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Astrocytes are essential for the development and homeostatic maintenance of the
central nervous system (CNS). They are also critical players in the CNS injury response
during which they undergo a process referred to as “reactive astrogliosis.” Diversity in
astrocyte morphology and gene expression, as revealed by transcriptional analysis, is
well-recognized and has been reported in several CNS pathologies, including ischemic
stroke, CNS demyelination, and traumatic injury. This diversity appears unique to
the specific pathology, with significant variance across temporal, topographical, age,
and sex-specific variables. Despite this, there is limited functional data corroborating
this diversity. Furthermore, as reactive astrocytes display significant environmental-
dependent plasticity and fate-mapping data on astrocyte subsets in the adult CNS is
limited, it remains unclear whether this diversity represents heterogeneity or plasticity.
As astrocytes are important for neuronal survival and CNS function post-injury,
establishing to what extent this diversity reflects distinct established heterogeneous
astrocyte subpopulations vs. environmentally dependent plasticity within established
astrocyte subsets will be critical for guiding therapeutic development. To that end, we
review the current state of knowledge on astrocyte diversity in the context of three
representative CNS pathologies: ischemic stroke, demyelination, and traumatic injury,
with the goal of identifying key limitations in our current knowledge and suggesting
future areas of research needed to address them. We suggest that the majority of
identified astrocyte diversity in CNS pathologies to date represents plasticity in response
to dynamically changing post-injury environments as opposed to heterogeneity, an
important consideration for the understanding of disease pathogenesis and the
development of therapeutic interventions.

Keywords: reactive astrocytes, heterogeneity, plasticity, single-cell RNA sequencing, ischemic stroke, CNS
demyelination, traumatic brain injury (TBI), spinal cord injury (SCI)
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INTRODUCTION

Astrocytes are critical for the functioning of the adult central
nervous system (CNS) in health and disease with a myriad
of well-documented roles encompassing the spectrum of
physiologic functions from metabolic support to blood-brain-
barrier (BBB) integrity to synapse regulation (for review see
Volterra and Meldolesi, 2005; Abbott et al., 2006; Koehler et al.,
2008; Sofroniew and Vinters, 2010a; Clarke and Barres, 2013;
Bayraktar et al., 2015; Khakh and Sofroniew, 2015; Khakh
and Deneen, 2019). There is growing consensus that astrocytes
are highly plastic in response to environmental fluctuations,
particularly in the dynamically changing environment of CNS
pathological states. This has shifted our understanding of this
ubiquitous glial cell population from that of a binary-population
of fibrous and protoplasmic types to one with significant variation
across multiple variables, including temporal, topographical, sex,
and age, both within and across pathological states. Accordingly,
there is significant interest in better understanding and further
defining this potential diversity within the astrocyte population.

For the purposes of this review, we define diversity
broadly as any distinguishable morphological, physiological,
transcriptomic, proteomic, metabolic, or functional difference
within the astrocyte population, whether transient or not. The
development of technologies enabling detailed descriptions of
these responses has led to an accumulation of evidence for
diversity within the astrocyte population in the healthy CNS
but also across many different models of disease/injury. Here,
we briefly address the origin of astrocytes during development
and what is currently known about the diversity of astrocytes
in the healthy adult CNS prior to an in-depth exploration of
diversity in CNS injury/disease, which is the focus of this review.
Finally, we initiate a discussion on whether diversity should be
sub-divided into more biologically meaningful categories, such as
“plasticity” and “heterogeneity.” We propose that the use of these
definitions provides a framework that will be important as more
is discovered about astrocyte diversity in CNS pathologies with
specific relevance for future therapeutic development.

ASTROCYTES IN DEVELOPMENT AND
ASTROCYTE DIVERSITY IN ADULT
HOMEOSTASIS

Astrocytes in the Developing CNS
At the foundation of our discussion on astrocyte diversity in
the adult CNS is the multitude of studies on the developmental
origin of astrocytes, which we only discuss in brief here (for more
details see the following reviews: Bayraktar et al., 2015; Molofsky
and Deneen, 2015). The majority of astrocytes originate from
subventricular zone (SVZ) resident neuroepithelium-derived
radial glial (RG) cells (Noctor et al., 2002; Anthony et al.,
2004; Kriegstein and Alvarez-Buylla, 2009), with additional
contributions from marginal zone progenitor cells in superficial
cortical layers (Costa et al., 2007; Breunig et al., 2012).
Importantly, embryonic astrogliogenesis accounts for only a

fraction of adult astrocytes, as the majority of murine gliogenesis
occurs postnatally (Bandeira et al., 2009) through the symmetric
division of differentiated astrocytes (Ge et al., 2012). Direct
transformation of RG cells is also a documented source of
astrocytes (Merkle et al., 2004; Ghashghaei et al., 2007).
Furthermore, NG2 glia (also referred to as oligodendrocyte
progenitor cells—OPCs) have been reported to generate a
distinct sub-type of ventral forebrain astrocytes (Zhu et al.,
2008, 2011; Huang et al., 2014; Nishiyama et al., 2015). Once
generated, astrocyte progenitors disperse radially from their site
of origin within the confines of a single column leading to
the establishment of a diverse population (Magavi et al., 2012;
Gao et al., 2014). In the spinal cord, patterning of astrocyte
progenitors is initiated by dorsoventral gradients of secreted
molecules that facilitate radial organization. For example, three
neural tube progenitor domains give rise to three spatially
distinct ventral white matter (WM) astrocytes clusters (Hochstim
et al., 2008) which are then likely influenced by a combination
of intrinsic and extrinsic factors (for review, see Ben Haim
and Rowitch, 2017). More fate-mapping analysis is required to
establish the extent to which this developmentally established
diversity persists into the adult CNS and contributes to the
observed adult astrocyte diversity, both in the healthy CNS and
in pathological states (e.g., Tsai et al., 2012).

Diversity of Astrocytes in the Healthy
Adult CNS
Beginning with Cajal’s descriptions of diverse morphologies
amongst human and rodent astrocytes over 100 years ago,
astrocyte diversity has been a recognized feature of the healthy
adult CNS (Zhang and Barres, 2010; Boulay et al., 2017; Lin et al.,
2017; Buosi et al., 2018; Matias et al., 2019). Early histologic
description designated protoplasmic and fibrous astrocytes as
unique subsets (Kölliker, 1889; Raff et al., 1984; Raff, 1989;
Andriezen, 1893) based upon differences in location [WM vs.
gray matter (GM)], cell body morphology, and interaction with
neighboring neuronal structures (Bushong et al., 2002; Oberheim
et al., 2012; Lundgaard et al., 2014). Transcriptional-based
approaches have expanded upon this initial description (Cahoy
et al., 2008; Batiuk et al., 2020; Bayraktar et al., 2020) with
unique astrocytic gene profiles demonstrated across various brain
regions (Chai et al., 2017; Morel et al., 2017; Duran et al., 2019;
Bayraktar et al., 2020). Using fluorescence-assisted cell sorting
(FACS) and immunohistochemical approaches, Lin et al. (2017)
identified five distinct astrocyte populations in the mouse CNS,
which displayed diverse synaptogenesis mechanisms. Similarly,
using a transcription factor motif discovery approach, Lozzi
et al. (2020) found region-specific astrocytic expression profiles
in astrocyte populations from the olfactory bulb, hippocampus,
cortex, and brainstem. Furthermore, astrocyte reporter mouse
lines exposed molecular differences between different astrocyte
populations within the adult cortex (Morel et al., 2019).

Importantly, these unique transcriptomic gene profiles are
correlated with neural-circuit-based functional differences (Höft
et al., 2014; Chai et al., 2017). Variable expression of key
functional components in astrocytes has been noted, including
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glutamate receptors, transporter proteins, and ion channels
(Matthias et al., 2003; Isokawa and McKhann, 2005; Olsen et al.,
2007), as well as in calcium (Ca2+) signaling dynamics (Takata
and Hirase, 2008), which is theorized to have a functional role in
astrocyte-neuron communication (Bazargani and Attwell, 2016;
Chai et al., 2017; Yu et al., 2018). Using multi-photon confocal
imaging, Takata and Hirase (2008) demonstrated significant
variance in astrocytic Ca2+ activity between cortical layer I
and layers II/III. Diversity amongst astrocyte populations in
different cortical layers has been identified in other studies as
well (Lanjakornsiripan et al., 2018; Bayraktar et al., 2020). For
example, single-cell RNA-seq (scRNA-seq) analysis identified five
transcriptionally distinct clusters distributed amongst cortical
layer I and III-V (Bayraktar et al., 2020) and quantification
of astrocyte marker expression across cortical layers in the
developing mouse brain revealed significant diversity across
functionally distinct cortical areas (Batiuk et al., 2020).

Glial fibrillary acidic protein (GFAP)—a major component of
intermediate filaments in astrocytes—is a widely used marker
of astrocytes (Eng et al., 1971). Importantly, the basal level of
GFAP in astrocytes in the healthy CNS is variable (Griemsmann
et al., 2015; Ben Haim and Rowitch, 2017). For example,
hippocampal astrocytes display higher GFAP expression than
striatal astrocyte populations (Chai et al., 2017). Furthermore,
GFAP expression is higher amongst spinal cord astrocytes
compared to the brain (Yoon et al., 2017). Interestingly,
astrocytic GFAP expression is modulated by various extrinsic
stimuli, including global physical activity (Rodriguez et al.,
2013), exposure to enriched environments (Rodriguez et al.,
2013), and glucocorticoid treatment (O’Callaghan et al., 1991),
suggesting that plasticity may play a role in shaping the regional
diversity of GFAP expression observed in the healthy CNS.
Interestingly, GFAP expression also fluctuates with circadian
rhythms in the suprachiasmatic nucleus of the thalamus (Gerics
et al., 2006). Also, GFAP expression amongst progenitor cells
depends upon the developmental stage, highlighting more
diversity in the expression of this marker (Cahoy et al., 2008;
Kriegstein and Alvarez-Buylla, 2009; Roybon et al., 2013).
While an important marker used to identify astrocytes, it is
important to note that GFAP is not considered sufficient as
an identifier of astrocyte populations, either in the healthy
or injured CNS. A combination of multiple astrocyte markers
is generally viewed as an improved approach [e.g., GFAP,
aldehyde dehydrogenase-1 (Aldh1L1), and glutamine synthetase
(GS); Serrano-Pozo et al., 2013]. Importantly, diversity in the
expression of these additional markers is also seen (Anlauf
and Derouiche, 2013; Waller et al., 2016). For example, diverse
expression of Aldh1L1 amongst cortical astrocytes (Waller et al.,
2016) and GS amongst entorhinal cortical astrocytes is observed
(Anlauf and Derouiche, 2013).

As astrocytes are critical to the normal functioning of
local neuronal populations (Chai et al., 2017; Matias et al.,
2019), further characterization of the extent of this diversity
(for review see Khakh and Sofroniew, 2015; Ben Haim and
Rowitch, 2017; Khakh and Deneen, 2019), and the functional
implications for neural circuit functioning (for review see,
Nagai et al., 2021b) in the healthy CNS is vital. Furthermore,

it is imperative to establish a baseline (Tsai et al., 2012;
Batiuk et al., 2020; Bayraktar et al., 2020) against which identified
diversity in models of CNS insult can be interpreted in
order to develop targeted interventions aimed at manipulating
aberrant and/or pro-pathogenic responses (Batiuk et al., 2020;
Sofroniew, 2020).

DIVERSITY IN THE CONTEXT OF
REACTIVE ASTROGLIOSIS

Defining Reactive Astrogliosis
Various terms have been used to describe the range of astrocytic
responses to CNS insult and/or environmental perturbation
(Eddleston and Mucke, 1993; Anderson et al., 2014; Pekny
and Pekna, 2014; Sofroniew, 2015). In line with a recently
published consensus statement (Escartin et al., 2021), we
define “reactive astrogliosis” as the process by which astrocytes
change in response to pathology. This can include changes
in transcriptional regulation, or biochemical, morphological,
metabolic, and physiological remodeling potentially associated
with functional adaptation to the post-injury environment.
Reactive astrogliosis was long viewed as homogenous and
functionally passive, consisting of a stereotyped set of changes
driving the conversion of homeostatic astrocytes to a distinct
phenotype—the “reactive astrocyte” (Eddleston and Mucke,
1993; Anderson et al., 2014; Pekny and Pekna, 2014; Sofroniew,
2015). However, current evidence challenges this view, instead
pointing to the existence of remarkable diversity in terms of
morphology and transcriptional profile in varied CNS disease
states (Hamby and Sofroniew, 2010; Zhang and Barres, 2010;
Oberheim et al., 2012; Anderson et al., 2014; Schitine et al., 2015;
Yoon et al., 2017; Zeisel et al., 2018; Masuda et al., 2019; Matias
et al., 2019; Valori et al., 2019; Escartin et al., 2021). This begs
the question of how extensive this diversity really is (Cahoy et al.,
2008; Ståhlberg et al., 2011; Yoon et al., 2017; Batiuk et al., 2020;
Bayraktar et al., 2020).

