only partially restore the missing veins, then they are scored as the weak suppres-

sors. In contrast, the strong enhancers of the CDK8-overexpression phenotype are defined by

further disrupting the vein patterns, with the entire L3 or L4 missing, often accompanied with

strong disruption on other veins (e.g., Fig 3F); while the weaker enhancers further disrupted

the vein defects compared to the CDK8-overexpression phenotype, but less severe than the

strong enhancers.

From these screens, we identified 57 suppressor and 90 enhancer Df lines for the

CDK8-RNAi phenotype, and 62 suppressor and 98 enhancer Df lines for the CycC-RNAi phe-

notype. In addition, we identified 63 enhancer and 98 suppressor Df lines for the CDK8-over-

expression phenotype (Fig 3G and 3H). The results for all of these Df lines are summarized in

S1 Table. Of these dominant modifier Df lines, four of them suppressed the CDK8-RNAi and

CycC-RNAi phenotypes but enhance the CDK8-overexpression phenotype (Fig 3G, Table 1),

while 22 of them enhance the CDK8-RNAi and CycC-RNAi phenotypes but suppress the

CDK8-overexpression phenotype (Fig 3H, Table 1). To further validate this genetic approach,

Fig 3. Identification of deficiency lines that can dominantly modify the vein phenotypes caused by varying CDK8. (A-F) Adult

wings showing the examples of dominant modifiers. (A) nub-Gal4/Df(2R)Exel6064; UAS-Cdk8-RNAi (a suppressor of the CDK8-RNAi

phenotype); (B) nub-Gal4/+; UAS-Cdk8-RNAi/Df(3R)Exel6176, (an enhancer of the CDK8-RNAi phenotype); (C) nub-Gal4/Df(2R)
Exel6064; UAS-CycC-RNAi/+ (a suppressor of the CycC-RNAi phenotype); (D) nub-Gal4/+; UAS-CycC-RNAi/Df(3R)Exel6176 (an

enhancer of the CycC-RNAi phenotype); (E) nub-Gal4>UAS-Cdk8+/+; Df(3R)Exel6176 /+ (a suppressor of the CDK8-overexpression

phenotype); and (F) nub-Gal4>UAS-Cdk8+/Df(2R)Exel6064 (an enhancer of the CDK8-overexpression phenotype). Scale bar in F:

0.4mm. (G and H) The Venn diagrams summarize the numbers of suppressors and enhancers of the CDK8-specific phenotypes.

https://doi.org/10.1371/journal.pgen.1008832.g003
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we generated a transgenic line that allowed us to simultaneously deplete CDK8 and CycC

(“w1118; nub-Gal4; UAS-Cdk8-RNAi, CycC-RNAi”, referred to as “nub>Cdk8-i CycC-i”) with

nub-Gal4, and observed identical phenotypes to the ones caused by depleting either Cdk8 or

CycC alone (Fig 1D). With the exception of one Df line, the rest of these 25 Df lines have con-

sistently modified the ectopic vein phenotype caused by depletion of both CDK8 and CycC:

four of the Df lines behaved as suppressors and 21 of them as enhancers (Table 1). These

results show that the CDK8-specific vein phenotypes are modifiable and can be used to iden-

tify factors that functionally interact with CDK8-CycC in vivo.

Identification of Dad as an enhancer of the nub>Cdk8-i and nub>CycC-i
phenotypes but a suppressor of the Cdk8-overexpression phenotype

To identify the specific genes uncovered by these dominant modifier Df lines, we analyzed

these 26 genome regions with partial overlapping Df lines (Table 1). Interestingly, two partially

overlapping Df lines, Df(3R)BSC748 and Df(3R)Exel6176, enhanced the CDK8-RNAi and

CycC-RNAi phenotypes, but suppressed the CDK8-overexpression phenotype (Fig 3B, 3D and

3E; Table 1). The overlapping region uncovers one specific gene, Dad (Daughter against Dpp),

encoding the Drosophila homolog of Smad6/7 (Fig 4A). Thus, to test whether Dad is the

Table 1. Deficiency lines that dominantly modify the CDK8- or CycC-specific phenotypes.

Stock

#

Deficiency lines Cytogenetic

breakpoints

nub>CDK8+
background

nub>CDK8-RNAi
background

nub>CycC-RNAi
background

nub>CDK8-RNAi, CycC-RNAi
background

901 Df(1)svr 1A1;1B9—10 weak suppressor strong enhancer enhancer lethal

25059 Df(1)BSC531 3C3;3E2 enhancer strong suppressor strong suppressor enhancer

3196 Df(1)Sxl-bt 6E2;7A6 suppressor strong enhancer strong enhancer strong enhancer

1581 Df(2L)JS31 23A3—4;23D strong suppressor enhancer enhancer enhancer

9718 Df(2L)BSC244 32F2;33B6 enhancer strong suppressor strong suppressor strong suppressor

7512 Df(2L)Exel6030 33A2—33B3 suppressor enhancer enhancer enhancer

7546 Df(2R)Exel6064 53C11;53D11 strong enhancer suppressor strong suppressor suppressor

25430 Df(2R)BSC597 58A2;58F1 suppressor strong enhancer enhancer weak enhancer

27352 Df(2R)BSC780 60C2;60D14 strong suppressor strong enhancer strong enhancer strong enhancer

7561 Df(2R)Exel6082 60C4—60C7 suppressor enhancer enhancer enhancer

25436 Df(2R)BSC603 60C7—60D1 strong suppressor enhancer enhancer enhancer

24413 Df(3L)BSC389 66C12;66D8 suppressor enhancer enhancer enhancer

27577 Df(3L)BSC816 66D9;66D12 weak suppressor enhancer strong enhancer enhancer

26525 Df(3L)BSC673 67C7;67D10 suppressor enhancer weak enhancer enhancer

7945 Df(3L)Exel9011 76B8;76B9 suppressor weak enhancer enhancer enhancer

2596 Df(3L)6B-29+Df
(3R)6B-29

81Fa;81Fa suppressor enhancer enhancer no effects

7623 Df(3R)Exel6144 83A6-83B6 strong suppressor enhancer enhancer strong enhancer

9215 Df(3R)ED5495 85F16;86C7 enhancer suppressor suppressor weak suppressor

7965 Df(3R)Exel7310 86E18;87A1 suppressor strong enhancer enhancer enhancer

7976 Df(3R)Exel8159 88A4;88B1 suppressor enhancer enhancer weak enhancer

7655 Df(3R)Exel6176 89E11;89F1 strong suppressor weak enhancer weak enhancer weak enhancer

26846 Df(3R)BSC748 89E5;89E11 strong suppressor enhancer enhancer enhancer

7657 Df(3R)Exel6178 90F4;91A5 suppressor enhancer enhancer enhancer

2352 Df(3R)X3F 99D1—2;99E1 suppressor enhancer enhancer lethal

2155 Df(3R)A113 100A;3Rt suppressor strong enhancer enhancer enhancer

7918 Df(3R)Exel8194 100A4;100A7 suppressor weak enhancer enhancer strong enhancer

https://doi.org/10.1371/journal.pgen.1008832.t001
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specific gene that accounts for the modification of the CDK8-specific phenotypes by these two

Df lines, we performed similar genetic tests with two mutant alleles of Dad: DadMI04922, a

MiMIC (Minos Mediated Integration Cassette) insertion in an intron of the Dad gene [47],

and Dadj1E4, an insertion of the P{lacW} element in an intron of the Dad gene [48]. Indeed,

both Dadmutant alleles dominantly enhanced the CDK8-RNAi (Fig 4B), CycC-RNAi (Fig

4C), and CDK8-RNAi plus CycC-RNAi (Fig 4D) phenotypes, but suppressed the CDK8-over-

expression phenotype (Fig 4E, Table 2). These effects on the CDK8-specific vein phenotypes

Fig 4. Identification of the Dad gene and genes encoding other components of the Dpp signaling pathway as dominant modifiers

of the CDK8-specific phenotypes. (A) Schematic diagram of the genome region ofDf(3R)BSC748 andDf(3R)Exel6176, which uncover

the gene dad. Adult wings with the following genotypes: (B) nub-Gal4/+; UAS-Cdk8-RNAi/DadMI04922; (C) nub-Gal4/+;
UAS-CycC-RNAi/DadMI04922; (D) nub-Gal4/+; UAS-Cdk8-RNAi CycC-RNAi/DadMI04922; (E) nub-Gal4>UAS-Cdk8+/+; DadMI04922/+;

(F) nub-Gal4/tkvk16713; UAS-Cdk8-RNAi/+; (G) nub-Gal4>UAS-Cdk8+/tkvk16713; (H) nub-Gal4/Mad12; UAS-Cdk8-RNAi/+; (I) nub-
Gal4>UAS-Cdk8+/Mad12; (J) nub-Gal4/+; UAS-Cdk8-RNAi/Medea13; and (K) nub-Gal4>UAS-Cdk8+/+; Medea13/+; Scale bar in K:

0.4mm.

https://doi.org/10.1371/journal.pgen.1008832.g004

Table 2. Mutant alleles of genes encoding components of the Dpp signaling that modify the CDK8- or CycC-specific phenotypes.

