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Purpose: The purpose of this laboratory study was to evaluate the effect of different surface

treatment combinations on resin zirconia bonding.

Materials and methods: One hundred and five pre-sintered zirconia quadrangles were

prepared out of zirconia blocks, polished, then sintered and divided into five groups (n=21).

Group I (control): samples were untreated, group II: grit-blasting with 50 µm alumina

particles, group III: grit-blasting with 100 µm alumina particles, group IV: Er,Cr:YSGG

laser, and group V: selective infiltration etching technique. Microstructural analysis was

performed using scanning electron microscopy, atomic force microscopy, a diffractometer,

and a profilometer. Cylinders of composite resin were luted with Panavia resin composite

cementand Clearfil ceramic primer. Shear bond strength (SBS) was determined using a

universal testing machine.

Results: SBS results were analyzed using one-way ANOVA followed by Tukey post hoc

tests for multiple comparisons. The level of significance was set to 0.05. SBS values of the

studied groups II, III, IV, and V were 16.2±1.8 MPa, 15.7±3.7 MPa, 14.8±3.4 MPa, and 16.8

±3.0 MPa, respectively. All values were significantly higher than the control group (10.48

±1.80 MPa), but without a significant difference between them. Group III exhibited the

roughest surface, and Group I had a more significantly reduced surface roughness value than

any other group. Group III presented the highest significant increase of tetragonal to mono-

clinic phase transformation (13%).

Conclusion: The use of grit-blasting with greater particles size enhanced SBS with resin

composite cement, but induced a higher amount of monoclinic phase transformation. The use

of primer based on adhesive monomer with the resin cement is required to enhance the

bonding efficiency. The use of laser enhanced the surface roughness and the bonding ability

to zirconia.

Keywords: air abrasion, laser, MDP primer, resin cement

Introduction
The development of computer aided design and computer aided manufacturing

(CAD-CAM) technology in dentistry has led to the introduction of a new genera-

tion of all ceramic materials such as zirconia. Zirconia still remains one of the

mostly used materials using this technology. It is a polymorphic ceramic material,

and it has three crystallographic forms: monoclinic (M), from room temperature to

1,170°C; tetragonal (T), from 1,170°C to 2,370°C; and cubic (C), from 2,370°C to

the melting point.1,2 The high strength, biocompatibility, and esthetic properties of

zirconia make it the best substitute to porcelain fused to metal restoration.3
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Since the mid-1990s, several surface conditioning meth-