Role of Astrocytes in CNS Disease
Reactive astrogliosis is observed in virtually all neurological
conditions, including epilepsy (Steinhäuser et al., 2015),
neoplastic disease (Priego et al., 2018; Heiland et al., 2019),
demyelination (Woodruff and Franklin, 1999; Williams et al.,
2007; Tassoni et al., 2019; Rawji et al., 2020), traumatic injury
(Faulkner et al., 2004; Filous and Silver, 2016; Boghdadi et al.,
2020a), neurodegeneration (Vargas et al., 2008; Ben Haim
et al., 2015), and ischemic stroke (Zhao and Rempe, 2010;
Zamanian et al., 2012; Rakers et al., 2019), as well as microbial
CNS infections (Drögemüller et al., 2008; Soung and Klein,
2018; Geyer et al., 2019) and neurotoxin exposure (O’Callaghan
et al., 2014; Wheeler et al., 2019). Reactive astrogliosis enables
astrocytes to serve key roles in CNS pathological states,
including metabolic support of vulnerable neurons, regulation
of BBB permeability, remodeling of extracellular matrix
(ECM), mobilizing progenitors, as well as immunomodulation,
synaptic remodeling, and neurite outgrowth (Woodruff et al.,
2004; Sofroniew and Vinters, 2010a; Anderson et al., 2014;
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Pekny and Pekna, 2014; Escartin et al., 2019, 2021). This process
is regulated by a wide range of factors, both intrinsic and
extrinsic to the CNS, and mediated through various cell surface
receptors and intracellular signaling pathways (Sofroniew
and Vinters, 2010a; Burda and Sofroniew, 2014; Sofroniew,
2015, 2020). Manipulation of these components in models of
CNS injury/disease alters functional and histologic outcomes,
demonstrating the importance of reactive astrogliosis and of
understanding the extent and nature of its diversity (Brambilla
et al., 2005, 2009; Okada et al., 2006; Herrmann et al., 2008;
Haroon et al., 2011; Spence et al., 2011; Bonneh-Barkay et al.,
2012; Wanner et al., 2013).

Reactive Astrogliosis and the Aged CNS
Reactive astrogliosis is also a prominent feature of physiological
aging in rodents, non-human primates, and humans (Nichols
et al., 1993; Kanaan et al., 2010; Cerbai et al., 2012; Rodríguez
et al., 2014; Jyothi et al., 2015; Robillard et al., 2016). Previous
studies have noted regional diversity in astrocyte morphology,
GFAP expression, and cellular density (Nichols et al., 1993; David
et al., 1997; Hayakawa et al., 2007; Lynch et al., 2010; Cerbai
et al., 2012; Geoffroy et al., 2016; Rodríguez et al., 2016). Aged
astrocytes also demonstrate altered responses to CNS injury. For
example, aged astrocytes display increased GFAP upregulation
following SCI as compared to younger controls (Geoffroy et al.,
2016), however, the functional implications of this remain
unclear (Matias et al., 2019; Sutherland and Geoffroy, 2020).

Transcriptional approaches have once again greatly expanded
our characterization of astrocyte diversity in the aged CNS (Soreq
et al., 2017; Boisvert et al., 2018; Clarke et al., 2018). These studies
have collectively revealed that aged astrocytes adopt a more
pro-inflammatory phenotype (Orre et al., 2014), consistent with
the concept that physiological aging is characterized by chronic
low-level inflammation (i.e., “inflamm-aging”; Franceschi et al.,
2000). Aged astrocytes from distinct brain regions display unique
transcriptional profiles in both murine and human brains (Soreq
et al., 2017; Boisvert et al., 2018; Clarke et al., 2018). Boisvert et al.
(2018) performed RNA-seq analysis on 4 month and 2-year-old
astrocyte-ribotag mice, demonstrating significant upregulation
of pro-inflammatory and synapse elimination-related genes and
decreased expression of cholesterol synthetic enzymes in the
aged mice, with significant regional diversity (Boisvert et al.,
2018). Expanding on this, Clarke et al. (2018) demonstrated
regional diversity amongst aged astrocytes isolated (using the
Bac-Trap method) from the hippocampus, striatum, and cortex,
with upregulated genes related to astrocyte reactivity, immune
response, and synapse elimination. Soreq et al. (2017) extended
these findings to post-mortem human tissue of patients ranging
in age from 16 to 102 years, revealing significant regional diversity
of astrocyte-specific genes (Clarke et al., 2018). Characterization
of the astrocyte secretome during the aging process may help
validate many of these observed transcriptomic changes (Rawji
et al., 2020). Intriguing questions remain as to the functional
relevance of these age-related changes and the role of astrocyte
diversity in the spatial propensity of various age-related disease
processes (Ben Haim et al., 2015; Rodríguez et al., 2016; Matias
et al., 2019). Furthermore, comparison of the transcriptional

profiles of astrocytes across pathological states with those seen in
the aged CNS may yield novel insights into disease pathogenesis,
physiological aging, and the overlap between these states.

Reactive Astrogliosis Diversity: Plasticity
or Heterogeneity?
We broadly define astrocyte diversity as any distinguishable
morphological, physiological, transcriptomic, proteomic,
metabolic, or functional difference within the astrocyte
population, whether transient or not (Figure 1A). With
this definition, and those that follow, we suggest that semantics
are important, as a proper classification of diversity will likely
lead to greater accuracy in the understanding of function
and the directed development of therapeutic strategies. We
therefore propose strict definitions to further classify reactive
astrocyte diversity.

Heterogeneity has become a catch-all phrase that remains
poorly defined, necessitating the need for clearer and
unambiguous definitions. The term heterogeneity is derived
from the Greek heteros- meaning “two, other, or different,” and
the Latin -genesis meaning “origin or development” (Oxford
English Dictionary). In distinguishing heterogeneity, we adhere
to the definitions offered in a recent discussion of diversity
in the oligodendrocyte lineage (Foerster et al., 2019), namely
that heterogeneity implies distinct origin, as suggested in the
definition, in combination with the demonstration of diverse
functions (Figure 1B). In support of this, we look to other
neural cell lineages. Firstly, heterogeneity amongst neurons is
demonstrated by developmentally distinct neuronal subtypes
with different transmission modes and firing patterns (i.e.,
function). A particularly relevant example of heterogeneity in
the context of pathology lies within the microglia population.
Dogma suggested that in mice, microglia progenitors arise at
E7.5 from the yolk sac and then colonize the brain at E9.5 but
mutant mice lead to the discovery that Hoxb8 microglia (which
express the Hoxb8 transcription factor) represent a distinctive
subpopulation of cells that are derived from a second wave which
do not populate the brain until E12.5 (De et al., 2018). Although
the non-Hoxb8 microglia and Hoxb8 microglia are very similar
with few differentially expressed genes, they occupy distinct
distributions in the post-natal mouse brain and demonstrate
unique functional characteristics including their ability to
participate in synaptic pruning and their response to injury. For
example, the two microglia subpopulations are indistinguishable
in their response to a stab wound injury in the acute phase
(<30 min) but Hoxb8 microglia demonstrated a greater tendency
to accumulate at the injury epicenter at 7 days post-injury (dpi)
compared to non-Hoxb8 microglia (De et al., 2018). A similarly
relevant example of heterogeneity in the context of pathology
can be seen in the oligodendrocyte lineage. In the context of
remyelination, OPCs arising from distinct ventral and dorsal
domains during development have differential responses. For
example, dorsally derived OPCs in the adult CNS demonstrate
enhanced recruitment and differentiation into oligodendrocytes
in response to demyelination as compared to their ventrally
derived counter-parts (Crawford et al., 2016). Furthermore,
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FIGURE 1 | Astrocyte heterogeneity vs. astrocyte plasticity. (A) Evidence for diversity within the astrocyte population is becoming increasingly recognized and is
particularly robust in the context of pathology/disease. (B,C) We highlight the importance of distinguishing astrocyte heterogeneity from astrocyte plasticity, as we
define them, to direct our understanding of reactive astrogliosis and inform potential treatments.

dorsally derived OPCs demonstrate increased susceptibility
to the age-associated differentiation impairment observed in
the context of demyelination (Crawford et al., 2016). These
findings illustrate the influence of heterogeneous populations on
disease-associated variables (e.g., aging) in pathological settings
(Crawford et al., 2016).

In the absence of pathology, one example of astrocyte
heterogeneity (as we define it) is the demonstration that postnatal
region-restricted spinal cord astrocytes have unique functions.
In spinal cord development, spatially distinct astrocytes are
specified through a homeodomain transcriptional code from
positionally distinct progenitor populations (Hochstim et al.,
2008) and spatially distinct domains remain stable throughout
life in both mouse brain and spinal cord (Tsai et al., 2012).
Specifically within the spinal cord, spatially distinct astrocytes
with unique origins were shown to express postnatal region-
specific genes and the ventral population plays a distinct
role in sensorimotor circuit formation (Molofsky et al.,
2014). This region-specific expression pattern of genes was
further demonstrated across the cortical and subcortical adult
mouse brain. Furthermore, astrocytes from these brain regions
exhibited region-matched astrocyte to neuron communication
specific to their ability to promote neurite growth and
synaptic activity in vitro (Morel et al., 2017). Therefore,
these spatially distinct astrocytes are a prime example of
heterogeneity, as we define it, within the uninjured astrocyte
population due to the direct evidence underlying their distinct
origin and functions.

In contrast to our heterogeneity definition, plasticity would
manifest as malleable morphological and/or phenotypic profiles
among cells of a common origin in response to changing
environmental conditions (Figure 1C). An illustration of this
concept can be seen in the macrophage lineage. Monocyte
differentiation into effector phenotypes occurs in accordance
with local microenvironmental signals, accounting for the
diverse macrophage effector functions in various tissues, and
in response to different insults (Mosser and Edwards, 2008;
Italiani and Boraschi, 2014; Lavin et al., 2014; Xue et al.,
2014; Kuznetsova et al., 2020). Applied to the astrocyte lineage,
plasticity would imply the CNS is populated with a homogenous
population of astrocytes that undergo specialization at their
final location as directed by local environmental features.
For example, in the healthy postnatal CNS, the functional
maturation of cortical astroglia is modified by the loss of
neuronal glutaminergic signaling (Morel et al., 2014). In the
adult healthy CNS, sonic hedgehog released from local neurons
plays an active role in regulating both astrocyte function and the
astrocytes’ molecular profile (Farmer et al., 2016) demonstrating
that astrocytes can respond to cues from neurons that drive
their properties/functions. We suggest that for distinct reactive
astrocyte populations to be considered heterogeneous, definitive
demonstration of distinct origins and functions need to be
established to effectively exclude plasticity.

While we segregate plasticity and heterogeneity here for
conceptual purposes, it is likely that there is a dynamic interplay
between the two with varying contributions across multiple
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disease variables. An example of this can be seen in the
oligodendrocyte lineage. While the diversity of myelin internode
length appears to be a function of the axon characteristic
and not oligodendrocyte diversity (i.e., plasticity; Chong et al.,
2012; Tomassy et al., 2014), diverse oligodendrocytes isolated
from either the spinal cord or cortex form myelin sheaths
of different lengths when provided artificial microfiber as a
substrate for myelination (Bechler and Byrne, 2015), suggesting
at least a degree of intrinsic determination (i.e., heterogeneity;
Crawford et al., 2016). Importantly, diversity in internode length
is reduced when oligodendrocytes were cultured with dorsal
root ganglion neurons or brain slices, implicating both intrinsic
(i.e., heterogeneity) and extrinsic factors (i.e., plasticity) in

determining the outcome. It is likely that a similar dynamic
combination exists for astrocytes as well. Importantly, this is not
just a semantic argument, as recognition of the contributions
of plasticity to the observed diversity has the potential to
reveal novel targets amendable to extrinsic manipulation via
targeted therapeutic approaches across multiple aspects of
disease pathology.