Mutant alleles nub>Cdk8+ nub>Cdk8-i nub>CycC-i nub>Cdk8-i CycC-i
dppd6 NE Suppressor Suppressor Suppressor

dpphr92 NE Suppressor Suppressor Suppressor

dppS11 NE Suppressor Suppressor Suppressor

tkv7 Enhancer NE Suppressor Suppressor

tkvk16713 Enhancer Suppressor NE Suppressor

Madk00237 Enhancer NE Suppressor Suppressor

Mad1-2 NE Suppressor NE Suppressor

Mad8-2 NE Suppressor NE Suppressor

Mad12 Enhancer Suppressor NE NE

MadKG00581 Enhancer NE NE Suppressor

Medea1 Enhancer NE Suppressor Suppressor

Medea13 Enhancer Suppressor No Effect Suppressor

DadMI04922 Suppressor Enhancer Enhancer Enhancer

Dadj1e4 Suppressor Enhancer Enhancer Enhancer

NE, no effects.

https://doi.org/10.1371/journal.pgen.1008832.t002
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are similar to those observed for Df(3R)BSC748 and Df(3R)Exel6176, suggesting that Dad is

the specific gene that genetically interacts with CDK8 in vivo.

Mutants of multiple components of the Dpp signaling pathway genetically

interact with CDK8-CycC

The protein Dad functions as an inhibitory Smad in the Dpp/TGFβ signaling pathway, which

plays critical roles in regulating cell proliferation and differentiation during the development

of metazoans [49–54]. During the development of the wing discs, Dpp spreads from the ante-

rior-posterior boundary to the anterior and posterior halves [49–51,55]. Upon the binding of

the Dpp ligand to the Tkv-Punt receptor complex on the cell membrane, the TGFβ type II

receptor Punt phosphorylates and activates the type I receptor Tkv. This results in the phos-

phorylation of Mad by Tkv at its C-terminal SSXS motif, known as the phospho-Mad protein

or pMad. Medea, the unique co-Smad protein in Drosophila, associates with pMad in the cyto-

plasm, and then this heteromeric Smad complex translocates into the nucleus and regulates

the expression of its target genes [53,55–57].

The genetic interactions between CDK8-CycC and Dad prompted us to test whether

mutant alleles of other components of the Dpp signaling pathway could also genetically inter-

act with CDK8 and CycC. For this, we crossed multiple mutant alleles of these components

with the CDK8-CycC depletion or overexpression lines. As summarized in Table 2, mutants of

multiple components of the Dpp signaling pathway could either dominantly enhance or sup-

press the CDK8-specific vein phenotypes. For instance, dppd6, dpphr92, dppS11, tkv7, tkvk16713

(Fig 4F),Mad1-2,Mad12 (Fig 4H),Mad8-2,Madk00237,MadKG00581,Medea1, andMedea13 (Fig

4J) all dominantly suppress the ectopic vein phenotype caused by depletion of CDK8, CycC, or

both CDK8 and CycC (Table 2). However, tkv7, tkvk16713 (Fig 4G),Madk00237,Mad12 (Fig 4I),

MadKG00581,Medea1, andMedea13 (Fig 4K) enhance the CDK8-overexpression phenotype

(Table 2). Testing additional mutant alleles of these genes have revealed that most of them can

also dominantly modify the CDK8-specific phenotypes (Table 2). Dpp is activated in a specific

pattern in the middle part of the wing pouch area, while the nub-Gal4 display a well-character-

ized pattern in the entire wing pouch area. These two patterns differ, arguing against the possi-

bility that Dpp signaling may affect nub-Gal4 expression pattern. In addition, reducing Mad or

Dad by half has little effects on the expression of a UAS-RFP reporter driven by nub-Gal4 (S3

Fig), suggesting that the expression and activity of nub-Gal4 are not affected by Dpp signaling.

Taken together, these genetic interactions suggest that CDK8-CycC may affect vein patterning

by modulating Dpp signaling.

CDK8-CycC positively regulates Mad-dependent transcription

Given that CDK8 and CycC are known subunits of the Mediator complex, which serves as a

scaffold complex mediating the interactions between the RNA Pol II basal transcription

machinery and a number of gene-specific transcription activators [3,7,58]. Thus, the simplest

model to explain the genetic interactions between Dpp signaling and CDK8-CycC is that the

CDK8-CycC complex may directly regulate the transcriptional activity of Mad in the nucleus.

To test this model, we analyzed the effects of CDK8-CycC depletion on the expression of salm
(spalt major), a well-characterized direct target gene of Mad involved in vein differentiation

[59–62]. The sal-lacZ (P{PZ}salm03602) is a enhancer trap line derived from an insertion of a P
{PZ} element in the promoter region of the salm gene [63,64], and the expression of sal-lacZ
can serve as a reporter for the transcriptional activity of Mad [65].

Because the expression of sal-lacZ is symmetric along the dorsal-ventral boundary of the

wing pouch area of the wing discs (Fig 5A), we tested whether specific depletion of CDK8 or

PLOS GENETICS Interactions between CDK8-CycC and Dpp signaling

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008832 May 28, 2020 9 / 30

https://doi.org/10.1371/journal.pgen.1008832


CycC within the dorsal compartment of the wing discs could affect the transcriptional activity

of Mad by detecting the transcription level of sal using an anti-β-galactosidase (anti-β-Gal)

antibody. For this, we depleted genes of interest using the ap-Gal4 driver, and then compared

the β-Gal expression between the dorsal and ventral compartments. As expected, depleting

Mad with two transgenic RNAi lines (BL-43183 (Fig 5B) and BL-31315 (S4B and S4B’ Fig)),

Medea (Fig 5C), or Dpp (S4A Fig) using this approach reduced the expression of the sal-lacZ
reporter in the dorsal compartment. Importantly, depletion of CDK8 (Fig 5D), CycC (Fig 5E),

or both (Fig 5F), in the dorsal compartment significantly decreased the β-Gal expression level

in the dorsal compartment compared with the ventral compartment of the same disc. After

quantifying the line-scan profiles of the Sal-lacZ levels in the wing porch area, we calculated

the relative signal intensity of dorsal to ventral Sal-lacZ levels for 5 wing discs of each genotype

Fig 5. CDK8-CycC positively regulates Mad-dependent transcription. Confocal images of the wing pouch area of a L3 wandering

larval wing disc of (A) ap-Gal4, sal-lacZ/+ (control); (B) ap-Gal4, sal-lacZ/UAS-Mad-RNAi (BL-43183); (C) ap-Gal4, sal-lacZ/
UAS-Medea-RNAi; (D) ap-Gal4, sal-lacZ/+; UAS-Cdk8-RNAi/+; (E) ap-Gal4, sal-lacZ/+; UAS-CycC-RNAi/+; and (F) ap-Gal4, sal-lacZ/
+; UAS-Cdk8-RNAi CycC-RNAi/+. All signals presented were from anti-β-galactosidase staining. Scale bar in F: 25μm. Dorsal (D)-

ventral (V) boundaries are marked using a short line in these images. (G) Quantification of Sal-lacZ expression. The black columns

represent the average of Sal-lacZ expression in the ventral compartment of the indicated genotypes (N = 5 for each genotype), and light

green columns represent the measurements in the dorsal compartments. (H) Western Blots of a GST pull-down assay between

GST-CDK8 and His-tagged Mad fragments. The amino acids (AA) positions of MH1 and MH2, separated by the linker region, are

based on a BLAST search ofDrosophilaMad-RA isoform (455AA). The other isoform, Mad-RB (525AA), has additional 70AA at the N-

terminus. We focused on the Mad-RA isoform in this work. (I) Y2H assay showing the specific interaction between CDK8 and the

linker region of Mad. SD/-Leu/-Trp and SD/-Leu/-Trp/-His are synthetic dropout (SD) media lacking “Leu and Trp”, or “Leu, Trp, and

His”, respectively. The co-transformed yeast cultures were spotted on SD/-Leu/-Trp and SD/-Leu/-Trp/-His plates, positive interactions

result in yeast growth on the SD/-Leu/-Trp/-His plate. AD, GAL4-activation domain (prey); BD, GAL4-DNA-binding domain (bait);

AD- or BD-protein, AD- or BD-fusion proteins.

https://doi.org/10.1371/journal.pgen.1008832.g005
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(S5 Fig; see Materials and Methods for details), which validated the effects of CDK8-CycC on

sal-lacZ expression (Fig 5G). Similar observations were made by quantification of the pixel

intensities in areas in the dorsal and ventral compartments (S6 Fig).