ods and protocols have been developed to enhance the bond-

ing ability to zirconia ceramics. At large, adhesion is based

on the micro-mechanical interlocking by using subtractive or

additive techniques (coatings) and chemical activation of the

surface by adhesive monomers.4 Among the most reported

surface treatment in the literature are air abrasion with alu-

mina particles, selective infiltration etching,5 laser

treatment,6 tribochemical silica-coating,7 and some other

silica-coating methods.8 Silica-coating is necessary because

the glass-free structural composition of zirconia surface

makes it resistant to normal clinical etching using the con-

ventional hydrofluoric acid, HF, used with glass ceramic.9,10

The regular zirconia surface pretreatment method used

in dental laboratories is grit-blasting with alumina particles

of an average size of 50 μm or 110 μm. Numerous studies

have suggested high bond (adhesion) strength values after

grit-blasting in combination with primers or cement that

are based on some adhesive monomers.11 The most com-

mon adhesive monomers that create a chemical bond to

the oxide layer are: phosphate ester monomer 10-metha-

cryloyloxydecyl dihydrogenphosphate (10-MDP), 4-

methacryloxyethyl trimellitic anhydride (4-META), and

thiophosphoric acid methacrylate (MEPS).12,13

Artificial aging is one of the most important factors for

simulating the estimated clinical performance of a restoration

since mechanical stresses, temperature, and humid environ-

ment can influence the degradation of bonding to zirconia.14,15

Aurelio et al concluded that grit blasting improved

the flexural strength of zirconia, regardless of the pre-

sence or absence of aging.16 Amaral et al showed that

the increase of flexural strength is due to the toughening

mechanism,17 and other studies stated that the formation

of a protective compression layer on the zirconia surface

may decrease the detrimental effects of aging on the

specimens.18,19

However, grit-blasting subjected the zirconia surface to

high stress that led to crack growth.20 This could affect the

strength and impair the long-term clinical success of zir-

conia when exposed to the humid environment and

mechanical stresses in the oral cavity.21

The use of laser energy for the zirconia surface treatment

is of interest and has been reported in several studies. Results

have shown that a Nd:YAG laser increased the surface rough-

ness and wettability and bond strength to resin cement.22,23

Some studies have shown a variability of results that

could be due to the laser type and different parameters

used for surface treatments.24

In spite of this disparity, the use of a Er,Cr;YSGG laser

could be an alternative zirconia surface treatment techni-

que to the other methods conventionally used.

The aim of this laboratory study was to evaluate dif-

ferent zirconia surface treatments and their effect on the

surface morphology and bond strength of the adhesive

system used with zirconia.

The hypotheses tested were: 1) that the different

surface treatments evaluated on the zirconia surface

would not significantly increase the shear bond

strength between zirconia and resin cement; and 2)

that the abrasive particles, laser treatment, and selec-

tive infiltration etching would not affect the surface

morphology, surface roughness, or phase transforma-

tion of zirconia.

Materials and methods
Samples preparation
One hundred and five quadrangles shaped specimens of pre-

sintered 3mol% yttria-stabilized zirconia (Amman Girrbach,

Koblach, Austria) were prepared using a 5-axis-milling

device (Ceramill 2, Amman Girrbach, Koblach, Austria)

and a low-speed diamond disc (Buehler, Lake Buff, WI,

USA). Each specimen was 3 mm high, 10 mm wide, and

10 mm long. Specimens were polished with silicon carbide

grit paper ≠400 (Grit flex, Italy) for surface standardization,25

and they were then subjected to oil free high pressure airflow

for 1 minute. Specimens were then sintered in a sintering

furnace (Amman Girrbach, Ceramil therm, Austria) at a heat

rate of 10°C/min to the final temperature 1,450°C with a 120

minute holding time.

Surface treatment protocols
Specimens were randomly divided into five study groups

(n=21) according to the surface treatment performed

(Table 1):

Group I: (Control) as sintered.

Group II: The surface of sintered Specimens was grit-

blasted with 50 μm Al2O3 particles (Vacumat 300, Vita

Zahnfabrik, Germany) for 15 seconds under 3.5 bars pres-

sure at a working distance of 10 mm evenly.

Group III: The surface sintered specimens were

grit-blasted with 100 μm Al2O3 particles for 15 sec-

onds and under 3.5 bar pressure at a working distance

of 10 mm.

Group IV: The zirconia surface was treated by a

laser (Er, Cr: YSGG laser, Water lase MD system,
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Biolase, San Clemente, CA, USA) for 2 minutes. A

custom-made computerized robot was used to standar-

dize the application of laser and exclude the human

factor. The laser was set at a power of 5.5 W, 20 Hz

with 100 mJ energy,26 and the surface area which was

illuminated by the laser is 64 mm2

Group V: The specimen’s surfaces of this group

were subjected to a selective infiltration etching (SIE)

technique (5). After sintering, the surfaces of the speci-

mens were abraded by a sequence of grit papers ≠200–
800. A thin layer of low fusing melting glass was

applied on the zirconia surface. The specimens were

then heated to 750°C for 2 minutes, cooled to 650°C

for 1 minute, reheated to 750°C for an additional 1

minute, and then cooled to room temperature. The

specimens were immersed in a bath of 9% hydrofluoric

acid for 20 minutes, and then every specimen was

subjected to a high stream of air and water for 2

minutes.

All specimens were cleaned using an ultrasonic bath of

isopropanol for 10 minutes and left to dry at room tem-

perature for 24 hours before bonding. Fifty-five specimens

were used for microstructural analysis, and the remaining

were used for shear bond testing.