Tools to Better Understand Cell Diversity
in Reactive Astrocyte Populations
scRNA-seq or single-nuclei RNA-seq (snRNA-seq) have
enabled the direct quantification of single-cell or nuclei RNA
complements at an increased resolution (Tang et al., 2009;

FIGURE 2 | Overview of a potential workflow featuring droplet-based sc/snRNA-seq approaches to investigate astrocyte diversity across different CNS pathologies.
(A) In the past few years, a technological revolution in RNA-sequencing technology has made it possible to profile the entire transcriptome of individual cells on a
massive scale—a technique known as single-cell RNA-sequencing or scRNA-seq (Svensson et al., 2018). Initially, scRNA-seq relied on manual cell picking (Van
Gelder et al., 1990; Eberwine et al., 1992) or FACS-based sorting (Ramsköld et al., 2012; Shalek et al., 2013). Innovative analyses revealed a surprising degree of
transcriptional heterogeneity in seemingly homogenous cell populations. Subsequent advances in microfluidic instrumentation (Shalek et al., 2014; Treutlein et al.,
2014) and droplet-based methods (Klein et al., 2015; Macosko et al., 2015) have since driven experimental costs down significantly to now permit sequencing of
tens to hundreds of thousands of cells in a single experiment (Cao et al., 2017; Schaum et al., 2018). The rapid pace of methodological and computational progress
has fostered initiatives to profile the mRNA landscape within every single cell of various model organisms (Cao et al., 2017; Schaum et al., 2018) and, ultimately, in
humans (Rozenblatt-Rosen et al., 2017). This framework now enables comprehensive interrogation of the molecular etiology of human disease at single-cell
resolution (Stubbington et al., 2017; Cheung et al., 2019). For example, single-cell transcriptomics offers an opportunity to elucidate how individual types of cells
coordinate their activity to drive pathophysiological processes, and how cell type-specific responses might be targeted to treat disease. Indeed, in only the past few
years, scRNA-seq has been applied to asthma (Braga et al., 2019), inflammatory bowel disease (Martin et al., 2019; Parikh et al., 2019; Smillie et al., 2019), obesity
(Svensson et al., 2018), Alzheimer’s disease (Mathys et al., 2019), and TBI (Arneson et al., 2018), among other disorders. These technologies and analyses enable
clustering of all viable cells/nuclei included in the original sample based on gene expression, and for example to identify astrocyte-like subpopulations can be isolated
for further analyses. (B) The astrocyte-like subpopulations can be further clustered and examined using approaches, such as differential gene expression to yield
important information about heterogeneous astrocyte populations.
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Zeisel et al., 2018; Habib et al., 2020). Approaches, such as
droplet-based sc/snRNA-seq approaches (Figure 2) have proven
immensely powerful across various disease and injury models,
revolutionizing our capacity for cellular characterization (Chen
et al., 2018; Ding et al., 2020; Jäkel and Williams, 2020).
Importantly, distinct clusters of astrocytes identified through
these single-cell technologies need to then be validated to
make sure results are not just noise and the spatial relationship
needs to be re-established using in situ hybridization or
immunohistochemistry alone or in combination. Use of these
techniques also allow for analysis on human post-mortem tissue
and in vitro culture systems (Grubman et al., 2019; Mathys
et al., 2019) which has significantly enhanced our knowledge
of species-specific differences in reactive astrogliosis, a critical
hurdle for translation of pre-clinical findings in rodent model
systems to human patients (Nichols et al., 1993; Oberheim
et al., 2009, 2012; Soreq et al., 2017). When used alone these
tools provide a powerful means of assessing astrocyte diversity
but do not clearly distinguish between heterogeneity and
plasticity unless they are combined with other complementary
experiments, such as those looking at lineage-tracing. With that
being said, recent papers highlight the potential of these single-
cell technologies to yield information about lineage (Weinreb
et al., 2020) as well as connectivity analysis (Clark et al., 2021)
to be performed in high-throughput, with cell-type resolution.
Furthermore, new techniques, such as sc-ATAC-seq will provide
information about chromatin accessibility, which is likely to be
an important determinant of astrocyte plasticity (Buenrostro
et al., 2015). These new approaches will be influential in the
task of determining whether reactive astrocyte clusters represent
heterogeneity (with district origin and functions) or plasticity.

The Spectrum of Reactive Astrogliosis
Similar to the healthy CNS, transcriptional analysis has revealed
multiple clusters of reactive astrocytes in various models of
CNS insult (Adams and Gallo, 2018; Tassoni et al., 2019;
Yang et al., 2020). Various schemes have been proposed
to categorize this diversity, including the classification of
reactive astrocytes as either proliferative border-forming or
non-proliferative in models of CNS trauma (Sofroniew, 2020).
The most well-known is the categorization of astrocytes as
neurotoxic “A1” or neuroprotective “A2.” In rodent models,
intraparenchymal lipopolysaccharide (LPS)-injection induces a
neurotoxic astrocyte phenotype stimulated by microglia-derived
factors (Liddelow et al., 2017), whereas cerebral ischemia
induces astrocytes to adopt what was later coined an “A2”
phenotype that appeared to be neuroprotective (Zamanian
et al., 2012). Astrocytes resembling what was later referred to
as “A1” phenotypes have been identified in various disease
states, including models of amyotrophic lateral sclerosis (ALS;
Sun et al., 2015), Alzheimer’s disease (Sekar et al., 2015; Wu
et al., 2019), prion disease (Smith et al., 2020), glioblastoma
(Heiland et al., 2019), Parkinson’s disease (Chen et al., 2009),
and Huntington’s disease (Diaz-Castro et al., 2019; Al-Dalahmah
et al., 2020). While these “A1” vs. “A2” distinctions are useful,
they also likely represent an oversimplification of the much
larger continuum of reactive astrocyte states that are present

in CNS pathologies. Indeed, the authors themselves stated that
these two states were likely only a subset of many potential
reactive states (Zamanian et al., 2012; Liddelow and Barres,
2017; Liddelow et al., 2017). In the recently published consensus
statement, Escartin et al. (2021) highlight the shortcomings of
using these binary divisions of reactive astrocytes, such as “A1”
vs. “A2,” good vs. bad, or neurotoxic vs. neuroprotective and
advocate for the assessment of multiple molecular and functional
parameters moving forward (Escartin et al., 2021). Furthermore,
a clear neurotoxic role for “A1” astrocytes is not always clearly
demonstrated, highlighting the challenge with this dichotomous
classification. For example, deletion of a subset of “A1” astrocytes
accelerated neurodegenerative progression in a mouse model
of prion disease (Hartmann et al., 2019), suggesting that these
astrocytes states are considerably more nuanced. As will be
discussed in the disease models below, transcriptional analysis
has provided further evidence that astrocyte diversity exists along
a spectrum of states likely driven by local microenvironments
(Zhang and Barres, 2010; Anderson et al., 2014; Escartin
et al., 2021). In this review, we still refer to “A1” vs. “A2”
terminology for studies conducted in the past but adhere to
the consensus put forward by Escartin et al. (2021) to avoid
these terms in future research. Indeed, recent studies in models
of ischemic stroke (Rakers et al., 2019; Androvic et al., 2020),
demyelination (Yoon et al., 2017; Tassoni et al., 2019), and
traumatic injury (Burda et al., 2016; Boghdadi et al., 2020b)
have revealed substantial disease-specific, regional, and temporal
reactive astrocyte diversity.

Potential Variables Shaping Diversity in
the Context of Reactive Gliosis
There are many variables potentially influencing the diversity
of reactive astrogliosis. Here, we review the current state
of knowledge on astrocyte diversity in the context of three
representative and clinically relevant CNS pathologies: ischemic
stroke, demyelination, and traumatic injury across multiple
injury-associated variables (e.g., temporal, topographical, sex,
and age). Plasticity can be conceptualized as the diversity in
a response to environmental factors. In pathological states
this includes features of the post-injury environment (e.g.,
cytokines, inflammatory cells, etc.). In contrast, heterogeneity
manifests as diversity that results from differential origins
(either developmental and adult-derived) and functionality.
Importantly, plasticity and heterogeneity are not mutually
exclusive in our model and elucidating this relationship as it
manifests in various conditions of CNS pathology is critical
to understanding the contributions of astrocytes in the injured
CNS and how these responses can be manipulated. As our
understanding of the extent of astrocyte diversity develops, it
will become ever more important to integrate and compare
astrocyte responses across pathological states to be able to
interpret and apply the substantive datasets gleaned from single-
cell transcriptomic approaches. To that end, we expand our
discussion beyond the confines of a singular pathology and aim
to highlight key limitations of our current knowledge, propose
areas for future research, and discuss the relevance of this
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knowledge for therapeutic development. We specifically focus on
the importance of differentiating the contributions of plasticity
and heterogeneity to observed astrocyte diversity across multiple
variables in CNS pathologies.

ISCHEMIC STROKE

Stroke is the primary cause of severe disability and a leading cause
of death worldwide, associated with enormous socioeconomic
burden (Cassidy and Cramer, 2017; Campbell et al., 2019;
Campbell and Khatri, 2020). Accounting for 75–80% of all strokes
(Cassidy and Cramer, 2017; Campbell et al., 2019; Campbell and
Khatri, 2020), ischemic stroke results from the occlusion of a
cerebral artery by a blood clot that either forms locally (i.e.,
thrombotic stroke) or more commonly, travels from another
location, such as the heart or another proximal vessel (i.e.,
embolic stroke; Cassidy and Cramer, 2017; Campbell et al.,
2019; Campbell and Khatri, 2020). Clinically, the extent of
the resultant injury depends on several factors, including the
severity and duration of ischemic injury and the quality of
collateral blood flow to the affected perfusion territory (Bang
et al., 2008; Maud et al., 2021). Despite recent advances in
reperfusion techniques, therapeutic options remain limited and
largely ineffective in attenuating the progressive neuronal loss
and consequent functional impairment (Matei et al., 2021).

Various pre-clinical models of ischemic stroke have been
employed (Figure 3A; Fluri et al., 2015; Rakers and Petzold,
2017; Sommer, 2017). Among these, the middle cerebral artery
occlusion (MCAO) model is largely considered to most closely
resemble human ischemic stroke (Longa et al., 1989; Rakers and
Petzold, 2017; Sommer, 2017). Other frequently used models
include direct mechanical occlusion of a cerebral vessel via
clipping, ligation, or cauterization (Robinson et al., 1975; Chen
et al., 1986; Brint et al., 1988; Hossmann, 2012), stereotactic
administration of potent vasoconstrictors (e.g., endothelin-1)
to induce vasospasm (Robinson and McCulloch, 1990; Sozmen
et al., 2009; Roome et al., 2014; Fluri et al., 2015), and targeted
activation of systemically administered photosensitive dye via
transcranial illumination to induce localized thrombosis (i.e., the
photothrombotic model; Watson et al., 1985; Kim et al., 2000;
Kleinschnitz et al., 2008). Comparing tissue damage and astroglia
responses across the range of pathology encompassed by these
models will be informative. Another important consideration
is the use of transient occlusive models, which mimic timely
recanalization therapy (e.g., thrombolytics or endovascular
thrombectomy; Sommer, 2017).

Role of Astrocytes in Ischemic Stroke
The peri-infarct region following ischemic stroke (i.e., the zone
immediately surrounding the ischemic lesion; Figure 3B),
is commonly segregated into a monocyte/macrophage-
dense inner region directly bordering the lesion and an
astrocyte-rich outer region (Schroeter et al., 1995; Pekny
and Nilsson, 2005; Gliem et al., 2015). The peri-infarct
reactive astrocytes that populate this outer region secrete
a variety of pro-inflammatory cytokines, chemokines, and

matrix metalloproteinases that disrupt the BBB and recruit
peripheral leukocytes, which are predominant contributors to
secondary injury (Gliem et al., 2015; Yang and Rosenberg, 2015;
Choudhury and Ding, 2016). Furthermore, astrocytes in this
region demonstrate process elongation and polarization, as well
as upregulation of several factors involved in ECM reorganization
and reactive astrocyte clustering (Hirsch et al., 1994; Peng et al.,
2013; Gliem et al., 2015). Using an RNA-seq approach in a MCAO
rodent model, Rakers et al. (2019) demonstrated a significant
upregulation of various neurotoxic genes associated with the
“A2”-specific transcripts at 72 h post-stroke compared to control
tissue. In total, >1,000 genes were differentially expressed after
focal ischemia, including 38 transcription factors (Rakers et al.,
2019), demonstrating the pronounced transcriptional changes
that take place in response to ischemia. Importantly, many peri-
infarct neurons survive the initial ischemic insult but undergo
delayed degeneration due to progressive secondary damage to the
surrounding spared tissue (Marchal et al., 1996; Liu et al., 2010;
Chamorro et al., 2016). As astrocytes provide critical neuronal
support and survive the ischemic insult in large numbers they
represent an attractive target for therapeutic manipulation to
promote, or at least mitigate, this neuronal loss and provide
an increased substrate for repair (Zhao and Rempe, 2010;
Liu and Chopp, 2016; Becerra-Calixto and Cardona-Gómez,
2017). As astrocytes are key players in both the pathogenesis
of ischemic stroke and recovery process following insult, they
are of significant interest. Clarification of the interplay between
astrocyte plasticity and heterogeneity across multiple disease-
associated variables (e.g., temporal, topographical, age-related,
sex-related) promises to open novel therapeutic avenues aimed
at mitigating stroke-associated morbidity and mortality.