To further validate the effects of CDK8-CycC depletion on Mad-activated gene expression,

we analyzed the expression of the quadrant enhancer (QE) of the selector gene vestigial (vgQE-
lacZ) in wing discs. Similar to Sal-lacZ reporter, vgQE-lacZ also displays a symmetric expres-

sion pattern along the D-V boundary in the wing pouch (Fig 6A) [66,67]. As expected, deplet-

ing Mad (BL-31315) using ap-Gal4 driver significantly reduced the expression of vgQE-lacZ in

the dorsal compartment (Fig 6B). Although depleting CDK8 alone only marginally reduced

the vgQE-lacZ expression in the dorsal compartment (Fig 6C), a more obvious effect was

observed with the depletion of CycC (Fig 6D), and a stronger reduction of the reporter expres-

sion was detected with the depletion of both CDK8 and CycC (Fig 6E) using the same

approach. We note that the interpretation of the data presented in Fig 6 is compounded by the

fact that the transcription of the vg in different compartments of wing discs is controlled by

Wingless (Wg) and Dpp signaling, as well as a feed-forward regulation by Vg itself [66,67].

Nevertheless, the most parsimonious model to explain the observations based on Sal-lacZ and

vgQE-lacZ reporters is that CDK8-CycC positively regulates Mad-dependent transcription.

One caveat of these analyses is that the CKM could affect ap-Gal4 activities. As shown in

S7B Fig, we observed that depleting CDK8 and CycC reduces the ap-Gal4-dependent

Fig 6. Effects of various Mediator subunits on the expression of the vgQE-lacZ reporter. Representative confocal

images of anti-β-Gal staining of wing discs of the following genotypes: (A) ap-Gal4/+; vgQE-lacZ/+; (B) ap-Gal4/+;
vgQE-lacZ/UAS-Mad-RNAi (BL-31315); (C) ap-Gal4/+; vgQE-lacZ/UAS-Cdk8-RNAi; (D) ap-Gal4/+; vgQE-lacZ/
UAS-CycC-RNAi; (E) ap-Gal4/+; vgQE-lacZ/UAS-Cdk8-RNAi CycC-RNAi; (F) ap-Gal4/+; vgQE-lacZ/
UAS-Med12-RNAi; (G) ap-Gal4/+; vgQE-lacZ/UAS-Med13-RNAi; (H) ap-Gal4/+; vgQE-lacZ/UAS-Med15-RNAi; (I)

ap-Gal4/+; vgQE-lacZ/UAS-Med23-RNAi; (J) ap-Gal4/+; vgQE-lacZ/UAS-Med24-RNAi; (K) ap-Gal4/+; vgQE-lacZ/
UAS-Med31-RNAi; (L) ap-Gal4/+; vgQE-lacZ/UAS-Med30-RNAi. At least five wing discs were examined for each

genotype. Scale bar in L: 25μm.

https://doi.org/10.1371/journal.pgen.1008832.g006
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expression of UAS-GFP in the dorsal compartment of wing discs (compared to the control

shown in S7A Fig). This observation suggests that the positive effects of depletion of CDK8

and CycC on wing vein patterning are hypomorphic, representing an under-estimation of the

positive effects of CDK8-CycC in regulating Mad-dependent transcription. In addition, we

observed that depleting Ap protein using ap-Gal4 has no effects on the sal-lacZ expression in

the dorsal compartment (S7C Fig), suggesting that the expression of sal-lacZ is independent of

the levels of Ap or Gal4.

Direct interactions between CDK8 and Mad

Since Mad phosphorylation at its C-terminus (pMad) by the Tkv-Punt receptor complex

marks the activation of Mad, we tested whether CDK8 affects the pMad level. For this, we

depleted CDK8, CycC, or both, with the ap-Gal4 line, and then detected the levels of the acti-

vated Mad with an anti-pMad antibody. In the wing pouch area of the control discs, the pMad

protein is symmetrically distributed along the dorsal-ventral boundary (S8A Fig). However,

depletion of CDK8-CycC did not affect pMad levels when comparing the dorsal compartment

with the ventral compartment (S8B–S8D Fig), suggesting that CDK8-CycC does not affect the

phosphorylation of Mad at its carboxy terminus in the cytoplasm. These results support the

idea that the CDK8-CycC complex directly regulates the transcriptional activity of Mad in the

nucleus.

R-Smads are characterized by a highly conserved amino-terminal MH1 (Mad homology 1)

domain that binds to DNA and a C-terminal MH2 (Mad homology 2) domain that harbors

the transactivation activity, separated by a serine- and proline-rich linker region (Fig 5H) [68].

It was previously reported that CDK8 and a few other kinases (see below) may phosphorylate

Smad proteins in both Drosophila and mammalian cells [14,15,31,55,68], but whether and how

CDK8 interacts with Smads remain unknown. To determine whether CDK8 directly interacts

with Mad, we performed a GST-pulldown assay. As shown in Fig 5H, purified GST-CDK8 can

directly bind with His-tagged full length Mad (Mad-FL, AA1-455) expressed in E. coli. We

then mapped the specific domain of Mad that interacts with CDK8 using His-tagged fragments

of the Mad protein. We observed that the “Mad-N2” fragment (AA1-230) and the “Mad-C2”

fragment (AA151-455), but not the “Mad-N1” fragment (AA1-150) or the “Mad-C1” fragment

(AA231-455), can interact directly with CDK8 (Fig 5H). We validated the interaction between

CDK8 and the linker region using the yeast two-hybrid (Y2H) assay: the “Mad-N2” fragment,

but not the “Mad-N1” fragment, as the bait can interact with full-length CDK8 as the prey (Fig

5I). It is not feasible to use this Y2H approach test with Mad-FL or Mad-C1/C2 fragments as

bait, since they auto-activate as the baits; while the full-length CDK8 can also auto-activate as

the bait (S9 Fig). Taken together, these results suggest that CDK8 directly interacts with part of

the linker region of Mad protein (AA151-230). Implications of these physical interactions are

discussed below.

Involvement of additional Mediator complex subunits in regulating the

Mad/Smad-dependent transcription

The Med15/ARC105 subunit of the Mediator complex has been previously shown to directly

interact with the transactivation MH2 domain of Smad2/3, thereby mediating the Smad2/

3-Smad4-dependent transcription in Xenopus [69], and Med15 is required for the transcrip-

tion of Dpp target genes in Drosophila [70]. However, whether other Mediator subunits are

involved in regulating the Mad/Smad-dependent transcription remains unknown. To address

this question, we depleted individual subunits of the Mediator complex upon conditional

expression of interfering RNAs with ap-Gal4, and then analyzed the expression of the sal-lacZ
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reporter. Of the 30 Mediator subunits tested (Table 3), we have observed that depletion of six

additional Mediator subunits, Med12 (Fig 7B), Med13 (Fig 7C), Med15 (Fig 7D), Med23 (Fig

7E), Med24 (Fig 7F), and Med31 (Fig 7G), by ap-Gal4 significantly reduced the expression of

sal-lacZ in cells of the dorsal compartment compared with the cells in the ventral compartment

of the same wing discs (Fig 7J); similar to depletion of CDK8 or CycC (Fig 5). The effects of

these six Mediator subunits were further validated using the vgQE-lacZ reporter: their deple-

tion using ap-Gal4 also reduces the vgQE-lacZ expression in the dorsal compartment (Fig 6F–

6K). These results suggest that these Mediator subunits are required for the Mad-activated

gene expression. However, RNAi depletion of the remaining 15 Mediator subunits using ap-
Gal4 driver did not significantly affect sal-lacZ expression (Table 3), as β-Gal expression

remained symmetric along the dorsal-ventral boundary as exemplified for depletion of Med1

Table 3. The effects of depleting different Mediator subunits on the expression of the sal-lacZ and vgQE-lacZ reporters in wing discs during the third instar larval

stage, as well as the wing and eye phenotypes in adult flies.

Mediator

subunit

Effect on sal-lacZ
expression

Effect on vgQE-lacZ
expression

Phenotypes using the nub-
Gal4 driver

Phenotypes using the ey-
Gal4 driver

Terriente-Felix et al. (2010)

(nub-Gal4)

CDK8 decrease decrease ectopic vein NE ND

CycC decrease decrease ectopic vein NE ND

CDK8 & CycC decrease decrease ectopic vein NE ND

Med12 decrease decrease pupal lethal small eye small wing

Med13 decrease decrease pupal lethal small eye ND

Med15 decrease decrease cell death small eye ND

Med23 decrease decrease vein defects NE ND

Med24 decrease decrease NE small eye ND

Med31 decrease decrease cell death pupal lethal ND

Med7 deformed ND wingless pupal lethal ND

Med8 deformed ND pupal lethal pupal lethal ND

Med14 deformed ND wingless pupal lethal ND

Med16 deformed ND pupal lethal small eye small wing

Med17 deformed ND wingless pupal lethal ND

Med21 deformed deformed pupal lethal pupal lethal ND

Med22 deformed ND cell death eyeless ND

Med1 NE ND cell death NE ND

Med4 NE ND vein defects NE ND

Med6 NE ND larval lethal small eye ND

Med9 NE ND NE NE ND

Med10 NE ND NE NE small wing

Med11 NE ND cell death eyeless ND

Med18 NE ND NE NE ND

Med19 NE ND ectopic vein NE ND

Med20 NE ND vein defects small eye cell death

Med25 NE ND small wing NE small wing

Med26 NE ND NE small eye ND

Med27 NE ND cell death eyeless small wing

Med28 NE ND cell death small eye ND

Med29 NE ND NE NE ND

Med30 NE NE cell death small eye cell death

NE, no effects.