Microstructural analysis
X-ray diffraction analysis

Fifteen specimens were used for XRD analysis, three

specimens for each group. The surface of the speci-

mens was evaluated using an XRD device (D8 Focus,

Bruker ASX, Karlsruhe, Germany). The surfaces were

scanned from 5 to 80 using a 2θ diffractometer and

copper X-unit (Cu-Kα radiation) 0.02◦ step scan, at a 2-

second step interval. X-ray diffraction was used to

determine phase composition. The calculation of mono-

clinic phase fraction (Xm) was based on Gravies and

Nicholson’s27 method, using the maximum intensities

of the reflections:

Xm ¼ Im �111ð Þ þ Im 111ð Þ=Im �111ð Þ þ Im 111ð Þ
þ It 111ð Þ

where Xm is the mass fraction of monoclinic phase, Im
(−111) and Im (111) are the intensities of monoclinic peak

at 28 2 theta and 31 2 theta, It (111) is the intensity of

tetragonal peak at 30° 2 theta. The monoclinic phase

volume percentage (Vm) was calculated using a formula

by Toraya et al:28

Vm ¼ 1:311Xm=ð1þ 0:311XmÞ
Crystallite size analysis was calculated using the peak

broadening of XRD reflection of t (111) at 30° 2 theta

using the following formula:29

Xs ¼ 0:9λ= FWHM� cosθð Þ
Where Xs is the crystallite size in nanometers; λ is the

wavelength of the X-ray beam in nanometers (λ=0.15,406

nm for standard detectors), and FWHM is the full width at

half maximum height.

Atomic force microscopy
A total of 10 specimens, two for each group, were used for

surface analysis using an atomic force microscope (Agilent

5420 SPM/AFM, Agilent Technologies, Santa Clara, CA,

USA). Analysis was performed in contact mode to detect

and observe morphological changes on the zirconia surface

due to the different surface treatment methods.

Profilometer
A total of 15 specimens were used for surface roughness

(Ra) analysis using a Profilometer (Dailyaid DR 300,

Beijing, China). Three specimens for each group were

Table 1 Surface treatments protocols

Group Description Surface treatment protocols

I Control As sintered.

II 50 μm Al2O3 Grit-blasted with 50 μm alumina particles for 15 seconds under 3.5 bars pressure at a working distance of 10 mm.

III 100 μm Al2O3 Grit-blasted with 100 μm alumina particles for 15 seconds under 3.5 bars pressure at a working distance of 10 mm.

IV Er,Cr:YSGG laser Er,Cr:YSGG laser, for 2 minutes at a power of 5.5 W, 20 Hz with 100 mJ energy.

V Selective infiltration

etching

Grit papers ≠200–800, a thin layer of low-fusing melting glass was applied on the zirconia surface. The samples

were then heated to 750°C for 2 minutes, cooled to 650°C for 1 minute, reheated to 750°C for an additional 1

minute, and then cooled to room temperature. The specimens were then immersed in a bath of 9% hydrofluoric

acid for 20 minutes.
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used. Four lines were drawn on each specimen with a

space of 1.5 mm between them.

The stylus probe with diamond, 90 cone angle, and 5

μm tip radius passed along the lines with a traveling

distance of 2.5 mm and a sliding speed of 0.135 mm/s.

Each specimen was measured four times, and the mean

value was calculated.

Scanning electron microscopy (SEM) and

surface elemental analysis (EDX)
Three specimens from each group were gold sputtered

(Sputter Coater 108 Auto, Cressington Scientific

Instruments, Watford, UK) and examined using SEM

(AIS2100C, SeronTechnologies, ASI2100, Gyeonggi-Do,

Korea) at 1000x to 3000x magnification and 20 kV. EDX

analysis was also performed (AMETEK with EDAX

detector). The same specimens were used for EDX

analysis.

Shear bond strength of resin cement
A total of 50 composite (Filtek Z 250, 3M ESPE)

cylinders (4 mm diameter and 4 mm height) were con-

structed using a Plexiglas mold. One drop of primer

(Clearfil ceramic primer; Kuraray Dental, Tokyo,

Japan) was applied onto the zirconia surface with a

disposable micro brush, dispersed by airflow for 3 sec-

onds and left to react for 20 seconds. The cement

(Panavia F2.0; Kuraray Dental) applied through the

mixing tip onto the primed surface and the prepared

composite cylinders were bonded under a fixed load of

450 g. The excess cement was removed by a curette and

micro brush. The bonded samples were cured using a

light curing machine (Elipar Free Light 2 LED, 3M-

Espe, wave length=430–480 nm, light intensity=1,000

Mw/cm2, Saint Paul, MN, USA). Curing was done at

the interface area for 40 seconds from three different

directions. The bonded specimens were stored in dis-

tilled water for 24 hours at 37°C.