Astrocyte Diversity in Ischemic Stroke
Transcriptomic studies have revealed astrocyte diversity in
models of ischemic stroke (Zamanian et al., 2012; Rakers
et al., 2019; Boghdadi et al., 2020a). For example, ischemic
insult induces differential expression of a host of genes in
diverse subsets of astrocytes, including genes involved in
neuroinflammation, apoptosis, and transepithelial migration of
leukocytes (Zamanian et al., 2012) as well as cell division
and migration (Rakers et al., 2019). Application of snRNA-
seq provided refinement of this diversity in an endothelin-
1-induced ischemic stroke model in marmosets, revealing 19
discrete reactive astrocyte subsets in the primary visual cortex
(Boghdadi et al., 2020a). Interestingly, these subsets were noted
to express a mixture of “A1” and “A2” genes (Boghdadi et al.,
2020a), further highlighting the limited utility of applying binary
categorization to what is most likely a nuanced spectrum of
activation states. Interestingly, certain astrocyte subsets in the
peri-infarct region expressed Nogo-A (Boghdadi et al., 2020a),
well-known as a robust neurite outgrowth inhibitor (Chen et al.,
2000; GrandPre et al., 2000; Kim et al., 2004; Schwab, 2004).
Astrocyte diversity in models of ischemic stroke most likely
represents predominant contribution of plasticity in response
to the changing post-injury environment superimposed upon a
background of heterogeneity, manifested in the post-natal brain
as regionally specific astrocyte subsets with variable responses
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FIGURE 3 | Pre-clinical models of ischemic stroke, CNS demyelination, and traumatic injury used to look at astrocyte diversity. Each of these models have
advantages and disadvantages with regards to modeling human disease and induce diverse astrocyte injury responses. (A) Common ischemic stroke models.
Ischemic stroke results from disrupted blood flow leading to ischemic damage, cell death and associated loss of function. Common animal models of ischemic
stroke involve the transient or sustained blockade of normal blood flow to an area of the brain through occlusion of a blood vessel (e.g., MCAO). (B) A simplified
illustration of an ischemic lesion where the ischemic area is predominately populated by immune cells and reactive astrocytes with a slow gradient toward an inner
cluster of microglia/macrophages and surrounded by an outer layer of astrocytes. (C) Common demyelination models can be initiated through either an
autoimmunity-based or toxin-based route, each highlighting different pathological features and chosen based on the research questions being pursued. (D) A
simplified illustration of an EAE induced lesion where there is a loss of oligodendrocytes and their myelin sheaths (beige) within the lesion. Demyelination lesions are
often filled with immune cells, including microglia/macrophages, and NG2/OPCs which contribute to repair. In the situation where remyelination does not take place,
axon degeneration can result. (E) Common traumatic injury models focusing on different mechanical injuries applied to the brain and spinal cord, each with its own
complex secondary injury cascade. (F) A simplified illustration of a typical CNS traumatic injury where a pronounced secondary injury cascade often leads to the loss
of tissue (sometimes forming a fluid-filled cyst) at injury epicenter. Generally, there is an inner accumulation of fibroblast-like cells closest to epicenter surrounded by
densely packed reactive astrocytes which have an important role in protecting the parenchyma tissue.
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to ischemic insult. Elucidating the relative contributions of
these processes to observed diversity along several disease-
associated variables will require fate-mapping and functional
interrogation of astrocyte subsets to reveal the prospective
therapeutic potential.

Potential for Astrocyte Plasticity Based
on Disease-Associated Variables in
Ischemic Stroke
In line with our definition, we propose that identified
astrocyte diversity in ischemic stroke occurring along variables
of time after injury (i.e., temporal), distance from lesion
epicenter (i.e., topographical), age at onset, and sex of the
individual, likely represent a greater contribution from plasticity
than heterogeneity.

Astrocytes undergo dramatic morphological changes
following ischemic insult that evolve over time (Lukaszevicz
et al., 2002; Shannon et al., 2007; Benesova et al., 2009; Matyash
and Kettenmann, 2009; Li et al., 2014). Using a murine
photothrombosis model, Li et al. (2014) revealed increased
GFAP expression by day 2 post-insult, with acquisition of stellate
morphology and cellular hypertrophy by day 4, and dense
astrocyte clustering by day 6. Interestingly, reactive astrocytes
became less hypertrophic after day 6 post-insult with gradual
lengthening of cellular processes by day 10, reflecting maturation
of the reactive astrocyte clustering. Li et al. (2014) then went on
to assess astrocyte proliferative dynamics, revealing a peak at
day 3 post-insult, with a decline through day 14. Similarly, using
an endothelin-1-induced vasospasm rat model, Mestriner et al.
(2015) demonstrated significant increases at 30 days post-insult
in astrocyte density and increased process ramification and
length, as compared to uninjured controls. They also compared
these dynamic changes across stroke types, using a time-matched
post-hemorrhagic stroke model as comparison. Despite not
revealing observable differences in several different GFAP-
immunohistochemistry-based measurements, this cross-model
comparison approach remains important as it enables isolation
of intrinsic vs. extrinsic influences on astrocyte responses in
the post-stroke brain (Mestriner et al., 2015). Use of higher
resolution transcriptomic studies comparing reactive astrocyte
responses over time and across different stroke types (e.g.,
ischemic, hemorrhagic) and vascular territories (e.g., middle
cerebral artery, posterior cerebral artery, etc.) are likely to yield
important information on reactive astrocyte diversity.

Astrocytic Ca2+ signaling dynamics also vary temporally
in rodent models of ischemic stroke, in brain slice culture
models of ischemia, and oxygen-glucose deprivation (OGD)
models, both acutely and chronically (Duffy and MacVicar,
1996; Ding, 2013, 2014). For example, significant variability in
latency to increased Ca2+ levels is observed in the initial minutes
following ischemic onset in an OGD model (Duffy and MacVicar,
1996; Ding, 2013, 2014), suggesting that differing environmental
factors may play a role. Furthermore, application of two-photon
imaging in an in vivo photothrombosis murine model revealed
reactive astrocyte subsets with dynamically changing amplitude
and frequency of Ca2+ signaling, attributed to fluctuations in

extracellular glutamate and GABA levels (Ding et al., 2009), in
keeping with our definition of plasticity. Diversity in astrocytic
Ca2+ signaling can also be seen outside of the acute post-
injury period (Winship and Murphy, 2008; Choudhury and
Ding, 2016). Using a murine photothrombotic model, Winship
and Murphy (2008) demonstrated a progressive increase in
magnitude of penumbral astrocytic Ca2+ signaling for 2 months
post-insult, driven by stimulation of neural circuits via limb
stimulation. Once again this represents modulation of astrocyte
diversity in response to environmental manipulation (e.g., neural
circuit stimulation), thus is offered to represent plasticity. Ca2+

signaling diversity may have important functional consequences
for the functioning of local neural circuits, thus representing a
significant parameter to further characterize. As neural circuit
remodeling is an important mechanism of functional recovery
post-stroke, manifested by the relative success of physical therapy
in stroke patients over the sub-acute to chronic period, it will
be a priority to optimize environmental variables that promote
supportive astrocyte phenotypes. Further elucidation of astrocyte
diversity, especially plasticity vs. heterogeneity, in this context is
an important aspect of understanding neural circuit remodeling
and functional recovery in the post-stroke brain.

Significant astrocyte diversity is also seen in rodent models
of ischemic stroke with respect to distance from the lesion
site (i.e., proximal topographical variation). For example, in
a rat MCAO model, GFAP immunostaining, process volume,
diameter, length, and branching points were increased in close
proximity to the cortical infarct border zone compared to
distances slightly further from the ischemic area (Wagner
et al., 2013). Using a photothrombotic murine stroke model, Li
et al. (2014) demonstrated an outwards gradation of astrocyte
proliferation from the lesion core in parallel with higher densities
of GFAP+ reactive astrocytes. After ischemia due to endothelin-
1-induced vasospasm in the primary visual cortex of marmosets,
astrocyte subsets were shown to differ in their expression of
multiple reactive astrocyte markers, immunomodulatory genes,
and various cytokine pathways (Boghdadi et al., 2020a), as
well as transcriptional regulators and cell surface receptors
involved in cell-matrix adhesion and migration (Dzwonek
and Wilczynski, 2015; Boghdadi et al., 2020a). Interestingly,
a number of neuronal genes were also upregulated, including
Growth Associated Protein 43 (Gap-43), which is involved in
post-infarct plasticity and expressed by neurons after axotomy
(Skene and Willard, 1981; Tetzlaff et al., 1991; Frey et al.,
2000; Hung et al., 2016). Topographical diversity in astrocyte
Ca2+ signaling is also seen, with reduced magnitude amongst
penumbral astrocytes compared to the lesion core (Winship and
Murphy, 2008). Moreover, restricted astrocyte Ca2+ signaling has
been shown following single vessel occlusion photothrombosis
(Zheng et al., 2013). As most work done to date examines
proximal changes near the site of ischemia (i.e., within a singular
brain region), this is most likely reflective of plasticity in
response to gradients of injury-associated factors (e.g., cytokines,
inflammatory cells, blood-borne elements) radiating out from
the epicenter. One notable caveat is the observation of extensive
changes amongst astrocytes occurring over significant distances
(i.e., between different brain regions) post-stroke. For example,
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in a MCAO rodent model, Rakers et al. (2019) demonstrated
significant changes in gene expression in both the ipsilateral
and contralateral hemispheres compared to non-injured control
tissue. They demonstrated a 2- and 12-fold increase in Gfap and
a 2- and 20-fold increase in vimentin (Vim) in the contralateral
and ipsilateral hemispheres, respectively, compared to uninjured
control tissue (Rakers et al., 2019). Diversity noted amongst
such spatially separated regions in response to injury could
represent a relatively greater contribution from heterogeneity as
the astrocytes in these regions most likely have different origins.
Despite this, plasticity is still likely a key driver of the observed
diversity, albeit proportionally less than for changes observed in
close proximity to the lesion.

As ischemic stroke is predominately a disease of older
individuals, understanding age-related astrocyte diversity is
critical for therapeutic development (Badan et al., 2003; Orre
et al., 2014; Androvic et al., 2020). Physiologic aging enhances
ischemia-induced astrocyte reactivity, resulting in exaggerated
glial responses and accelerated formation of densely packed
astrogliosis borders as compared to younger controls (Badan
et al., 2003; Popa-Wagner and Badan, 2007). As this is likely
to be a consequence of extrinsic/environmental factors, we
propose that this age-related diversity represents plasticity, at
least within the confines of a singular brain region. Using the
MCAO model in 18 month old aged mice, Androvic et al.
(2020) demonstrated a predominance of aged astrocytes toward
a neurotoxic “A1” phenotype as compared to younger animals,
which was associated with worse functional outcomes (Badan
et al., 2003; Androvic et al., 2020). This neurotoxic predominance
is thought to be largely driven by aged microglia, which tend
to be more pro-inflammatory and reactive to insult (Orre et al.,
2014; Androvic et al., 2020), consistent with plasticity in response
to an altered environment. Using a targeted striatal infarction
model in rats, Lively et al. (2011) demonstrated an age-related
reduction in astrocyte-derived synaptic cleft-1 (SC1) expression,
an ECM molecule associated with neural plasticity, a key aspect of
recovery following stroke (Badan et al., 2003; Lively et al., 2011;
Sohrabji et al., 2013; Cassidy and Cramer, 2017). Furthermore,
ischemia-activated primary astrocyte cultures isolated from aged
rats display reduced glutamate uptake compared to younger
controls (Lewis et al., 2012). Impaired astrocyte-mediated
buffering of glutamate levels in the post-stroke brain may
contribute to the increased infarct volumes and worse functional
outcomes seen in aged rodents following ischemic stroke (Popa-
Wagner and Badan, 2007; Selvamani and Sohrabji, 2010),
further suggesting an environmentally dependent effect. Further
investigation with lineage tracing studies in the context of
the aged CNS is an important area to elucidate potential
contributions from heterogeneity to this observed diversity.

Although age-specific stroke incidence and mortality are
higher in men, stroke-related morbidity is greater amongst
women (Reeves et al., 2008; Petrea et al., 2009), making sex
an important disease-associated variable to investigate astrocyte
diversity. Adult female rodents demonstrate smaller infarct
volumes than age-matched males (Hall et al., 1991; Alkayed et al.,
1998; Manwani et al., 2011; Selvamani et al., 2014), an effect which
reverses with advancing age (Manwani et al., 2013) suggesting

that the aged female brain is more susceptible to ischemic
insult than its male counterpart (Chisholm and Sohrabji, 2016;
McCullough et al., 2016). Importantly, these gross differences are
underlain by sex-specific diversity amongst cellular populations,
including astrocytes. Using a mouse MCAO model, Morrison and
Filosa (2016) demonstrated sex-specific differences in frequency
of astrocytic Ca2+ elevations as well as a more robust reactive
astrocytic response in male mice as compared to age-matched
females. Sex hormones appear to be a key player in this
observed difference. Indeed, astrocyte-derived estradiol conveys
neuroprotective and anti-inflammatory effects in rodent models
of global ischemia (Zhang et al., 2014). Furthermore, cultured
astrocytes isolated from female rodents are more resistant to
in vitro ischemic insult and glucose deprivation, mediated in part
by increased P450 expression and aromatase activity compared to
male astrocytes, thus altering estrogen levels in the cells (Liu et al.,
2007; Liu et al., 2008). Importantly, ischemia induces astrocyte-
specific aromatase expression and activity in vivo as well
(Carswell et al., 2005). Consistent with this, live imaging studies
in a unilateral MCAO rodent model demonstrated significantly
increased estrogen-dependent GFAP expression in adult female
mice compared to adult males (Cordeau et al., 2008) and estrogen
induces astrocytic expression of glutamate transporters GLT-1
and GLAST (Pawlak et al., 2005; Lee et al., 2009), suggesting
that female astrocytes in vivo may be more effective at glutamate
clearance than their male counterparts. Considering that much of
this observed diversity is thought to be driven by sex hormones
(e.g., estrogen, progesterone), we suggest that this astrocyte
diversity is predominantly representative of plasticity, although
we cannot exclude the potential of heterogeneity also being a
contributing factor (McCullough et al., 2016). This is particularly
interesting given the notable sex-specific difference in clinical
outcomes (Reeves et al., 2008; Petrea et al., 2009) and the potential
for modulation of hormone-responsive signaling pathways as
a means of conveying neuroprotection, which are commonly
targeted by therapeutics for malignancies (e.g., tamoxifen,
trastuzumab; Jordan, 2003; Cameron et al., 2017; Shagufta and
Ahmad, 2018; Xu et al., 2019). Adaptation of these therapeutics
for the modulation of astrocytic responses in the post-stroke
brain may be a viable approach for neuroprotection and/or post-
stroke recovery. This requires detailed characterization of the
extent of astrocyte diversity present following ischemic stroke,
the functional implications of that diversity with respect to
neural survival and function, and the identification of potentially
malleable targets for therapeutics.