ND, not

determined.

https://doi.org/10.1371/journal.pgen.1008832.t003
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(Fig 7A and 7J) and Med25 (Fig 7H) on sal-lacZ expression. Similarly, depletion of Med30

using ap-Gal4 does not obviously affect the expression of sal-lacZ and vgQE-lacZ reporters,

which remains symmetric along the dorsal-ventral boundary (Fig 6L, Table 3). Furthermore,

depleting the remaining Mediator subunits, including Med7 (Fig 7I), Med8 (S10A Fig),

Med14 (S10B Fig), Med16 (S10C Fig), Med17 (S10D Fig), Med21 (S10E Fig), and Med22

(S10F Fig), severely disrupted the morphology of the wing discs, making it difficult to deter-

mine their roles in regulating sal transcription. Taken together, these observations suggest that

multiple Mediator subunits, but apparently not all of them, are required for Mad-dependent

transcription in Drosophila.

CDK9 and Yorkie also positively regulate the Mad/Smad-dependent

transcription

Besides CDK8, several other kinases, such as CDK7, CDK9, GSK3 (Glycogen synthase kinase

3), and MAPKs (mitogen-activated protein kinases) such as ERK (extracellular signal-regu-

lated kinase) and ERK2, have been implicated to phosphorylate and regulate the transcrip-

tional activity of Smads [14,15,68,71] (Fig 8A, see below). The four phosphorylation sites (Ser

or Thr residues) within the linker region of Smads appear to be conserved from Drosophila to

mammals (Fig 8B; see Discussion). The phosphorylation of Smads within the linker region

may facilitate the subsequent binding with transcription co-factors, such as YAP (Yes-associ-

ated protein) [14]. However, it is still unclear whether all of these kinases regulate Smads

Fig 7. Effects of the additional Mediator subunits on the expression of the sal-lacZ reporter. Representative confocal images of anti-

β-Gal staining of wing discs of the following genotypes: (A) ap-Gal4, sal-lacZ/+; UAS-Med1-RNAi/+; (B) ap-Gal4, sal-lacZ/+;
UAS-Med12-RNAi/+; (C) ap-Gal4, sal-lacZ/+; UAS-Med13-RNAi/+; (D) ap-Gal4, sal-lacZ/+; UAS-Med15-RNAi/+; (E) ap-Gal4, sal-
lacZ/+; UAS-Med23-RNAi/+; (F) ap-Gal4, sal-lacZ/+; UAS-Med24-RNAi/+; (G) in ap-Gal4, sal-lacZ/+; UAS-Med31-RNAi/+; (H) ap-
Gal4, sal-lacZ/UAS-Med25-RNAi; and (I) ap-Gal4, sal-lacZ/+; UAS-Med7-RNAi/+. (J) Quantification of Sal-lacZ expression. The black

columns represent the average of Sal-lacZ expression in the ventral compartment of five wing discs of the indicated genotypes (N = 5

for each genotype), and light green columns represent the measurements in the dorsal compartments. Scale bar in A: 25μm. For (H)

and (I), at least five wing discs were examined for each genotype.

https://doi.org/10.1371/journal.pgen.1008832.g007

PLOS GENETICS Interactions between CDK8-CycC and Dpp signaling

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008832 May 28, 2020 14 / 30

https://doi.org/10.1371/journal.pgen.1008832.g007
https://doi.org/10.1371/journal.pgen.1008832


activity in vivo. With the exception of YAP (Yorkie or Yki, in Drosophila), it is also unclear

whether these regulatory mechanisms are conserved during evolution.

To validate the relevance of these kinases in regulating Mad-dependent gene expression, we

depleted the Drosophila orthologs of CDK7, CDK9, Shaggy (Sgg, the GSK3 homolog in Dro-
sophila), Rolled, and dERK2 (MAPK/ERK homologs in Drosophila), in the dorsal compart-

ment of wing discs (using ap-Gal4 as above), and then analyzed sal-lacZ expression in the

wing pouch. As expected for a positive role of Yki in regulated Mad-dependent transcription

[14], depletion of Yki in the dorsal cells significantly reduced the expression of sal-lacZ com-

pared to the cells in the ventral compartment of the same discs (Fig 8C and 8J). Using the

same approach, we have observed that depleting CDK9 (Fig 8D and 8J) and its partner CycT

(Cyclin T, Fig 8E and 8J; [72]) also reduced sal-lacZ expression. These observations suggest

that both Yki and CDK9-CycT are required for Mad/Smad-dependent transcription in Dro-
sophila, which is consistent to the previous reports [14,31]. However, depletion of CDK7 (Fig

Fig 8. Validation of additional transcriptional cofactors for their roles in regulating Mad-dependent transcription. (A) Model: linker region of

pMad may be phosphorylated by CDK8, CDK9, or MAPKs as priming kinase recruiting Yki/YAP binding to pMad to drive target gene, such as sal
transcription; and further phosphorylation by Sgg/GSK3 at the linker region may switch the binding to dSmuf1 and causes pMad degradation. (B)

Sequence alignment of part of the Mad/Smad1 linker region from different species showing the conservation of the potential phosphorylation sites

by CDKs, MAPKs, and GSK3. Representative confocal images of anti-β-Gal staining of wing discs of the following genotypes: (C) ap-Gal4, sal-lacZ/
+; UAS-yki-RNAi/+; (D) ap-Gal4, sal-lacZ/UAS-Cdk9-RNAi; (E) ap-Gal4, sal-lacZ/+; UAS-CycT-RNAi/+; (F) ap-Gal4, sal-lacZ/UAS-Cdk7-RNAi;
(G) ap-Gal4, sal-lacZ/+; UAS-rl-RNAi/+; (H) ap-Gal4, sal-lacZ/+; UAS-ERK2-RNAi/+; and (I) ap-Gal4, sal-lacZ/UAS-sgg-RNAi. Scale bar in D:

25μm. (J) Quantification of Sal-lacZ expression. The grey columns represent the average of Sal-lacZ expression in the ventral compartment of the

indicated genotypes, and light green columns represent the measurements in the corresponding dorsal compartments. N = 5 for the quantification

of sal-lacZ expression after depleting Yki, Cdk9, or CycT in the dorsal compartment; N = 3 for the quantification of sal-lacZ expression after

depleting Cdk7 or Sgg in the dorsal compartment. At least five wing discs were examined for depletion of Rl (G) and ERK2 (H), and the

represented images were shown.

https://doi.org/10.1371/journal.pgen.1008832.g008
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8F and Fig 8J) or DrosophilaMAPK homologs, either Rolled (Fig 8G) or dERK2 (Fig 8H), did

not affect the expression of sal-lacZ. Although depletion of Sgg increased the size of the dorsal

compartment, the intensity of anti-β-Gal staining remained similar to the ventral compart-

ment (Fig 8I and 8J). We note that depleting CDK9 (S7D Fig), Med12 (S7E Fig), or Med13

(S7F Fig) have no obvious effects on the expression of UAS-GFP reporter, suggesting that their

effects on sal-lacZ expression are independent of the Gal4 activity per se. Together with the

previous reports [14,68], our in vivo analyses have validated the conserved roles of

CDK8-CycC, CDK9-CycT, and Yki/YAP on Mad/Smad-dependent transcription.

Discussion

To study the function and regulation of CDK8 in vivo, we have developed a genetic system

that yields robust readouts for the CDK8-specific activities in developing Drosophila wings.

These genetic tools provide a unique opportunity to perform a dominant modifier genetic

screen, allowing us to identify multiple components of the Dpp/TGFβ signaling pathway that

can genetically interact with the CDK8-CycC complex in vivo. Our subsequent genetic and cel-

lular analyses reveal that CDK8, CycC, and six additional subunits of the Mediator complex, as

well as CDK9 and Yki are required for the Mad-dependent transcription in the wing discs. In

addition, CDK8 can directly interact with the linker region of Mad. These results have

extended the previous biochemical and molecular analyses on how different kinases and tran-

scription cofactors modulate the Mad/Smad-activated gene expression in the nucleus. Further

mapping of specific genes uncovered by other deficiency lines may also open up the new direc-

tions to advance our understanding of the conserved function and regulation of CDK8 during

development.