A shear bond test was conducted to evaluate the bond

interface using a Universal testing machine (YL-UTMMain,

YLE GmBH). A uni-bevel semi-circle chisel-shaped inden-

ter was used to direct the shear force as close to the zirconia

composite interface at a crosshead speed of 1 mm/minute

until failure occurred. The load was recorded in Newtons and

converted to MPa by dividing it by the surface area.

Statistical analysis
The data were analyzed using a statistical software

package (SPSS version 23, Armonk, NY, USA).

Normality distribution of the specimens for the shear

bond groups was done using Kolmogorov-Smirnov

test, which showed that the data followed a normally

distribution (P>0.05). One-way analysis of variance

(ANOVA) was conducted to evaluate the null hypothesis

(SBS), followed by the Tukey post hoc tests for multiple

comparisons. The level of significance was set to

P≤0.05. The statistical difference between groups

(phase transformation, crystallite size, and surface

roughness) was tested using nonparametric statistics, as

the measured quantitative variable isn’t normally dis-

tributed. Kruskal-Wallis test was used to compare

between more than two groups and the Mann Whitney

test to compare between each two groups. P-values≤0.05
were considered statistically significant.

Results
X-ray diffraction analysis
The mean value of Xm% of all groups is reported in

Table 2. All groups reported a significant difference with

the control group. The highest significant Xm value was

reported in Group III (13%), followed by Groups II (8%),

IV (4%), and V (3%).The lowest Xm value was for the

control group (Table 2).

The mean crystallite size of the control group was 30.7

nm. Groups II and III showed a significant decrease in the

crystallite size with all other groups. Group III showed a

lower significant decrease in crystallite size when com-

pared to group II (Table 2).

The XRD analysis of groups II and III showed asym-

metrical broadening and decreased intensities of t (111)

peaks, and reversed intensities of the tetragonal doublets at

t (002) and t (200) (Figure 1).

Surface roughness
Table 2 shows the surface roughness values of the

studied groups. The Ra value (in μm) was chosen as a

surface roughness indicator. The lower mean Ra value

was for the control group V (1.84 μm) with lower

significance with Groups, II, III, IV, and V. No statisti-

cally significant difference exists between Groups, II,

III, IV, and V.
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Scanning electron microscopy, surface

elemental analysis, and atomic force

microscopy
SEM images of group III show a surface with larger pits and

grooves and sharp edges, whereas these grooves are smaller in

Group II, but also with sharp edges. Scratches as a result of grit

paper polishing appeared in Groups I and V. The difference in

the surface texture between the control groupand Group IV is

not obvious (Figure 2). Impacted alumina particles appeared in

Groups II and III, but with a higher percentage in Group II, as

shown in the EDX analysis (Figure 3).

AFM images of Groups II and III show a destructive

surface with small grain and barely visible grain boundary,

whereas the surface of the control group and Group V

appeared with larger and clear grain boundaries. An

AFM image of Group IV shows some areas with destruc-

tive grains similar to Group II, and other areas with intact

texture similar to the control group (Figure 4).

Shear bond test
The mean value of shear bond strength of the tested groups

is shown in Table 2.

Group V shows the highest shear bond value, followed

by Groups II, III, and IV. All groups showed a higher

significant shear bond value than the control, but no sig-

nificant difference exists between them.

Discussion
The results of this laboratory study led to the rejection of the

hypothesis tested that the extent of tetragonal to monoclinic

phase transformation, surface roughness, and bond strength

showed a difference with different surface treatments

performed.

Grit-blasting has been reported to be a prerequisite for

improving surface roughness and to create a micromechanical

bonding area for resin cement.30,31 Many studies32,33 have

stated that the t-m phase transformation is increased with the

increase of particle size. Hallmann et al34 concluded that there

was a 6.75% t-m phase transformation for zirconia abraded

with 110 μm alumina particles under 3.5 bar pressure, and, on

the other hand, 4.72% for zirconia abraded with 50 μm under

the same pressure.