Potential for Astrocyte Heterogeneity
Based on Disease-Associated Variables
in Ischemic Stroke
In contrast to plasticity, heterogeneity as a contributor to
astrocyte diversity in ischemic stroke represents potential
diversity that exists amongst astrocyte populations with
established differences in origin and function. According to this
definition, we propose that this would be diversity observed
between regionally specific astrocyte populations (i.e., diversity
across brain regions). In the context of ischemic stroke, this could
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be seen as diversity amongst astrocyte responses in diverse brain
regions following a similar injury (i.e., infarction in different
vascular territories). Mestriner et al. (2015) used endothelin-
1-induced vasospasm rat model and compared ischemic
lesions in the sensorimotor cortex and dorsolateral striatum
and noted variation at 30 days post-insult in terms of GFAP-
immunohistochemistry based measurements including cellular
optimal density and primary process length (Mestriner et al.,
2015). Using a MCAO murine model, Lukaszevicz et al. (2002)
demonstrated differential functional responses of protoplasmic
and fibrous astrocytes (thus effectively comparing WM and GM
lesions), including differences in morphological response and cell
death (Lukaszevicz et al., 2002), consistent with demonstration
of differential ischemic sensitivities amongst astrocyte subsets in
models of ischemia-reperfusion injury (Shannon et al., 2007).
Importantly, it remains unclear whether protoplasmic and
fibrous astrocytes have distinct origins considering that both
can be derived from the postnatal SVZ during corticogenesis
(Levison and Goldman, 1993; Parnavelas, 1999; Marshall and
Goldman, 2002). Lineage tracing has shown that SVZ-derived
multipotent neural stem cells (NSC) have the ability to migrate
and contribute to the reactive astrocyte population in the context
of multiple stroke models (Faiz et al., 2015) but it is unclear how
different their function is from other reactive astrocytes in the
region. Further direct lineage tracing experiments are required
to establish these populations as truly distinct from an origin and
functional perspective, and thus fitting of our offered definition
of heterogeneity.

Due to limited high-quality fate-mapping studies, there
is a scarcity of data on the extent of astrocyte heterogeneity
in ischemic stroke. Furthermore, most data accumulated to
date focus on astrocyte diversity as a function of changing
environmental parameters, and therefore represent plasticity.
Ischemic stroke has the potential to affect multiple vascular
territories, and thus diverse populations of astrocytes.
Determination of the impact of regionally specific astrocyte
diversity to various post-stroke outcome measures is of
great interest, both clinically and for understanding stroke
pathophysiology. For example, hemorrhagic transformation of
infarcted tissue (i.e., hemorrhage developing within infarcted
tissue) is a devastating post-stroke complication caused by
disruption of the BBB (Warach and Latour, 2004; Khatri et al.,
2012; Sussman and Connolly, 2013), of which astrocytes are a
key component. Identification of malleable aspects of astrocyte
diversity that alter susceptibility of neurovascular degradation
may be a viable approach to reduce occurrence in the post-stroke
population. To that end, expanded study of reactive astrocyte
diversity in ischemic stroke models affecting different vascular
territories (e.g., middle cerebral artery, posterior cerebral
artery, etc.) using combined fate-mapping and functional
assays is warranted.

CNS DEMYELINATION

The most common demyelinating disorder is multiple sclerosis
(MS), a complex immune disease characterized by inflammation,

primary demyelination (loss of myelin from an intact axon), and
neuronal/axonal damage/degeneration (Molina-Gonzalez and
Miron, 2019; Rawji et al., 2020). Various pre-clinical models have
been employed to replicate the complexity of the MS disease
process (Figure 3C; Mix et al., 2010; Baker and Amor, 2015;
Lassmann and Bradl, 2017; Baecher-Allan et al., 2018). One
of the main models is experimental autoimmune encephalitis
(EAE; Constantinescu et al., 2011; Ben-Nun et al., 2014),
which involves the administration of myelin peptides or CNS
homogenate to induce an autoimmune-mediated demyelinating
insult to the rodent CNS (Denic et al., 2011; van der Star
et al., 2012; Baker and Amor, 2015). While EAE models
the immunopathogenesis of acute MS lesions and has been
instrumental to discover many disease modifying treatments
(Plemel et al., 2017), it is of limited value for assessing
the neurobiological aspects of remyelination (Owens, 2006;
Haanstra et al., 2015; Procaccini et al., 2015; Plemel et al.,
2017; Stimmer et al., 2018). Another immune-mediated model
of MS is the use of Theiler’s murine encephalomyelitis virus
(TMEV) to induce spinal cord demyelinated lesions (Dal Canto
and Lipton, 1977; Owens, 2006; Denic et al., 2011; McCarthy
et al., 2012). Toxin-based models of demyelination have also
been used widely in pre-clinical studies on neurobiological
aspects of demyelinating disease. Most commonly employed
are LPS (Liddelow et al., 2017), cuprizone (Praet et al.,
2014), lysophosphatidylcholine (lysolecithin; LPC; Blakemore
and Franklin, 2008; Lassmann and Bradl, 2017), and ethidium
bromide (EB) models (Woodruff and Franklin, 1999; McMurran
et al., 2019). LPS is a model of neuroinflammation initiated by
the injection of a bacterial endotoxin and results in neurotoxic
astrocyte phenotype (Liddelow et al., 2017). Cuprizone is a
copper chelating agent that is administered orally and induces
acute CNS demyelination, particularly in the corpus callosum
and cerebellar peduncles (Praet et al., 2014). LPC by contrast,
is focally injected into white matter tracts, inducing damage to
the myelin sheaths (Blakemore and Franklin, 2008; Lassmann
and Bradl, 2017) and acting as a chemoattractant for monocytes,
thus triggering a focal inflammatory response (Blakemore and
Franklin, 2008; Lassmann and Bradl, 2017). Many toxin-
based demyelination models represent a simpler system with
predictable and reproducible spatiotemporal patterns to study the
remyelination process (McMurran et al., 2019) and have been
used as tools to highlight both the permissive and inhibitory roles
of astrocytes (reviewed by Rawji et al., 2020).

Role of Astrocytes in CNS Demyelination
Astrocytes are central to the demyelination response and the
success of remyelination (Molina-Gonzalez and Miron, 2019;
Rawji et al., 2020), as they release anti-inflammatory cytokines,
proteins that modulate myelin regeneration (remyelination),
actively maintain extracellular ionic and neurotransmitter
concentrations, and provide critical neuronal support (Hinks
and Franklin, 1999; Jessen et al., 2015; Liddelow et al., 2017).
Astrocytes also release pro-inflammatory cytokines, promote
BBB permeability, and inhibit OPC maturation (Sisková et al.,
2006; van Horssen et al., 2007; Lau et al., 2013; Stoffels et al.,
2013). These contrasting functions are thought to represent
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changing functional roles at different stages of the remyelination
process (reviewed in Rawji et al., 2020). Importantly, astrocyte
responses are often dependent on the type of lesion (Rao et al.,
2019) where acute active lesions are filled with immune cells
and hypertrophic astrocytes with increased GFAP expression
and an associated upregulation of proinflammatory chemokines
and cytokines (Williams et al., 2007; Franklin and Goldman,
2015). Alternatively, inactive lesions (Figure 3D) have less
inflammation and the astrocytes typically are more densely
packed with long thick processes in close proximity to extensively
demyelinated axons (Franklin and Goldman, 2015). In the rodent
cuprizone model, astrocytes have been shown to regulate the
recruitment of microglia which then facilitates myelin debris
removal, an imperative step for subsequent repair (Skripuletz
et al., 2013). Astrocytes also play an important role in influencing
the balance of OPC-derived oligodendrocyte vs. OPC-derived
Schwann cell-mediated CNS remyelination (reviewed by Chen
et al., 2021). The ability of astrocytes to take on different roles
may reflect distinct sub-populations or dynamic changes in
malleable phenotypes driven by spatiotemporal environmental
fluctuations (e.g., microglia-derived factors, cytokines; Cerbai
et al., 2012; Horstmann et al., 2016). The relative contributions of
heterogeneity and plasticity to these dynamically changing roles
remains to be elucidated, as well as the potential for manipulation
of astrocytes to phenotypes that support a pro-remyelination
lesion environment.

Astrocyte Diversity in CNS Demyelination
Similar to other CNS pathologies, transcriptional evidence has
expanded our understanding of astrocyte diversity in CNS
demyelination, including the use of bulk transcriptional analysis
(Rothhammer et al., 2016, 2018; Itoh et al., 2018; Chao et al.,
2019; Wheeler et al., 2019). For example, RNA-seq analysis
of EAE and MS tissue identified several clusters of astrocytes
with differential expression of S100b, Gja1, Aldh1l1, Gfap, and
Aqp4, consistent with a spectrum of astrocyte transcriptional
states in EAE (Wheeler et al., 2019). Furthermore, astrocytes
in EAE and MS tissue were demonstrated to have variable
expression of the transcription factor Nrf2 and Mafg and
Mat2a signaling, leading to DNA methylation and increased
CNS pathology (Wheeler et al., 2020). These data identify
epigenetic modifiers as potential therapeutic candidates to
modulate pathology in MS. Importantly, as discussed below,
there is a need to separate plasticity and heterogeneity in
models of CNS demyelination to improve our understanding
of factors that promote a pro-remyelination lesion environment
and eventually guide therapeutic development. To that end, we
propose here a framework for making that distinction using
current evidence for astrocyte diversity in models of CNS
demyelination as an example.

Potential for Astrocyte Plasticity Based
on Disease-Associated Variables in CNS
Demyelination
We argue that astrocyte diversity across variables, such as
disease stage (early or late disease progression), lesion status

(status of demyelination or remyelination), age at disease onset,
and sex of the individual are examples where plasticity is the
predominant contributor to astrocyte diversity. In comparison
to other CNS pathologies, MS and EAE have extensive
spatiotemporal lesion variability and extensive immunological
activity, complicating the interrogation of astrocyte diversity. For
example, lesions present in the same individual at a given time
can be at different stages (i.e., active, chronic active, inactive,
remyelinated, etc.; Rao et al., 2019) and in different CNS regions
(spanning WM and GM). Furthermore, analogous lesions can be
present in individuals of different age and/or sex, complicating
comparisons between spatiotemporally similar lesions. Given
those complexities, we highlight the challenge in distinguishing
plasticity and heterogeneity without clear fate-mapping studies
to establish a baseline in regionally and temporally disparate CNS
regions against which comparison of variability can be assessed.

Temporal evolution of astrocyte diversity in inflammatory
demyelinated lesions has been noted. For example, in EAE
models astrocyte cholesterol gene expression decreases late in
the disease course in both the spinal cord and optic nerve
(Itoh et al., 2018; Tassoni et al., 2019). Furthermore, astrocytic
major histocompatibility complex-II (MHC-II) expression is
markedly increased in early EAE brain and spinal cord lesions
followed by a late decrease (Itoh et al., 2018), while optic nerve
astrocytes in EAE optic neuritis show an early increase in MHC-
II expression that persists through the disease course (Clarkson
et al., 2015; Tassoni et al., 2019). Due to the role of MHC-
II in immunomodulation, it is tempting to speculate about the
functional relevance of this diversity, compounded by the fact
that optic neuritis is commonly the initial presentation of MS
in patients (Polman et al., 2005; Montalban et al., 2010; Amato
et al., 2018). Diversity along the temporal component most
likely represents response to a dynamic lesion environment, and
thus plasticity. Despite this, it remains important to establish
a baseline of heterogeneity, especially between CNS regions, as
well as identify newly generated astrocytes in the context of
demyelination injury as a potential source of heterogeneity.

Astrocyte diversity is also noted across lesion types in
MS models (Rao et al., 2019). For example, acute lesions
display hypertrophic astrocytes with increased expression of
GFAP and several pro-inflammatory cytokines, chemokines,
and remyelination-associated molecules (Woodruff et al.,
2004; Williams et al., 2007; Franklin and Goldman, 2015;
Rawji et al., 2020). By contrast, inactive lesions contain
transcriptionally inactive astrocytes with small cell bodies and
long filamentous processes that contribute to an increased
density of reactive astrocytes (Franklin and Goldman, 2015;
Ludwin et al., 2016). For example, acute lesions demonstrate
reduced astrocytic connexin-43 (CX43) expression and disrupted
CX43/CX47-mediated astrocyte-to-oligodendrocyte connections
(Masaki et al., 2013). Loss of CX43 expression is associated with
progressive MS disease, oligodendrocyte pathology, and astrocyte
degeneration (Masaki et al., 2013) and patients with reduced
CX43 expression have a more rapid clinical disease progression
(Masaki et al., 2013). Furthermore, astrocytic chitinase 3-like 1
(CHI3L1) expression, associated with chronic inflammation and
neurotoxicity (Cantó et al., 2012; Matute-Blanch et al., 2020),
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is observed in chronic MS lesions but absent from other lesion
types (Cantó et al., 2012). One potential driver of this diversity
is microglial-derived factors (e.g., activin-A), which have been
shown to modulate astrocyte activation in demyelinated lesions
(Miron et al., 2013; Rawji et al., 2020), further consistent with
plasticity as a predominant contributor.