Multiple subunits of the Mediator complex are required for Mad/Smad-

dependent transcription

The Mediator complex functions as a molecular bridge between gene-specific transcription

factors and the RNA Pol II general transcription apparatus, and diverse transactivators have

been shown to interact directly with distinct Mediator subunits [4,6–9,73]. However, it is

unclear whether all Mediator subunits are required by different transactivators to regulate

gene expression, or whether Mediator complexes composed of fewer and different combina-

tions of Mediator subunits exist in differentiated tissues or developmental stages. Gene-specific

combinations of the Mediator subunits may be required in different transcription processes, as

not all Mediator subunits are simultaneously required for all transactivation process [74]. For

instance, ELK1 target gene transcription requires Med23, but lacking Med23 does not func-

tionally affect some other ETS transcription factors, such as Ets1 and Ets2 [75]. Similarly,

Med15 is required for the expression of Dpp target genes, but does not appear to affect the

expression of EGFR (epidermal growth factor receptor) and Wg targets in Drosophila [70].

It has been previously reported that the Med15 subunit is required for the Smad2/3-Smad4

dependent transcription, as its removal from the Mediator complex abolishes the expression of

Smad-target genes and disrupts Smad2/3-regulated dorsal-ventral axis formation in Xenopus
embryos [69]. Further biochemical analyses showed that increased Med15 enhances, while its

depletion decreases, the transcription of Smad2/3 target genes, and that the Med15 subunit

can directly bind to the MH2 domain of Smad2 or Smad3 [69]. In Drosophila, loss or reduc-

tion of Med15 reduced the expression of Dpp targets, resulting in smaller wings and disrupted

vein patterning (mainly L2) [70]. We also observed that depletion of Med15 or CDK8 reduces

the expression of a Mad-target gene. These observations support the idea that CDK8 and

Med15 play a conserved and positive role in regulating Mad/Smad-activated gene expression.
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Aside from Med15 and CDK8, it remains unclear whether other Mediator subunits are also

involved in Mad/Smad-dependent transcription. We identified six additional Mediator sub-

units that are required for the Mad-dependent transcription, including CycC, Med12, Med13,

Med23, Med24, and Med31 (Fig 5, Fig 6, Fig 7 and Table 3). Interestingly, aside from Med23

and Med24 being specific to metazoans, counterparts of the other six subunits are not essential

for cell viability in the budding yeast [5]. The similar effects of the four CKM subunits on

Mad-activity suggest that they may function together to stimulate Mad-dependent transcrip-

tion. We note that depletion of seven Mediator subunits, Med7, Med8, Med14, Med16,

Med17, Med21, and Med22, severely disrupts the morphology of the wing discs (Fig 7I and

S10 Fig), making it difficult to assay their effects on the transcriptional activity of Mad in vivo.

Consistently, all corresponding subunits, except Med16, are critical for cell viability in the bud-

ding yeast [5]. In contrast, reducing expression of the 15 remaining subunits of the Drosophila
Mediator complex did not significantly alter the expression of a Mad-dependent reporter

(Table 3). Med1 and Med25 are loosely associated to the small Mediator complex in human

cell lines [5]. A caveat for these negative results is that depleting these subunits using the exist-

ing RNAi lines may not be sufficient to affect sal-lacZ expression, even though the majority of

these transgenic RNAi lines can generate severe phenotypes in the eye, wing, or both (Table 3).

Further analyses are necessary to validate these negative data in the future. Taken together, our

results indicate that not all Mediator subunits are required for the expression of the Mad-target

genes that we tested in the developing wing discs.

Role of Yki/YAP and different kinases in regulating Mad/Smad-dependent

transcription

Interestingly, Yki/YAP, which can function as a transcriptional co-factor for Mad/Smad, was

also reported to associate with several subunits of the Mediator complex to drive transcription.

Specifically, Med12, Med14, Med23, and Med24 were identified from a YAP IP-mass spec-

trometry sample in HuCCT1 cells [76]. Med23 was also reported to regulate Yki-dependent

transcription of Diap1 in wing discs [77]. In this work, we found that Yki, Med12, Med23, and

Med24 were also required for Mad-dependent transcription of sal-lacZ. Although the exact

molecular mechanisms of how Yki interacts with certain Mediator subunits remain unclear, it

is plausible that Yki may further strengthen the binding between Mad and Med15 through

interactions with other subunits such as Med12, Med23, and Med24.

Based on biochemical analyses of the Smad1 phosphomutants and cell biological analyses

using cultured human epidermal keratinocytes (HaCaT cells), several kinases including

CDK8, CDK9, and ERK2 were shown to phosphorylate serine residues (Ser, or S) within the

linker region of pSmad1 at S186, S195, S206, and S214, or the equivalent sites in pSmad2/3/5.

These modifications were proposed to regulate positively Smad1-dependent transcriptional

activity [14]. Of these sites, S206 and S214 are both conserved from Drosophila to humans (Fig

8B). In addition, studies using Xenopus embryos and cultured L cells suggest that MAPKs may

phosphorylate the linker region of Smad1 (including S214) and lead to its degradation [71].

Nevertheless, analyses with Drosophila embryos and wing discs indicate that S212 (equivalent

to human pSmad1 S214) is phosphorylated by CDK8, while S204 (unique in Drosophila) and

S208 (equivalent to human pSmad1 S210) are phosphorylated by Sgg/GSK3 [15]. These studies

suggest the following model in explaining how Smads activate the expression of their target

genes and how this process is turned off (Fig 8A, Fig 9): after Smads are phosphorylated at

their C-termini and translocated into the nucleus, CDK8 and CDK9 (potentially also MAPKs)

act as the priming kinases to further phosphorylate pSmads in the linker region at S206 and

S214. This may facilitate the interaction between pSmads and transcriptional cofactors such as
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YAP, stimulating the expression of Smads target genes. Overexpression of Yki in Drosophila
wing disc increases the expression of the vgQE-lacZ reporter [14], which validates the role of

Yki/YAP in activating Mad/Smad1-dependent gene expression in vivo. Subsequently, pSmads

are further phosphorylated by GSK3 within the linker region at T202 and S210, which may

facilitate Smad1/5 binding to E3 ubiquitin ligases such as Smurf1 and Nedd4L, causing the

degradation of Smads through the ubiquitin-proteasome pathway [14,15,31,55,68].

Although this model (Fig 9) is still rather speculative, it serves as a conceptual framework to

explain how transactivation of Smads is coupled to its degradation, similar to other transcrip-

tional activators [78]. It is challenging to determine whether these kinases act redundantly or

sequentially for different phosphorylation sites, the exact orders of these phosphorylation

events, as well as their biological consequences in vivo. Moreover, it remains unexplored

whether these regulatory mechanisms are conserved during evolution. The importance of

these issues is highlighted by the critical role of TGFβ signaling in regulating the normal devel-

opment of metazoans and the dysregulation of this pathway in a variety of human diseases

such as cancers [54,79–81].

The precise spatiotemporal activation of the Dpp signaling pathway in the wings discs is

critical for proper formation of the stereotypical vein patterns in Drosophila [59,62]. This

model system provides an ideal opportunity to dissect the dynamic regulation of the Mad-acti-

vated gene expression in the nucleus. Indeed, depleting CDK8 in wing discs reduces expres-

sion of the Mad-dependent sal-lacZ reporter, suggesting that CDK8 positively regulates Mad-

dependent transcription. This is consistent with the effects of CDK8 on Smad1/5-dependent

transcription in mammals [14,82]. Depleting CDK8 does not affect the phosphorylation of

Mad at its C-terminus as revealed by pMad immunostaining (S8 Fig), nor does it affect the

physical interaction between CDK8 and the linker region of Mad, supporting the idea that

CDK8 may only affect subsequent phosphorylation of Mad, presumably within the linker

region.

Besides CDK8-CycC, depleting CDK9-CycT also decreases the expression of the sal-lacZ
reporter, supporting the notion that CDK8-CycC and CDK9-CycT may play non-redundant

roles in further phosphorylating pMad in the nucleus. However, we did not observe any effects

of depletion of CDK7 or MAPKs on sal-lacZ expression, suggesting that their role in regulating

the transcriptional activity of Smads may not be conserved in Drosophila. Alternatively, the

Fig 9. Working model. Model of Mad/Smad-dependent transcription activation through the CKM and the Mediator

complex. GTFs, General Transcription Factors; MH1, Mad homology 1; MH2, Mad homology 2.

https://doi.org/10.1371/journal.pgen.1008832.g009
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two MAPK/ERK homologs, Rolled and ERK2, may act redundantly in regulating Mad-depen-

dent transcription. Lastly, depleting Sgg/GSK3 in the dorsal compartment of the wing disc

increases the size of this compartment, yet the expression level of the sal-lacZ reporter is simi-

lar to the ventral compartment. These observations are consistent with previous reports that

phosphorylations of Mad/Smad in the linker regions by CDK8-CycC and Sgg/GSK3 regulate

the level and range of Mad-dependent gene expression [14,15,31,55,68].