The results of the present study suggest that the

increase in abrasive particle size is directly related to t-m

phase transformation, since 50 μm and 110 μm abrasive

particles induced 8% and 13% t-m phase transformation,

respectively, with a significant difference between them

and with the control group. The present results are in

accordance with many reported studies11,14,20 that con-

cluded that the Xm percentage is increased with larger

particle size.

On the contrary, Chintapalli et al35 found that 12% and

15% monoclinic phases were found following sandblast-

ing, irrespective of the size and pressure, and the changes

in size and pressure have little effect on the phase trans-

formation due to erosion of the material as well, Özcan et

al36 suggested that the increase in t-m is not related to the

increase in particle size

The Er,Cr;YSGG laser is a useful tool because it

increases zirconia surface roughness and, thus, enhances

the wettability for better adhesion to resin cement.37 It was

used with a different power setting without graphite coat-

ing to minimize the absorption energy in order to achieve a

rough zirconia surface free of crack and with minimum t-

m phase transformation. The use of laser application to all

samples was standardized by using a custom-made com-

puterized robot to avoid human error during the

irradiation.25

SEM observations of Group IV showed a non-destruc-

tive, non-smooth surface that is free of cracks, but the grains

in small areas were melted due to the effect of laser ablation.

Table 2 Mean values (SD) of shear bond strength, surface roughness, and mass fraction of monoclinic phase, crystallite size, and full

width at half maximum

Groups Shear bond strength,
MPa

Surface roughness,

Ra μm
Xm % AV Crystallite size, nm t(101) FWHM,

t(101)

I 10.48II,III,IV,V ±1.80 1.84II,III,IV,V ±0.19 0II,III,IV 30.40II,III ±0.01 0.28

II 16.21I ±3.70 4.26I ±0.79 8.00I,III,IV,V ±0.01 19.28I,III,IV,V ±0.01 0.46

III 15.70I ±2.90 5.12I ±0.22 13.00I, II,IV,V ±0.02 12.52I,II,IV,V ±0.02 0.67

IV 14.80I ±3.40 4.81I ±0.28 4.00I,II,III ±0.01 34.90II,III ±0.07 0.26

V 16.80I ±3.00 5.02I ±0.42 3.00I,II,III ±0.01 29.50II,III ±0.01 0.37

Note: Similar superscripts (I-V) indicate significant differences.

Abbreviation: FWHM, full width at half maximum height.
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Figure 1 XRD analysis of Groups I (A), II (B), III (C), IV (D), and V (E). Groups II and III show humps on the left shoulder, decreased intensities and asymmetrical broadening of the t

(111) peaks, as well as reversed intensities of the tetragonal doublets at t (002) and t (200). Group IV shows only amonoclinic peak, whereas Group V shows a hump on the left shoulder

and less asymmetrical broadening than Groups II and III, but with no decreased intensity of the t (111) peak. Equal intensities of the tetragonal doublets at t (002) and t (200) in Group V.
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Graphite that is not used before laser treatment could be the

reason for the decrease in energy discharge on the zirconia

surface, and therefore decrease the destructive effect of the

laser. Another reason might be the choice of laser energy (5.5

W), which was based on the pilot evaluation done before the

performance of this work.

This laboratory study is in agreement with the one

published by Sopher et al38 reporting that the use of laser

surface treatment by using graphite coating to enhance

laser absorption, creating a damaged surface with severe

micro-cracks as a result of energy discharge. The study of

Stubinger et al39 reported that SEM analysis of Er:YAG

and diode lasers caused no visible surface alteration as

compared to untreated surfaces, and undesirable effects

were noted on zirconia when the CO2 laser was applied,

with severe melting and cracking.

The laser treatment induced a significant increase of

Xm% (4%) with the control group. However, when the

Xm% (4%) of the laser group was compared to the Xm

% of the grit-blasted groups 50 μm (8%) and 110 μm
(13%), and to the SIE group (3%), the statistical analy-

sis showed a lower significant Xm% with the grit-

blasted groups and no statistical significance with the

SIE group.

Figure 2 SEM analysis of Groups I, II IIII, IV, and V. Group III appeared with deep

grooves and pits with sharp edges. Group II shows a less destructive surface than

Group III. Group IV acts as the control. Group V shows the indentation of grit paper.