Age is an important factor in the pathogenesis of MS,
with clinical disease onset rare after the age of 50 (Tremlett
et al., 2010; Amato et al., 2018; Baecher-Allan et al., 2018).
Furthermore, age at onset appears to be a key prognostic factor
for MS patients (Tremlett et al., 2010; Amato et al., 2018).
Progressive MS is also correlated with increasing age (Koch
et al., 2009; Tutuncu et al., 2013). Despite the multitude of
factors that may be contributing to this observation, including
age-related changes in hormones, immune function, neural
and non-neural cell populations, it is tempting to speculate
regarding the potential contribution of age-related diversity in
astrocyte subpopulations to this disease susceptibility. Aged-
related astrocyte diversity observed is thought to be at least
in part secondary to the increased pro-inflammatory function
of aged microglia (Kanaan et al., 2010; Cerbai et al., 2012;
Jyothi et al., 2015), thus likely representing plasticity. Aged
astrocytes are more reactive and respond to demyelination
with a more pronounced cellular hypertrophy (Robillard et al.,
2016; Boisvert et al., 2018; Clarke et al., 2018). Aged astrocytes
were also demonstrated to have decreased expression of key
cholesterol synthetic enzymes (Boisvert et al., 2018; Clarke
et al., 2018), which may contribute to the reduced success of
remyelination with age (Shields et al., 2000; van Wijngaarden
and Franklin, 2013). Further study will help to elucidate the
impact of age-related astrocytic changes to remyelination success,
either directly through immunomodulatory effects or indirectly
through interactions with other neural cell lineages populating
the lesions, as well as reveal astrocyte features potentially
amendable to therapeutic targeting.

MS affects 2–3 times more women than men (Whitacre et al.,
1999), but men are more likely to have disease progression
(Savettieri et al., 2004; Koch et al., 2009; Tomassini and Pozzilli,
2009; Shirani et al., 2012). Sex-specific diversity of astrocytes is
notable in models of auto-immune demyelination (Chowen et al.,
2017), reflecting this clinical observation. In EAE optic neuritis,
optic nerve astrocytes in female mice display more robustly
increased C3 expression (a component of the pro-inflammatory
complement cascade; Stevens et al., 2007) and dampened
upregulation of thombospondin-1 (Thbs1) when compared to
their male counterparts (Tassoni et al., 2019), consistent with
a more pro-inflammatory environment. Importantly, this is
correlated with exaggerated retinal ganglion cell (RGC) and
axonal loss in female mice (Tassoni et al., 2019), with a significant
negative correlation between astrocytic expression of C3 and
RGC density (Liddelow et al., 2017; Tassoni et al., 2019). This is
particularly interesting given the female predominance of clinical
MS, as well as the frequency of optic neuritis as a presentation
in female MS patients (Voskuhl and Gold, 2012; Baecher-Allan
et al., 2018; Voskuhl et al., 2018). Importantly, these sex-
specific differences were not observed in spinal cord astrocytes
in the same model (Tassoni et al., 2019), highlighting notable

regional diversity (Itoh et al., 2018). Further investigation to
differentiate plasticity (e.g., hormone effects) from heterogeneity
and to elucidate the functional relevance of this observed
sex-specific diversity are important goals for future research
(Chowen et al., 2017; Gilli et al., 2020).

Potential for Astrocyte Heterogeneity
Based on Disease-Associated Variables
in CNS Demyelination
In contrast to plasticity, we propose that astrocyte heterogeneity
in models of CNS demyelination likely manifests as differences in
regionally specific astrocyte populations in disparate CNS regions
(e.g., brain regions, spinal cord, etc.). For example, scRNA-seq
analysis of isolated murine astrocytes after EAE revealed distinct
expression profiles for spinal cord, cerebellar, and hippocampal
astrocytes (Itoh et al., 2018; Tassoni et al., 2019). Cholesterol
synthesis pathways were significantly downregulated in WM-
rich regions (e.g., spinal cord, cerebellum, optic nerve) due to
altered ApoE-mediated cholesterol transport (Itoh et al., 2018;
Tassoni et al., 2019). This is consistent with the downregulation
of cholesterol synthesis observed in chronic demyelinated
lesions in mouse MS models (Boisvert et al., 2018; Clarke
et al., 2018), thought to be detrimental for remyelination
given the lipid-rich nature of myelin sheaths (Itoh et al.,
2018; Rawji et al., 2020). There are also notable differences
between astrocytes that populate subcortical WM and GM
lesions (Albert et al., 2007; Prins et al., 2015). Combined
snRNA-seq and transcriptomic lesion mapping in MS tissue
enabled mapping of dysregulated genes to either GM or WM
astrocyte subpopulations (Schirmer et al., 2019) revealing that
GM astrocytes in cortical lesions (i.e., GPC5+/SLC1A2+ cells)
had decreased expression of genes involving glutamate and
K+ homeostasis, whereas WM astrocytes in subcortical lesions
(i.e., CD44+/LINC01088+ cells) displayed upregulated genes
including GFAP, the transcription factors BCL6 and FOS, and
endothelin receptor B (Schirmer et al., 2019). Spinal cord
astrocytes in LPC focal demyelination models were shown to
have increased GFAP expression as compared to the cerebral
cortex (Yoon et al., 2017). Molecular pathway analysis identified
the antigen-presentation and interferon signaling pathways as
specifically enriched in spinal cord and cerebellar astrocytes
(Itoh et al., 2018). Antigen presentation by astrocytes has
been previously shown in EAE models (Cornet et al., 2000;
Constantinescu et al., 2005) and thought to be functionally
important in astrocyte-mediated immunomodulation (Rawji
et al., 2016, 2020). Regional diversity can also be seen in EAE
optic neuritis models (Horstmann et al., 2016; Nolan et al.,
2018; Tassoni et al., 2019). scRNA-seq revealed astrocyte-specific
upregulation of the complement cascade and Thbs1, a gene
involved in RGC synaptic plasticity and visual recovery following
demyelination (Tassoni et al., 2019). Astrocytic Thbs1 expression
peaks early in disease (Tassoni et al., 2019), consistent with early
astrocyte regulation of neural plasticity in demyelinated visual
circuits. Optic nerve astrocytes also displayed reduced expression
of cholesterol synthetic genes and increased expression of antigen
presentation genes (Tassoni et al., 2019), similar to that seen
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in spinal cord EAE lesions (Itoh et al., 2018). Diversity in
gene expression was also noted between optic nerve and retinal
astrocytes (Tassoni et al., 2019).

Regional diversity in EAE and MS is particularly interesting
considering the multifocal nature of the disease (Baecher-
Allan et al., 2018; Rawji et al., 2020). One can speculate that
regional differences in astrocyte and other glial cell populations
create an environment (e.g., ECM, cytokines, chemokines, etc.)
more conducive to immune-mediated demyelination and/or for
remyelination success. Astrocytes are known to exhibit regional
specific responses to T-cell cytokines, leading to regionally
specific neuroinflammatory responses in the hindbrain and
spinal cord (Williams et al., 2020), suggesting that diverse
astrocyte features may contribute to the anatomical propensity
for demyelinated lesions to occur in certain locations (e.g.,
periventricular WM, spinal cord, optic nerve). Expression of
pattern recognition receptors (PRRs) and interferon-induced
genes, both at a basal level and in response to IFN induction, were
higher in cerebellar than cortical astrocytes (Daniels et al., 2017),
consistent with regionally specific astrocytic innate immune
responses. Moreover, activation of the unfolded protein response
alters the astrocytic secretome, generating a unique reactivity
state and impairing synaptogenic function in vitro (Smith et al.,
2020). Understanding the interplay between these environmental
features and astrocytes is likely a fruitful area for therapeutic
targeting, given the multitude of roles that astrocytes have in
CNS demyelination. For example, GM lesions remyelinate more
efficiently compared to WM (Albert et al., 2007; Bai et al.,
2016; Strijbis et al., 2017), which could reflect, at least in
part, contributions of regional specific astrocyte diversity. This
will require detailed fate-mapping studies in models of CNS
demyelination across lesion types, brain regions, and throughout
the natural history of the condition.

TRAUMATIC INJURY

Traumatic CNS injuries remain the major causes of disability,
premature death, and long-term neuropsychiatric impairment
(Fitzharris et al., 2014; Gbd, 2016; National Spinal Cord
Injury Statistical Center, 2021). Traumatic spinal cord injury
(SCI) results from the application of an external force on the
spine (e.g., motor vehicle accident, fall, sports-related injury,
violent injury) damaging the underlying neural tissue in a
variable manner (Ahuja et al., 2017; National Spinal Cord
Injury Statistical Center, 2021). The primary insult results
in massive damage to neural cells and triggers a complex
cascade of secondary injury mechanisms that culminate in
neuronal and glial cell death, ischemic injury, and inflammation
(Alizadeh et al., 2019). This is generally followed by significant
reorganization of spinal cord structure, including the formation
of a densely packed astrogliosis border surrounding a cystic
cavity at the lesion site (Sofroniew, 2009; Adams and Gallo,
2018; Alizadeh et al., 2019; Tran et al., 2021). Traumatic
brain injury (TBI) is highly variable mechanistically with a
wide range of causative insults and severities. Moreover, TBI
has a complex post-injury course with numerous sequelae

that form part of a gradually evolving syndrome associated
with chronic behavioral disturbances, seizure disorders, and
protracted neurodegenerative diseases (Maas et al., 2008; Kovacs
et al., 2014; Sharp et al., 2014). Reflecting the variable
clinical presentation, TBI tissue pathology is highly inconsistent
according to the type and severity of the injury and brain
region involved (Sofroniew, 2009, 2015; Burda and Sofroniew,
2014). Due to the myriad and seemingly conflicting roles of
astrocytes in the post-trauma environment, characterization of
the contributions of heterogeneity and plasticity seems vital to the
identification of targets for therapeutic manipulation both acutely
for neuroprotective approaches and in the sub-acute/chronic
period to enable for more effective axon regenerative approaches,
which will continue to be the focus of extensive research efforts
(Hilton et al., 2012; Cregg et al., 2014; Anderson et al., 2016;
Geoffroy et al., 2016).

Several pre-clinical models of traumatic CNS injury have been
utilized (Figure 3E; Jakeman et al., 2000; Metz et al., 2000;
Dunham et al., 2010). Importantly, given the complexity of
human traumatic injury, no one model alone can recreate all
aspects of the injury process, therefore models are employed
based on the study objectives and are thus limited in
generalizability. In terms of injury mechanisms, SCI models
can be broadly classified as contusion, crush, and transection
(Hilton et al., 2013, 2019; Cheriyan et al., 2014), and recently
emerging distraction and dislocation (Chen et al., 2016), with
each mechanism having a unique tissue including glial response
pattern. Contusion models are the most used due to their
perceived clinical relevancy, although this relevancy has yet to
be confirmed in a successful human trial of a neuroprotective
treatment. The most common TBI models are controlled cortical
impact (CCI) models and fluid percussion injury models, with the
notable addition of models that mimic blast injuries or repeated
mild TBI (i.e., concussion; Xiong et al., 2013). Differences in
injury mechanism between the models and resultant secondary
injury lead to differential astrocytic responses (Adams and Gallo,
2018; Boghdadi et al., 2020b), a consideration when attempting
to generalize astrocyte responses across models.

Role of Astrocytes in Traumatic Injury
Astrocytes (Sofroniew, 2020), OPCs (Hackett et al., 2016), and
fibroblasts (Goritz et al., 2011; Soderblom et al., 2013; Dias
and Göritz, 2018) have all been shown to contribute to the
densely packed accumulation of cells in close proximity to injury
epicenter following SCI and TBI, with continual modulation
by microglia and infiltrating innate and adaptive immune cells
(Silver and Miller, 2004; Silver, 2016; O’Shea et al., 2017; Bradbury
and Burnside, 2019). For the purposes of this review, we focus
on data pertaining to the astrocytic component (Faulkner et al.,
2004; Anderson et al., 2018; Gu et al., 2019; Yang et al., 2020)
but recognize that reactive astrogliosis is often accompanied by
clusters or intermingling fibroblast-like cells and OPCs (Faulkner
et al., 2004; Anderson et al., 2018; Dias et al., 2018; Gu et al.,
2019; Yang et al., 2020). In agreement with a recent suggestion
to avoid using the term “glial scar” or “scar” (Sofroniew, 2020),
which should be reserved for mesenchymal or stromal scar
tissue, we will refer to the previously termed “glial scar” as
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densely packed astrogliosis borders or densely packed reactive
astrocytes. At the sub-acute/chronic traumatic injury epicenter
(Figure 3F), there is a drastic loss of cells which overtime can
result in the formation of a fluid-filled cyst surrounded by an
inner layer of fibroblast-like cells and an outer layer of densely
packed reactive astrocytes (Tran et al., 2021). Astrocytes are
rapidly activated following traumatic injury culminating in the
formation of a prominent densely packed astrogliosis border
(Sofroniew, 2009; Adams and Gallo, 2018). Densely packed
reactive astrocytes after TBI are partially regulated by monocyte
invasion where reducing invasion using CCR2–/– mice results
in increased astrocyte proliferation but perhaps surprisingly,
decreased GFAP+ scar area, ECM deposition, and lesion size
compared to controls (Frik et al., 2018). While traditionally
viewed as a barrier to axon regeneration and thus functional
recovery, the post-traumatic densely packed astrogliosis border
is also ascribed a beneficial function in the mitigation of further
damage to the surrounding spared tissue (Adams and Gallo,
2018). For example, attenuating densely packed astrogliosis
through signal transducer and activator of transcription 3 (stat3)
deletion results in increased inflammation, lesion volume, and
reduced motor recovery compared to controls (Herrmann et al.,
2008). Importantly, the role of the densely packed astrogliosis
border appears to be dynamic throughout the post-injury period,
reflecting the multiplicity of functions ascribed to it (Anderson
et al., 2016; Adams and Gallo, 2018).