Together with the previous reports [14,15,31,55,68,83], our data support that CDK8-CycC

and CDK9-CycT may phosphorylate pMad at the linker region, which may facilitate the bind-

ing between Yki and Mad. We speculate that this interaction may synergize the recruitment of

the Mediator complex, presumably at least through the interaction between its Med15 subunit

and the MH2 domain of Mad (Fig 9). Alternatively, Yki may also facilitate the recruitment of

the whole Mediator complex through its interactions with Med12, Med23, and Med24. The

synergistic interactions among Mad, Yki, the Mediator complex, and RNA Pol II may be

required for the optimal transcriptional activation of the Mad-target genes (Fig 9).

One of the challenges is to illustrate the dynamic interactions between these factors and

diverse protein complexes that couple the transactivation effects of Mad/Smads on gene tran-

scription with their subsequent degradation at the molecular level. Smad3 phosphorylation

strongly correlates with Med15 levels in breast and lung cancer tissues; together, they potenti-

ate metastasis of breast cancer cells [84]. Thus, it will be important to test whether additional

Mediator subunits that we identified in Drosophila play similar roles in mammalian cells. It

will also be interesting to determine whether a partial Mediator complex, composed of a subset

of the Mediator subunits, exists and regulates Mad/Smad-dependent gene expression. Further-

more, detailed biochemical analyses may yield mechanistic insights into how CDK8 and

Med15 act in concert in stimulating the Mad/Smad-dependent gene expression.

Potential role of CDK8-CycC in regulating cross-talks among different

signaling pathways

Wing pouch-specific alteration of CDK8 activity results in two major phenotypes: disrupted

vein patterns and altered size of wing blades. While the effects on wing size and cell numbers

can be explained by the role of CDK8 in regulating cell proliferation through E2F1 [10,11], the

effects of CDK8 on vein patterning are more complex. The stereotypical wing vein patterns in

adult flies are gradually defined by elaborated spatiotemporal interplays among different sig-

naling pathways, including Dpp, EGFR, Hedgehog (Hh), Notch (N), and Wingless (Wg), in

the developing wing discs [55,59,60,62]. During the larval and pupal stages, these signaling

pathways and their downstream transcriptional targets coordinately control the cell prolifera-

tion and differentiation of cell in different parts of the wing disc to form individual veins.

It is noteworthy that varying CDK8 activities has different effects on different veins: gain of

CDK8 causes the loss of the L3 and L4 veins, but the vein patterns of L2 and L5 appear thicker

and more diffusive; while the ectopic veins caused by reduction of CDK8 are mainly inter-

twined with the L2 and L5 veins (Fig 1). Our analyses on the genetic interactions between

CDK8 and the components of the Dpp signaling pathway led us to discover the role of the

Mediator complex in Mad-stimulated transcription of sal. However, there is a gap in our

understanding of how reduced expression of sal in wing discs is linked to the vein defects in

adult wings. It is known that salm and salr (spalt-related), two members of the spalt gene family

that encode zinc-finger transcriptional repressors, function downstream of the Dpp signaling

pathway during development of the central part of the wing [85]. Depletion of either salm or

salr alone resulted in ectopic vein formation around L2 in adult wings, yet depletion or loss of

both salm or salr caused loss of vein phenotype [61,86]. In addition, elimination of L2 in
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ventral-anterior and ectopic L5 in dorsal-posterior were observed in salm/salr clones at differ-

ent region of the wing [61]. These observations suggest that the dosage of salm and salr in

wing discs does not have a linear relationship with the wing vein patterning at the adult stage.

Interestingly, it is known that the CKM complex regulates the transcriptional activities of

the key transcription factors of these pathways, including N-ICD downstream of N signaling

[12], Mad/Smad proteins ([14,15] and this work). In addition, Med12 (Kohtalo, or Kto in Dro-
sophila) and Med13 (Skuld, or Skd in Drosophila) subunits of the CKM interact with Pangolin

(the lymphoid-enhancing factor (LEF)/T cell factor (TCF) homolog in Drosophila), the key

transcription factor downstream of Wg signaling, through the transcriptional cofactors such

as Pygopus, Legless, and Armadillo [87]. In mammalian cells, Med12 is also known to regulate

the activities of Gli proteins, the key transcription factors downstream of Hh signaling [88,89].

Furthermore, the Mediator subunit Med23 interacts with ETS (E-twenty six transcription fac-

tor) proteins, a family of key transcription factors downstream of the EGFR signaling pathway

[75]. However, whether CDK8-CycC also regulates TCF-, ETS- or Gli-dependent transcription

is still not understood. Nevertheless, these studies in other biological contexts suggest that the

effects of CDK8 on wing vein patterning are not likely solely through the Dpp signaling path-

way. Therefore, we speculate that the potential interactions between CDK8 and the aforemen-

tioned signaling pathways may contribute to these differential effects on distinct veins. Further

analyses of these cross-talks, as well as further mapping of other Df lines that modify the

CDK8-specific vein phenotypes, may yield the insights into the molecular and dynamic mech-

anisms underlying these vein phenotypes.

Identification of novel genomic loci that genetically interact with CDK8 in
vivo
To understand how dysregulated CDK8-CycC contributes to a variety of human cancers, it is

essential to elucidate the function and regulation of CDK8 in vivo. Given that the CDK8-CycC

pair and other subunits of the Mediator complex are conserved in almost all eukaryotes [5],

Drosophila serves as an ideal model system to identify both the upstream regulators and the

downstream effectors of CDK8 activity in vivo. Our dominant modifier genetic screen is based

on the wing vein phenotypes caused by specific alteration of CDK8 activity in the developing

wing disc, which serves as a unique in vivo readout for the CDK8-specific activities in metazo-

ans. This screen led us to identify 26 genomic regions that include loci whose haplo-insuffi-

ciency could consistently modify CDK8-CycC depletion or CDK8-overexpression phenotypes.

Identification of Dad and genes encoding additional components of the Dpp signaling path-

way provides a proof of principle for this approach. Since each of the chromosomal deficien-

cies uncovers multiple genes, further mapping of the relevant genome regions is expected to

identify the specific genetic loci encoding factors that may function either upstream or down-

stream of CDK8 in vivo. It is hoped that further analyses of the underlying molecular mecha-

nisms in both Drosophila and mammalian systems will advance our understanding of how

dysregulation of CDK8 contributes to human diseases, thereby aiding the development of ther-

apeutic approaches.

Materials and methods

Fly strains

Flies were raised on a standard cornmeal, molasses and yeast medium, and all genetic crosses

were maintained at 25˚C. The UAS-Cdk8+ and UAS-Cdk8KD lines were generated using the

pUASt vector [36]. The construct allowing conditional expression of a kinase-dead CDK8
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form (D173A; [90]) was generated through site-specific mutagenesis by double PCR, using the

overlap extension method. The UAS-Cdk8-RNAi and UAS-CycC-RNAi lines were generated

using the pVALIUM20 vector [91], and the UAS-Cdk8-RNAi CycC-RNAi line was generated

using the pNP vector [92]. The vgQE-lacZ line was received from Gary Struhl [66,67].

We obtained the following strains from the Bloomington Drosophila Stock Center: ap-Gal4
(BL-3041), nub-Gal4 (BL-25754), sal-lacZ (BL-11340), UAS-Cdk7-RNAi (BL-57245),

UAS-Cdk9-RNAi (BL-34982), UAS-CycT-RNAi (BL-32976), UAS-dpp-RNAi (BL-33618), UAS-
2xEGFP (BL-6874), UAS-erk-RNAi (BL-34744), UAS-Mad-RNAi (BL-31315), UAS-Mad-RNAi
(BL-43183), UAS-Medea-RNAi (BL-43961), UAS-rl-RNAi (BL-34855), UAS-sgg-RNAi (BL-

38293), UAS-yki-RNAi (BL-34067), and all deficiency (Df) lines (S1 Table). Of the two trans-

genic RNAi lines targetingMad, the BL-31315 line (S4B and S4B’ Fig, Fig 6B) generated stron-

ger effects than the BL-43183 line (e.g., Fig 5B) when expressed using the ap-Gal4 driver. In

addition, we tested the following mutant alleles of the Dpp signaling pathway: Dadj1E4/TM3,

Sb1 (BL-10305), DadMI04922/TM3 Sb1, Ser1 (BL-37913), dppd6/CyO (BL-2062), dpphr92/SM6a
(BL-2069), dpps11/CyO (BL-2065),Mad1-2/CyO (BL-7323),Mad12/CyO (BL-58785),Mad8-2/
CyO (BL-7324),Madk00237/CyO (BL-10474),MadKG00581/CyO (BL-14578),Medea1/TM3 Sb1,
Ser1 (BL-9033),Medea13/TM3 Sb1 (BL-7340), tkv7/CyO (BL-3242), and tkvk16713/CyO (BL-

11191).