Figure 3 EDX analysis of Groups II, III, and V. EDX analysis of Groups II and III shows

the impaction of Al2O3 particles. In Group V, no silica was retained on SIE surface.

Figure 4 AFM analysis of Groups I, II, III, IV, and V. The grain boundaries are clearly

visible in groups I, IV, and V, whereas they were lost in Groups II and III.
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The XRD analysis of the studied groups shows a

decrease of the intensities of the t (111) peak of groups

abraded with 110 μm and 50 μm AL2O3 particles.

However, the intensities of t (111) peak of control, laser

and SIE groups were not decreased, since the surface of

those groups are free of residual compressive stress.40

Moreover, the X-ray diffraction analysis of the studied

groups shows asymmetrical broadening of t (111) peak and

an increase of FWHM of AL 50 μm and AL 100 μm and

the SIE groups. Because the same pressure, time, and

distance were used in Groups II and III, AL 50 and AL

100, it appears that the particle size is the decisive factor,

but the laser group behaved like the control group.

As well as the reverse intensities of tetragonal doub-

lets, t (002) and t (200) were only observed in Groups II

and III, and to a lesser extent in the SIE group. These

observations were related to residual compressive stresses

due to the type and size of abrasive particles. Given that,

other factors that contribute to this broadening are the

cubic phase at c (111) in the place of the most intense

peak t (111) and the grains which broke under stress that

may exist in the upper surface layer.40,41,42

On the other hand, Moon et al31 observed that, when an

abrasive particle is pressed against the surface of the

monolithic zirconia specimen, a contact stress field is

generated.

This may suggest that the parameters used in the laser

group did not lead to a surface with residual compressive

stress, which is confirmed by SEM image of group V that

shows a surface topography similar to the control group,

and the AFM images of groups II and III that show a

surface lost their grain boundaries.

Ghasemi et al43 studied and suggested that the use of 3

W power on a zirconia surface enhances the bond strength,

but not the surface roughness. Some others44 have con-

cluded that a CO₂ laser at 4 W and an Er,Cr:YSGG laser

at only 3 W output power could be regarded as surface

treatment options for roughening the zirconia surface.

The surface roughness of Groups III and IV showed a

significant increase of the Ra value with control, whereas

Group V showed a significant decrease of Ra value with

the control group.

Group II showed no significant increase of the Ra value

with the control group and a significant decrease with

Group III. The reason behind the lower Ra value of

Group II could be due to the grit-blasting size, time, and/

or pressure, which was only enough to abrade the promi-

nent grains on zirconia surface as a result of sintering

process. Whereas grit-blasting with larger Al2O3 particles

in Group III resulted in a surface with big grooves and

pits.

The present results accord with a previous study45 that

concluded that grit-blasting with larger Al2O3 particle size

and time (250 µm for 30 seconds) resulted in an increase

of surface roughness when compared with grit-blasting

with a smaller particle size (30 µm, 50 µm, and 110

µm). Given this, some others34,46,47 have found that the

extent of morphological changes on the zirconia surface

depends on the particle sizes and blasting pressure.

Therefore, we can state that the two responsible factors

for the increase in the Ra value in Group III are the

abrasive grain size and the pressure. Moreover, because

the pressure and time used in Groups II and III are the

same, we can also state that the time is another responsible

factor for increasing surface roughness.

The Ra value of Group IV was significantly higher than

all other groups. The SEM evaluation of Group IV showed

a surface that is approximately similar to the control

group, and is free of cracks. In the present study the use

of laser energy density of 5.5 W for 2 minutes was based

on a pilot evaluation.48 It shows that the laser energy

density of 6 W was destructive, and the laser energy

density of 5 W did not change the surface roughness value.

Our results are in accordance with a previous study,44

which used a Er,Cr:YSGG laser with a laser power of 2

and 3 W. It was found that, in laser-treated groups, the

surface roughness was much lower than compared with the

other groups, However, it was not in agreement with

Kirmali et al,48 who used Er,Cr:YSGG laser irradiation

with different energy intensities (1–6 W) and who found

no significant difference of surface roughness between all

the intensities that were used. However, the time that was

used in their study (20 seconds) could not have been

enough to increase the surface roughness.