Astrocyte Diversity in CNS Traumatic
Injury
Diversity of reactive astrocytes following CNS trauma is thought
to be driven largely by fluctuations in the inflammatory and
cellular milieu of the post-injury environment (Hara et al.,
2017; Adams and Gallo, 2018; Boghdadi et al., 2020b). RNA-
seq performed on astrocytes 2 weeks following a spinal cord
crush injury revealed differential expression of over 6,000
genes (Anderson et al., 2016), similar in magnitude with
that observed post-ischemia (Zamanian et al., 2012; Anderson
et al., 2016). Importantly, these reactive astrocytes demonstrate
significant environmental-dependent plasticity (Hara et al., 2017;
Boghdadi et al., 2020b). For example, integrin/N-cadherin-
dependent collagen-1 signaling shapes astrocyte phenotypes
in the post-injury spinal cord (Hara et al., 2017). Moreover,
reactive astrocytes grafted into the spinal cord adopt an
environmentally congruent phenotype (Hara et al., 2017). For
example, reactive astrocytes grafted into the injured spinal cord
retain the reactive phenotype, while those transplanted into
the uninjured spinal cord revert phenotypically into resting
astrocytes, confirmed by transcriptional analysis (Hara et al.,
2017). After repetitive diffuse mild TBI, an atypical reactive
astrocyte population was observed which featured a lack of
GFAP expression, a downregulation of homeostatic proteins, and
pronounced astrocyte coupling impairments, highlighting the
importance of characterizing diversity across different types of
injury (Shandra et al., 2019).

Extensive research has focused on manipulating the
astrogliosis-associated deposition of growth-inhibitory ECM

molecules (e.g., chondroitin sulfate proteoglycans; CSPGs)
in the context of traumatic injury (McKeon et al., 1995;
Ponath et al., 2018) in an attempt to improve axonal regeneration
(Bradbury et al., 2002; Cregg et al., 2014; Burda et al., 2016; Tran
et al., 2018). In a rat model of TBI, CSPG expression is increased
in a subset of peri-lesional astrocytes, peaking at 7 days post-
injury, which is temporally correlated with a reduction in
peri-neuronal net density and increased GAP-43+ neurons
(Harris et al., 2009, 2010; Yi et al., 2012). This is consistent with
the observed increase in neural plasticity, which is an important
intrinsic mechanism of functional recovery following trauma.
Additionally, subsets of astrocytes were observed to express
the complement component C3 as early as 3 days post-injury
with further increase through 28 days post-injury, mainly
clustered around the lesion core (Qian et al., 2019). Whether
these C3+ astrocytes represent neurotoxic or pro-inflammatory
phenotypes akin to “A1” astrocytes (Liddelow et al., 2017)
remains to be determined. The potential role of these cells in
axonal loss and retraction of transected axons from the lesion
edge would be interesting to investigate as they remain key
hurdles impeding regenerative and neuroprotective strategies in
models of CNS trauma (Anderson et al., 2016; Geoffroy et al.,
2016; Liddelow and Barres, 2016; Hilton et al., 2017).

Potential for Astrocyte Plasticity Based
on Disease-Associated Variables in
Traumatic Injury
In the context of traumatic injury, we propose that astrocyte
diversity across the disease-associated variables of time post-
injury (i.e., temporal), distance from injury (i.e., topographical),
age at which injury is sustained, and sex of the individual
are examples where plasticity is likely to predominant
over heterogeneity. Extensive work has been performed to
characterize reactive astrogliosis in the context of SCI (Filous
and Silver, 2016; Silver, 2016; Bradbury and Burnside, 2019),
focusing predominately on temporal changes in GFAP and
CSPGs expression and morphological changes. Importantly,
there are limited peer-reviewed transcriptomics data available
to date. scRNA-seq was used to generate transcriptomics data
based on temporal changes post-injury after mouse contusion
SCI at 1, 3, and 7 dpi (Milich et al., 2021). Gene Ontology
(GO) Enrichment Analysis for differentially expressed genes
performed on astrocytes at 1 dpi were “translation” and
“biosynthetic processes,” while by 3 dpi astrocytes were defined
by “mitochondrial function” and “oxidative phosphorylation,”
and at 7 dpi astrocytes were related to “lipid processing” (Milich
et al., 2021). Despite numerous remaining questions regarding
the extent and functional relevance of temporal astrocyte
diversity following CNS traumatic injury, it appears probable
that dynamic changes are evident following injury with shifting
roles in the evolving injury and recovery processes, hence
representing plasticity in response to environmental fluctuations.
Further elucidation with fate-mapping studies and functional
interrogation is key to revealing effective means of manipulating
these processes to promote neuroprotection and recovery
following injury.
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As with other CNS pathologies, the degree of reactive
astrogliosis in traumatic injury is highly dependent on the
distance from the lesion, secondary to the gradation of pathology
radiating outwards from the lesion epicenter, as reflected by
parallel gradients of axonal injury, vascular disruption, ischemia,
and inflammation (Wanner et al., 2013; Okada et al., 2018;
Boghdadi et al., 2020b). GFAP expression, CSPG expression,
astrocyte proliferation, and astrocyte density is highest directly
adjacent the lesion, with a decreasing taper with increasing
distance (White et al., 2009; Wanner et al., 2013). Importantly,
in the injured spinal cord there appears to be diversity
amongst locally intermingled astrocytes equidistant to the lesion,
including variable expression of GFAP, NESTIN, and brain
lipid-binding protein (BLBP; White et al., 2009) and only
certain astrocyte subsets proliferate and/or polarize in response
to a cortical stab injury (Bardehle et al., 2013), which are
predominately juxta-vascular, reflecting the influence of blood-
borne elements (Bardehle et al., 2013). These findings highlight
the complexity and extent of astrocyte diversity that exists in
CNS trauma, largely a reflection of the complex post-injury
environment, in keeping with our definition of plasticity.

Despite the increasing prevalence of aged SCI patients, there
is limited data on reactive astrocyte diversity in the aged CNS.
One study examined astrocytes in young (i.e., 4 month old)
and aged mice (i.e., 18-month-old) at 1, 3, and 7 days after a
controlled cortical impact TBI (Early et al., 2020). Histological
analysis demonstrated a significant increase in GFAP+ area in
the aged mice compared to young, but notably only at 7 dpi
(Early et al., 2020). Generally, transcriptomics data performed
on these astrocyte populations found disproportionate changes
in genes associated with reactive astrocytes in the aged mice
after TBI compared to their young counterparts, as might be
expected based on findings from other pathologies and normal
aging process. Importantly, these profiles were not aligned
with classic “A1/A2” phenotypes, once again highlighting the
existence of a spectrum of reactive astrocyte subsets rather
than a binary classification. Given the increasing importance
of age in clinical presentation of traumatic CNS injury and
the significant astrogliosis observed in animal models in the
chronic SCI setting (months to years after injury; Silver and
Miller, 2004), further work is needed to better characterize
reactive astrogliosis diversity in the aged CNS and determine
the functional relevance of these changes to disease outcomes
(Burda et al., 2016; Okada et al., 2018).

Males are more commonly affected by CNS trauma than
females (Cripps et al., 2011; Devivo, 2012; Gupte et al., 2019),
attributed to increased risk-related behaviors. Despite this, there
is limited data on sex-related astrocyte diversity in CNS trauma.
In fact, because of the bladder problems associated with SCI
models, 71% of pre-clinical SCI models are performed in female
mice (Stewart et al., 2020), whose shorter urethra eases the stress
of bladder expressions. In murine models of severe TBI, females
display a larger GFAP+ area compared to males in the first
week after injury which resolves by 30 dpi (Villapol et al., 2017).
Moreover, chemokine C-C motif Ligand 2 (CCL2) expression was
reduced after cortical injury in female astrocytes as compared
to their male counterparts, potentially reflecting altered immune

cell recruitment (Acaz-Fonseca et al., 2015). In contrast, no sex-
specific differences were noted in reactive astrocytes between
male and female mice in a model of repetitive diffuse brain injury
(Shandra et al., 2019), reflecting the importance of the specific
model used. One of the main drivers of sex-specific differences is
likely sex hormones, namely estrogen, which is in keeping with
our definition of plasticity. The role of estrogens in astrocyte
activation has been previously established (Arevalo et al., 2015)
and recent data demonstrate that inhibiting estradiol synthesis
promotes reactive astrogliosis in female mice after a controlled
cortical impact TBI (Vierk et al., 2012), an effect not seen in
males (Vierk et al., 2012). Therefore, the female CNS may be more
sensitive to CNS trauma as compared to the male counterpart
as was suggested previously (Vierk et al., 2012; Tabatadze et al.,
2015; Bender et al., 2017). Further investigation of the influence
of estrogens in models of CNS trauma is an important means of
differentiation between hormonally driven effects (i.e., plasticity)
and specific patterns of gene expression that are linked to sex
chromosome codification (i.e., heterogeneity). 17β-estradiol has
been shown to have neuroprotective effects in pre-clinical models
of SCI and TBI (Siriphorn et al., 2012; Day et al., 2017), and
therefore targeted manipulation of estrogen signaling pathways
may be a viable therapeutic target.

Potential for Astrocyte Heterogeneity
Based on Disease-Associated Variables
in Traumatic Injury
In contrast to plasticity, astrocyte heterogeneity in the context of
traumatic injury may manifest as regionally variable responses
to injuries at different locations across the neuraxis (i.e.,
brain vs. cervical spinal cord vs. thoracic spinal cord, etc.).
Further characterization of astrocyte responses across models
of CNS trauma utilizing fate-mapping and clonal analysis are
important approaches to elucidate the extent of heterogeneity.
For example, clonal analysis using the Star Track approach of
proliferative astrocytes in a cortical stab injury model revealed a
distinct progenitor cell origin as compared to non-proliferative
astrocytes (Martín-López et al., 2013), consistent with our
definition of heterogeneity. In the injured spinal cord, NSC-
derived astrocytes more effectively constrain inflammation and
the expansion of secondary damage (Sabelstrom et al., 2013),
suggesting that distinct cellular origins may be a contributor
to the diverse behavior of astrocytes observed following CNS
trauma. Interestingly, a subset of reactive astrocytes in the post-
trauma CNS displays certain characteristics of NSCs, including
proliferative ability, multipotent lineage potential in vitro, and
expression of several neurogenesis-associated genes (Buffo et al.,
2008; Sirko et al., 2013). The potential for manipulation of this
population has been demonstrated (Adams and Gallo, 2018;
Magnusson et al., 2020; Zamboni et al., 2020) and represents
a potentially attractive therapeutic approach to replace lost cell
populations following trauma. Importantly, in models of CNS
trauma there is also a potential contribution to observed diversity
from astrocytes derived from other cells, including ependymal
cells (Barnabé-Heider et al., 2010) and NG2 glia (Komitova et al.,
2011; Hackett et al., 2016). For example, 2% of the astrocytes
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after SCI were lineage-traced to FOXJ1 ependymal cells, which
was dependent upon injury proximity to the central canal
(Ren et al., 2017). Fate mapping approaches also revealed that
NG2+ cells can give rise to a small percentage of densely packed
GFAP+ astrocytes, both after a cortical stab injury (Komitova
et al., 2011) and contusive SCI (Hackett et al., 2016). Distinct
functionality and transcriptomic differences have not yet been
established for these identified cell populations, representing
important areas for further research.

As for ischemic stroke and demyelination, additional fate-
mapping data in models of CNS trauma to establish the
extent of heterogeneity is required. As CNS trauma can occur
at various locations across the CNS, regional differences in
the astrocyte populations may have a significant impact on
injury outcome, as well as the success of functional recovery.
For example, diverse astrocyte populations may be a key
determinant of the extent of primary and secondary injury,
considering the finding that elevated GFAP protein levels in
cerebral spinal fluid after SCI are correlated with both baseline
injury severity and poorer neurological outcomes (Skinnider
et al., 2021a). Furthermore, differences in the local neuronal
populations and the interplay between astrocytes and neurons
in the post-injury environment may influence the success of
neural circuit remodeling and thus functional recovery clinically.
Understanding of the contribution of heterogeneity across
brain regions, injury types (e.g., contusion, crush, etc.), and
across stages of the disease process (e.g., acute, sub-acute,
chronic) is therefore critical. This can be accomplished with
performance of fate-mapping studies combined with high-
resolution transcriptomic approaches and functional assays
to interrogate the functional relevance of identified astrocyte
diversity in diverse models of CNS trauma (e.g., SCI, TBI,
concussion, etc.).