The following RNAi stocks, generated by the Drosophila TRiP project [91], were used to

deplete the subunits of the Mediator complex: UAS-Med1-RNAi (BL-34662), UAS-Med4-RNAi
(BL-34697), UAS-Med6-RNAi/TM3 Sb1 (BL-33743), UAS-Med7-RNAi (BL-34663), UAS-
Med8-RNAi (BL-34926), UAS-Med9-RNAi (BL-33678), UAS-Med10-RNAi (BL-34031), UAS-
Med11-RNAi/TM3 Sb1 (BL-34083), UAS-Med12-RNAi (BL-34588), UAS-Med13-RNAi (BL-

34630), UAS-Med14-RNAi (BL-34575), UAS-Med15-RNAi (BL-32517), UAS-Med16-RNAi
(BL-34012), UAS-Med17-RNAi (BL-34664), UAS-Med18-RNAi (BL-42634), UAS-Med19-RNAi
(BL-33710), UAS-Med20-RNAi (BL-34577), UAS-Med21-RNAi (BL-34731), UAS-Med22-RNAi
(BL-34573), UAS-Med23-RNAi (BL-34658), UAS-Med24-RNAi (BL-33755), UAS-Med25-RNAi
(BL-42501), UAS-Med26-RNAi (BL-28572), UAS-Med27-RNAi (BL-34576), UAS-Med28-R-
NAi/TM3 Sb1 (BL-32459), UAS-Med29-RNAi (BL-57259), UAS-Med30-RNAi/TM3 Sb1 (BL-

36711), and UAS-Med31-RNAi (BL-34574).

To facilitate the dominant modifier genetic screen and the subsequent analyses, we gener-

ated the following strains using the standard Drosophila genetics: “w1118; nub-
Gal4>UAS-Cdk8+/CyO” (i.e., “nub>Cdk8+/CyO” line), “w1118; nub-Gal4; UAS-Cdk8-RNAi”
(i.e., “nub>Cdk8-i” line), “w1118; nub-Gal4; UAS-CycC-RNAi” (i.e., “nub>CycC-i” line),

“w1118; nub-Gal4; UAS-Cdk8-RNAi CycC-RNAi” (i.e., “nub>Cdk8-i CycC-i” line), and “w1118;
ap-Gal4, sal-lacZ/T(2:3)”.

For the Df lines in the X chromosome, we crossed Df female virgins with males of with the

“nub>Cdk8+/CyO”, “nub>Cdk8-i”, “nub>CycC-i”, or “nub>Cdk8-i CycC-i” stocks. For the Df
lines in the second and third chromosomes, the Dfmales were crossed with female virgins of

the afore-described stocks carrying the CDK8-specific phenotypes. The control crosses were

performed using w1118 males and female virgins. For each of these crosses, the wing vein pat-

terns in ~10 F1 females without any balancer chromosomes were inspected under dissecting

microscopes for potential dominant modifications. With few exceptions (S1 Table), the wing

vein phenotypes and dominant modifications are generally stereotypical with high penetrance.

For instance, we crossed Df(1)BSC531, w1118/FM7h female virgins with “w1118/Y; nub>Cdk8+/
CyO” males, and then scored F1 females with the following genotype: “w1118, Df(1)BSC531/
w1118; nub>Cdk8+/+”. Similarly, we crossed “w1118; nub-Gal4; UAS-Cdk8-RNAi” female vir-

gins with “Df(2R)Exel6064/CyO” males, and then scored F1 females with the following
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genotype: “w1118/+; nub-Gal4/Df(2R)Exel6064; UAS-Cdk8-RNAi/+”. Df lines that caused

lethality in F1 were considered as the enhancers.

Adult Drosophila wing imaging

The wings from adult females were dissected onto slides, briefly washed using isopropanol,

and then mounted in 50% Canada balsam diluted in isopropanol. Images were taken under 5X

objective of a microscope (Leica DM2500) and then processed by Adobe Photoshop CS6

software.

Immunocytochemistry

Wing discs from third instar larvae at the late wandering stage were dissected and fixed in 5%

formaldehyde at room temperature for 30 minutes. After rinsing with PBS-Triton X-100

(0.2%), the samples were blocked in PBS-Triton X-100-NGS-BSA (PBS+0.2% Triton X-100

+5% Normal Goat Serum+0.2% Bovine Serum Albumin) at room temperature for one hour.

For immunostaining of Drosophila CDK8 and CycC, we used anti-dCDK8 (1:2000) and anti-

dCycC (1:2000) antibodies [93–95], diluted in PBS-Triton X-100-NGS-BSA. Expression of the

lacZ reporter expression was detected using an anti-β-galactosidase monoclonal antibody

(1:50 in PBS-Triton X-100-NGS-BSA; obtained from the Developmental Studies Hybridoma

Bank, DSHB-40-1a-s). C-terminal phosphorylated Mad (equivalent sites to human Smad3

S423+S425) was detected by anti-pSmad3 (1:500 in PBS-Triton X-100-NGS-BSA; purchased

from Abcam, ab118825). Wing discs were incubated with these primary antibodies overnight

at 4˚C on a rotator. After rinsing with PBS-Triton X-100, the discs were then incubated with

the fluorophore conjugated secondary antibodies: goat anti-guinea pig (106-545-003), goat

anti-mouse (115-545-003), or goat anti-rabbit (111-545-003) (all purchased from Jackson

Immunological Laboratories). These secondary antibodies were diluted 1:1000 in PBS-Triton

X-100-NGS-BSA, and incubated with the samples for one hour at room temperature. Discs

were then stained with 1 μM DAPI at room temperature for 10 minutes, rinsed two more

times with PBS-Triton X-100, and mounted in the Vectashield mounting media (Vector Labo-

ratories, H-1000). Confocal images were taken with a Nikon Ti Eclipse confocal microscope

system, with images processed using the Adobe Photoshop CS6 software.

Quantification of anti-β-galactosidase was performed with Nikon NIS software and Micro-

soft Excel: a single section of the wing discs was selected for the following quantification based

on the DAPI channel, which indicates the cell nucleus are on the same focal plat. Three lines

around 50μm long, 10–15μm apart, were drawn along the dorsal-ventral boundary. The line-

scan profile of intensity for each line was calculated along each line (S5A and S5B Fig; geno-

type: ap-Gal4, sal-lacZ/+; UAS-Cdk8-i/+). The area below the intensity index profile represents

the Sal-lacZ expression levels along the line (S5B Fig). To obtain the average intensity of dorsal

or ventral compartment, the dorsal or ventral compartment index area was divided by the dor-

sal or ventral length of the line (S5C Fig). The intensity for three lines was normalized and

averaged in dorsal and ventral compartments (S5C Fig, S5D Fig, S2 Table). Following this

approach, five wing discs for each genotype were analyzed to quantify the expression of Sal-

lacZ in dorsal and ventral compartments, and statistical significance was calculated using Stu-

dent’s one-tailed t-test (S5E Fig, S2 Table).

To validate the afore described quantification method, we also measured the signaling

intensity by selecting 20x20μm squares in the dorsal and the ventral compartments of the

same wing disc using the Nikon NIS software (S6A and S6B Fig; genotype: ap-Gal4, sal-lacZ/+;
UAS-Med15-i/+). We then calculated the dorsal to ventral ratios of the signal intensities of

three different discs (S6B Fig), followed by statistical analyses using the Student’s one-tailed t-
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test (S6C and S6D Fig). We obtained similar results to the quantification based on the line pro-

files as described above.

GST-pull down assay

Full-length CDK8 fused with a N-terminal GST tag was described previously [36]. The primers

Mad-5.1 (F: 5’-caccATGGACACCGACGATGTGGA-3’) andMad-3.3 (F: 5’-ctaTTAGGA-

TACCGAACTAATTG-3’) were used for full-length Mad (AA1-455), Mad-5.1 andMad-3.1
(F: 5’-ctaCGGGAGCACCGGACTCTCCA-3’) were used for a “Mad-N1” fragment (AA1-150)

that contains MH1 domain (AA10-133),Mad-5.1 andMad-3.2 (F: 5’-ctaATCCTCCGAGG-

GACTGTAGG-3’) were used for the “Mad-N2” fragment (AA1-230) that contains the MH1

domain and part of the linker region,Mad-5.2 (F: 5’-caccatgCCAGTACTCGTTCCTCGCCA-

3’) andMad-3.3 were used for the “Mad-C2” fragment (AA151-455) that contains the MH2

domain (AA255-455) and part of the linker region, andMad-5.3 (F: 5’-caccatgGGCAACTC-

CAACAATCCGAA-3’) andMad-3.3 were for the “Mad-C1” fragment (AA231-455) that con-

tains the MH2 domain. These coding sequences were amplified from a cDNA clone of the

Mad gene (LD12679) using PrimeStar Max premix (Takara, R045A). The amplified products

were inserted into the pENTR/D-TOPO vector (ThermoFisher, K240020) and recombined

into the pDEST17 vector (N-terminal 6XHis tag) using the Gateway LR Clonase II Enzyme

mix (ThermoFisher, 11791100) in E. coli strain DH5α. The constructs were transformed to E.

coli strain Rosetta, received from Craig Kaplan, for protein expression using standard

protocols.