The lower significance of the Ra value of Group V with

all other groups might be due to the effect of polishing by

grit papers before the application of a glass layer.5

Several studies reported that the abrasive grain size (25

µm, 50 µm, or 110 µm) has no effect on micromechanical

retention, despite the difference in surface roughness

created.46–49 On the other hand, some others have

observed enhancement of adhesion strength with resin

cement, leading to a smoother surface produced after air

abrasion with 50 µm Al2O3 particles.
51,52

In the present study all study groups showed a signifi-

cant increase in bond strength when compared to the
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control group, despite having differences in surface rough-

ness values, but there was no significant difference of

shear bond strength value between them. It appeared

from those results that the surface roughness is not the

only factor affecting the increase in adhesion strength,

despite it enhancing the surface for better wettability and

increasing the bonding surface area.

The use of Clearfil™ ceramic primer that contains the

MDP monomer with Panavia™ resin composite cement

aimed to increase the chemical interaction of 10-MDP

with the zirconia surface. A previous study53 reported

that, even if the resin cement includes MDP, its functional

monomer properties in terms of the amount and flow

seemed insufficient to increase the Y-TZP adhesion with-

out any pretreatment.

Chen et al54 observed that there was a direct chemical

bond between the phosphate ester group and the oxides on

the zirconia surface, and Nagaoka et al55 found that adhesion

between 10-MDP and zirconia was not only ionic bonding,

but also hydrogen bonding. Inokoshi et al19 concluded that

the combination of mechanical and chemical pre-treatment

appeared particularly crucial to obtain durable bonding to

zirconia ceramics, and a recent study from Skienhe et al40

concluded that the combination of micromechanical and

chemical surface treatment is a prerequisite for increasing

the adhesion with zirconia ceramics. A previous study con-

cluded that a reliable and durable resin zirconia bonding is

vital for the longevity of dental restoration.56

Therefore, the second factor that increases the adhe-

sion strength significantly is the adhesive system used.

Given this, our results are in agreement with many

studies showing that the primer that contain MDP

monomer should be used with resin cement, even if it

contains this monomer.57–59

In contrast, Cavalcanti et al60 claimed that sandblasting

appears to be a more efficient method to modify zirconia

surfaces compared with laser irradiation, and the use of

MDP-containing primers improved bond strength without

previous mechanical or laser surface treatment.

Clinically speaking, the success of an adhesive bond to

zirconia depends on different factors. One of the factors

that leads to the loss of primary stability of zirconia to

resin cement is the transformation from the tetragonal into

the monoclinic phase due to the increase in temperature

and the presence of moisture.61,62 Moreover, the crack

growth by the degradation mechanism of zirconia in

water has a direct association with the failure of

restorations.20,21

In contrast, Amaral et al63 reported that any amount of

monoclinic phase due to grit-blasting apparently hindered

the progression of low temperature degradation, and others

stated that the transformation toughening as a result of t-m

phase transformation may decrease the detrimental effects

of aging on the specimens,18,19

We have used the shear bond strength test for adhesion

strength measurement because it is simple and less tech-

nique-sensitive, but it has some shortcomings in which the

stresses are not homogeneous across the interface.64,65

Despite that, it can be described as a practical measure-

ment to test the bond strength of cements to hard materials

such as ceramics.

The different published results regarding zirconia sur-

faces can be attributed to many variables, such as the

different laser settings and types, different cements, and

different abrasive parameters or varying methodology

used.16,24

The use of Er,Cr:YSGG and grit-blasting appeared to

be a surface treatment method that enhanced the adhesion

strength of MDP containing resin composite cement to

zirconia.

Conclusions
The following conclusions can be drawn:

1. The t-m phase transformation is directly related to

abrasive particles size.

2. Grit-blasting with 50 µm Al2O3 induced a lower t-m

phase transformation than 100 µm and it seems to

be a feasible surface treatment method.

3. The use of a Er,Cr:YSGG laser for zirconia surface

treatment with adjusted parameters appeared to be

useful as a non-destructive surface treatment method.

4. The use of MDP-containing primers with resin

composite cement containing the MDP monomer

is required to enhance the bonding efficiency.
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