GST or GST-CDK8 was purified with Glutathione Sepharose 4B (GE Healthcare, 17-0756-

01) beads with standard purification protocol. After a final wash, the buffer was replaced by

the GST pull-down buffer (20mM Tris-HCl pH 7.5, 10mM MgCl2, 100mM NaCl, 1mM DTT,

0.1% NP-40). His-tagged Mad fragments were extracted from the pull-down buffer by sonica-

tion. 50μL GST or GST-CDK8 coated beads (0.5–1μg protein) was mixed with 500μL of Mad

fragments cell lysate and incubated at 4˚C for 3 hours. These samples were then washed with

1mL pull-down buffer at 4˚C for 5 times, 1 minute each. The interaction was detected by West-

ern Blot with the primary antibody, anti-His (1:3000; Sigma, H1029), and the secondary anti-

body, anti-mouse (1:2000; Jackson Immunological Laboratories, 115-035-174).

Yeast two-hybrid (Y2H) assay

Full-length CDK8 was amplified from a pBS-CDK8 cDNA clone using primers CDK8-5.1 (F:

5’-caccATGGACTACG ATTTCAAGAT-3’) and CDK8-3.1 (F: 5’-TCAGTTGAAGCGCTG-

GAAGT-3’), and then inserted into the pENTR/D-TOPO vector. The Gateway LR Clonase II

Enzyme mix was used to recombine CDK8 cDNA into the pGADT7-GW (prey) vector, a gift

from Yuhai Cui (Addgene plasmid # 61702) [96]. The linker region of Mad was amplified with

Mad-5.2 andMad-3.2 primers from a cDNA clone of theMad gene (LD12679) using PrimeS-

tar Max premix and inserted into the pENTR/D-TOPO vector. All pENTR Mad fragments

were recombined into the pGBKT7-GW (bait) vector, a gift from Yuhai Cui (Addgene plasmid

# 61703) [96], using the Gateway LR Clonase II Enzyme mix. The Y2H assay was performed

using the AH109 yeast strain, as described previously [96].

Statistical analysis

Standard deviation and Student’s one-tailed t-tests were performed using Microsoft Excel. Sta-

tistical significance (� p<0.05; �� p<0.01; ��� p<0.001) was shown in figures and all error bars

indicate standard deviation.
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Supporting information

S1 Fig. Effects of CDK8 on the size of wings, cell number, and cell sizes. (A) A normal wing;

(B) high magnification of an L3-L4 intervein region showing the hairs in wing cells. (C) Quan-

tification of wing sizes, total cell numbers, and hair density (reflecting cell sizes) in the control

(black bars, genotype: “nub-Gal4/+; +”), CDK8- and CycC-depleted (blue, “nub-Gal4/+;
UAS-Cdk8-RNAi CycC-RNAi/+”), and CDK8-overexpressing (red, “nub-Gal4 UAS-Cdk8+/+;
+”) wings. One-sided t-tests were used to determine the statistical significance of the differ-

ences.

(TIF)

S2 Fig. Effects of CDK8 on the wing morphology with ap-Gal4. Representative adult wings

of (A) w1118; (B) CyO/+; (C) ap-Gal4/+; UAS-Cdk8-RNAi CycC-RNAi/+; (D) ap-Gal4/
UAS-Cdk8+

(TIF)

S3 Fig. Effects of Dpp signaling pathway components on nub-Gal4. Representative confocal

images of RFP signal of the wing pouch area of discs of the following genotypes: (A) nub-
Gal>RFP/+; (B) nub-Gal>RFP/Mad1-2; and (C) nub-Gal>RFP/+; DadJ14E/+. At least five discs

were examined for each genotype. All these images were taken at the same settings for fixa-

tions, staining, and confocal imaging.

(TIF)

S4 Fig. Validation of the sal-lacZ reporter. Representative confocal images of anti-β-Gal

stainings of the wing pouch area of discs of the following genotypes: (A) ap-Gal4, sal-lacZ/+;
UAS-dpp-RNAi/+; (B) ap-Gal4, sal-lacZ/+; UAS-Mad-RNAi/+ (BL-31315); and (B’) merge

image of DAPI (blue) and anti-β-gal (green) channel of ap-Gal4, sal-lacZ/+; UAS-Mad-RNAi/
+ (BL-31315). At least five discs were examined for each genotype.

(TIF)

S5 Fig. Quantification of the sal-lacZ expression. (A) Three lines were drawn across the dor-

sal-ventral compartment boundary within the wing pouch area to calculate the intensity index

profile; genotype: ap-Gal4, sal-lacZ/+; UAS-Cdk8-i/+. (B) An example of the index profile of

one line, measured area below the index profile, and its length. (C) Average and normalization

of average intensity of the anti-β-Gal staining in the dorsal and ventral compartments of a

wing disc. (D) Average of three lines. (E) Student’s t-test was used to compare the Sal-lacZ

expression levels in the dorsal and ventral compartments of five discs of the same genotype.

See Materials and Methods for more details.

(TIF)

S6 Fig. An alternative method to quantify the sal-lacZ expression. (A) 20x20μm squares

were drawn in both dorsal and ventral compartments; genotype: ap-Gal4, sal-lacZ/+; UAS--
Med15-i/+). (B) Mean intensity of the anti-β-Gal staining of three different discs within the

taken squares was given. Dorsal to ventral ratio of each disc was calculated. Student’s t-test was

used to compare the Sal-lacZ expression levels ratio between different genotypes (C), and plot-

ted as column chart (D). See Materials and Methods for more details.

(TIF)

S7 Fig. Effects of depleting subunits of the CKM and CDK9 on ap-Gal4, and effect of

depleting Ap on sal-lacZ expression. Representative confocal images of GFP (green) and

DAPI (blue) signal of the wing pouch area of discs of the following genotypes: (A) ap-
Gal>GFP/+; (B) ap-Gal4>GFP/+; UAS-Cdk8-i,CycC-i/+; (D) ap-Gal4>GFP/+; UAS-Cdk9-i/+;
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(E) ap-Gal4>GFP/+;UAS-Med12-i/+; (F) ap-Gal4>GFP/+;UAS-Med13-i/+; (C) Confocal

images of anti-β-Gal staining of wing discs of ap-Gal4,sal-lacZ/+; UAS-ap-i/+. At least five

discs were examined for each genotype.

(TIF)

S8 Fig. Depletion of CDK8 or CycC does not affect the levels of p-Mad. Representative con-

focal images of anti-p-Mad staining of wing discs from the following genotypes: (A) ap-Gal4,

sal-lacZ/+ (control); (B) ap-Gal4, sal-lacZ/+; UAS-Cdk8-i/+; (C) ap-Gal4, sal-lacZ/+; UAS--
CycC-i; and (D) ap-Gal4, sal-lacZ/+; UAS-Cdk8-i CycC-i. At least five discs were examined for

each genotype. Scale bar in D: 25μm.

(TIF)

S9 Fig. Additional results from the Y2H assay. Full-length (FL) Mad, Mad-C2 fragment or

CDK8 proteins as the bait are able to auto-activate in this assay. Refer the figure legend in Fig 5

and the Materials and Methods for more details.

(TIF)

S10 Fig. Depletion of dedicated Mediator subunits strongly disrupted wing disc morphol-

ogy. Representative confocal images of anti-β-Gal staining of wing discs of the following geno-

types: (A) ap-Gal4, sal-lacZ/+; UAS-Med8-RNAi/+; (B) ap-Gal4, sal-lacZ/+;
UAS-Med14-RNAi/+; (C) ap-Gal4, sal-lacZ/+; UAS-Med16-RNAi/+; (D) ap-Gal4, sal-lacZ/+;
UAS-Med17-RNAi/+; (E) ap-Gal4, sal-lacZ/+; UAS-Med21-RNAi/+; (F) in ap-Gal4, sal-lacZ/+;
UAS-Med22-RNAi/+; and (G) ap-Gal4/+; vgQE-lacZ/UAS-Med21-RNAi. At least five discs

were examined for each genotype. Scale bar in F: 25μm.

(TIF)

S1 Table. Results of 490 deficiency (Df) lines tested for potential dominant modification of

vein phenotypes caused by altered levels of CDK8 or CycC.

(XLSX)

S2 Table. Quantification of the Sal-lacZ expression. Normalization of average intensity of

the anti-β-Gal staining in the dorsal and ventral compartments of wing discs. Five wing discs

were analyzed for each genotype, except UAS-Cdk7-i and UAS-sgg-i (N = 3). Student’s t-test

was used to compare the Sal-lacZ expression levels in the dorsal and ventral compartments of

five discs of the same genotype. See Materials and Methods for more details.

(XLSX)
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