PERSPECTIVES ON ASTROCYTE
DIVERSITY IN CNS DISEASE

Effective treatments are lacking for many neurological
pathologies, including stroke, MS, and CNS trauma, resulting
in significant morbidity and mortality. As astrocytes serve
multiple vital roles in the post-insult CNS, they represent key
players in disease pathogenesis, as well as promising targets
for therapeutic manipulation. Characterization of the extent
and functional relevance of astrocyte diversity in conditions of
CNS insult is likely to aid in this endeavor: however, given the
complexity of astrocyte reactivity (Lukovic et al., 2015; Anderson
et al., 2016; Liddelow and Barres, 2016; Silver, 2016; Escartin
et al., 2021) this will require a significant research effort. In
this review, we summarize the current state of knowledge of
astrocyte diversity in three representative and clinically relevant
CNS pathologies; ischemic stroke, demyelination, and traumatic
injury, highlighting the need for further characterization and
functional interrogation of the contributions of heterogeneity vs.
plasticity across temporal, topographical, age-specific, and sex-
specific variables as a foundation to guide future development of
therapeutic treatments to mitigate the impact of these conditions.

Areas of Future Research
Importantly, several knowledge gaps exist in the areas explored
in this review. Most notably, there is a relative paucity of
scRNA-seq studies characterizing astrocyte diversity in models
of CNS trauma, as compared to demyelination and ischemic
stroke. Moreover, as the vast majority of pre-clinical research has
been performed in rodent models, increased use of non-human
primate models or human tissue specimens is an important
future avenue, as functional differences between species might
pose a hurdle for clinical translation if not thoroughly addressed.
Indeed, human astrocytes are known to be structurally more
complex and diverse than rodent astrocytes (Oberheim et al.,
2009; Zhang et al., 2016), as well as propagate Ca2+ waves
approximately 4-fold faster than rodents in response to glutamate
stimulation (Zhang et al., 2016), suggesting potential functional
differences. Another critical area for future study is the influence
of age on astrocyte diversity. This is particularly important not
just for ischemic stroke, but for traumatic injury as well as older
ages represent an increasing proportion of SCI and TBI, which is
projected to increase in line with increasing age demographics
in developed nations, and for progressive MS and the age-
related decrease in remyelination efficiency. Considering that life
expectancies of many of these clinical populations is increasing
secondary to improved care and treatments, it will be essential
to investigate astrocyte diversity after significant time periods
after the onset of pathology (i.e., investigations in the 1–2 year
post-injury chronic lesion sites within rodent models).

To meet these needs will require a combination of (1)
increasing throughput of single-cell biology assays to achieve
robust results across experimental conditions and biological
replicates (Cao et al., 2020), (2) the application of multi-
omic approaches to the context of CNS pathologies to avoid
undue reliance on the functional interpretation of single-cell
transcriptomes (Cao et al., 2018), and (3) bioinformatic methods
development to aid biological investigators in differentiating
cell type from cell state (Butler et al., 2018), to prioritize cell
subsets most involved in the disease of interest (Skinnider
et al., 2021b), and to avoid false positives that have the
potential to drive research in unfruitful directions (Squair et al.,
2021). Finally, these data will need to be met with stringent
reporting standards to enable cross-disease investigations and to
understand the conserved and differential responses of astrocytes
across neurological disease.

In addition to conducting scRNA-seq-based characterization
across multiple variables, it is increasingly important to further
validate diverse astrocyte clusters in terms of origin and
functionality, as most scRNA-seq analysis only provides a
snapshot of gene expression within a specific context. Therefore,
parallel assessments need to be performed to (1) validate
mRNA and associated protein expression data, (2) establish
the origin of identified clusters, and (3) assess functional
differences. Furthermore, use of RNA-seq has the potential
to identify cluster-specific, context-specific, or lineage-specific
astrocyte markers across CNS states that will enable a more
detailed interrogation of functionality and origin (e.g., with fate-
mapping studies). New methods are also surfacing with the
ability to predict ligand-targets links between interacting cells
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(Browaeys et al., 2020) and using RABID-seq facilitates the
simultaneous investigation of the transcriptome of specific cells
interacting with your cell type of interest (Clark et al., 2021)
in disease modeling which could further be a powerful tool. In
addition, recent tools, such as transposase-accessible chromatin
profiling (sc-ATAC-seq; Jia et al., 2018) have the potential to
yield information about how chromatin accessibility dictates
astrocyte diversity. New technology is also paving the way for
sequencing both genomic DNA and mRNA in the same cell
which could facilitate a direct comparison of genomic diversity
and transcriptomic diversity (Dey et al., 2015). Multi-omics is
allowing for increasingly complicated analysis with the potential
to, for example, compare genomics, transcriptomics, proteomics,
and metabolomics in the same cells. In addition, considering
the importance of mitochondrial dynamics in astrocytes (Jackson
and Robinson, 2018), future work looking at mitochondrial DNA
as a potential source of genomic diversity will likely be important.
As the definition of heterogeneity hangs on the demonstration
of distinct functionality, detailed assessments across identified
astrocyte clusters focusing on a wide range of function-
related outcome measures is essential (e.g., Ca2+ signaling,
neurotransmitter uptake/buffering, inter-cellular connectivity,
neurotrophic factor production, etc.; for comprehensive list,
see Escartin et al., 2021). Further characterizations of potential
functional differences in how astrocytes respond to neuronal
activity through G-protein-coupled receptor signaling in vivo
will likely prove worthwhile (Nagai et al., 2021a). Further areas
of research should focus on metabolic profiling to interrogate
other potential functional differences between clusters of interest
and the continued use of conditional knockout mice for loss-
of-functions studies. The other requirement for demonstrating
heterogeneity is cells with distinct origins which will require
sound fate mapping follow-up studies. Recent sequencing
methods are providing more insight specific to tracking clones
of cells across time (Weinreb et al., 2020) which likely yields
a powerful tool for demonstrating the potential district origin
of cell clusters.

Astrocytes as Therapeutic Targets in
CNS Disease
Astrocytes are promising therapeutic targets in several CNS
diseases (Hamby and Sofroniew, 2010; Bradbury and Burnside,
2019; Valori et al., 2019). One potential approach is the use of viral
vectors. Adeno-associated viruses (AAVs) demonstrate astrocyte-
specific targeting in adult mice and non-human primates
(Foust et al., 2009; Samaranch et al., 2012; Chan et al., 2017).
Astrocyte-specific tropism may be increased through use of
astrocyte-specific promoters (e.g., Gfap, Aldh1L1) and other
viral capsid modifications (von Jonquieres et al., 2013; Meng
et al., 2015; Vagner et al., 2016; Koh et al., 2017; Taschenberger
et al., 2017). Lentiviral vectors pseudo-typed with glycoproteins
from lymphocytic choriomeningitis virus (LCMV) or Moloney
murine leukemia virus (MuLV) demonstrate astrocyte-specific
targeting following intraparenchymal injection in rats (Cannon
et al., 2011). Nanoparticles have also been used to target
astrocytes (Zhou et al., 2018; Sharma et al., 2019), including the
targeted regression of astrocyte-derived glioblastoma multiforme

in mouse models (Jensen et al., 2013), inhibition of astrocyte-
specific human immunodeficiency virus (HIV) replication via
siRNA delivery (Gu et al., 2017), and astrocyte-specific delivery
of mRNA via intraventricular administration (Tanaka et al.,
2018). Alternatively, coupling of biologically active hydrophilic
molecules (e.g., peptides, nucleic acids) to cell-permeable
molecules can enable cell-specific delivery, as demonstrated in a
mouse model of ALS (Martorana et al., 2012). Use of astrocyte-
specific tropic factors, such as the phage AS1 homing peptide
(Terashima et al., 2018) or herpes simplex virus type 1 (HSV-
1) proteins (Valiante et al., 2015; Falanga et al., 2018) is a
promising approach. Alternative approaches also include the
use of Crispr-Cas9 gene-editing approach to specifically modify
astrocytic genes (Huang and Nair, 2017; Kunze et al., 2018)
and small molecules to modulate key signaling pathways (Zhang
et al., 2015; Gao et al., 2017). As astrocytes are more resilient to
the hostile post-injury environment in the CNS, direct cellular
transplantation approaches may also be effective (Lepore et al.,
2008; Izrael et al., 2018), although perhaps more limited in
conditions, such as MS due to the disseminated nature of the
lesions. Interestingly, dampening astrocyte reactivity (i.e., via
STAT3 pathway inactivation) increases the number of OPC-
derived Schwann cells in rodent demyelination lesions (Monteiro
de Castro et al., 2015). In the context of the pronounced astrocyte
loss seen in SCI, OPCs generate the majority of Schwann
cells found in the contused lesion site (Assinck et al., 2017)
and manipulating astrocytes to facilitate increased OPCs to
differentiate into Schwann cells could be a promising alternative
to invasive Schwann cell transplantation treatments which has
been previously shown to promote repair and recovery in
rat SCI models (Sparling et al., 2015; Assinck et al., 2020).
Furthermore, astrocytes may represent an attractive source
of cells for direct reprogramming to replace lost neurons or
oligodendrocytes (Berninger et al., 2007; Heinrich et al., 2010).
Forced expression of the transcription factors Ngn2, Mash1, or
Pax6 converts astrocytes to glutaminergic neuron-like cells in
rodent models (Berninger et al., 2007), while overexpression of
Dlx2 or Ascl1 converts them to GABAergic neuron-like cells
(Heinrich et al., 2010; Liu et al., 2015). Further research is
required to characterize the stability and functionality of these
trans-differentiated “neurons,” but this is an intriguing approach.
As transcriptional approaches and functional assessment further
reveal the extent and relevance of astrocyte diversity in conditions
of CNS disease there will undoubtedly be an expanded interest
in astrocytes as therapeutic targets. Expansion of that knowledge
is therefore critical to foster this development, specifically
the identification of functionally relevant aspects of astrocyte
diversity that are amendable to extrinsic manipulation (i.e.,
plasticity). This necessitates further research including expanded
transcriptional studies, functional assays, and fate-mapping
analyses to firmly establish and characterize this diversity.

Astrocyte Diversity: An Interplay of
Plasticity and Heterogeneity
Using the framework proposed above, it remains unclear as
to what proportion of the characterized astrocyte diversity in
models of ischemic stroke, CNS demyelination, and traumatic
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injury represent heterogeneity vs. plasticity. We propose that
without unequivocal demonstration of functional differences
and clear fate-mapping data on the origin of the identified
astrocyte clusters, most of the identified diversity to date likely
proportionally represents plasticity in response to a dynamically
changing injury environment. This is a point that has been
argued for diversity in the oligodendrocyte lineage (Foerster
et al., 2019) and most likely holds true for astrocytes. It is
likely that combinations of both heterogeneity and plasticity exist
across a non-exhaustive number of variables including spatial,
temporal, age, and sex, reflecting the superimposition of plasticity
in response to fluctuating and complex environments upon a
background of developmentally pre-determined variance. This
has significant therapeutic implications, as our definition of
heterogeneity defines a population of astrocytes with a unique
origin and function that may be more amendable to intrinsic

manipulation approaches (Figure 4A). In contrast, plasticity
implies a degree of malleability and thus would be amendable to
extrinsic manipulation (Figure 4B). We propose here a simple
model of intrinsic (e.g., viral targeting, DREADDs, optogenetics,
transgenic manipulation, etc.) and extrinsic (e.g., manipulation
of immune response, fibrotic scarring, ECM and stromal-derived
matrix, exogenously administered cytokines, etc.) approaches
for astrocyte-specific targeting, with the important caveat that
extrinsic factors profoundly influence intrinsic mechanisms
and no cell exists in complete isolation from their external
environment, thus this distinction is not as clear-cut as
presented here. Nonetheless, distinguishing heterogeneity from
plasticity will yield a better understanding of the mechanisms
of reactive astrogliosis and aspects of this response that can
be targeted therapeutically. Given the significant interest in
astrocytes as potential targets for therapeutic manipulation

FIGURE 4 | Distinguishing heterogeneity from plasticity is an important first step to ultimately direct treatments geared toward manipulating reactive astrogliosis at
the right time and place through intrinsic mechanisms, extrinsic mechanisms, or both. (A) To the best of our knowledge, in the context of reactive astrogliosis and
pathology, there are no perfect examples of astrocyte heterogeneity as defined in this review. It is likely, however, that further study will reveal evidence, as has been
seen in other glial lineages. Identification of populations with distinct origins and unique functions will present opportunity for the therapeutic targeting of intrinsic
pathways to manipulate the astrocyte response in the context of pathology. (B) Currently, with the multitude of data specific to astrocytes and their plasticity to local
environmental changes, most evidence of astrocyte diversity in the context of pathology is suggested to fit into the plasticity category. Further research is needed to
understand methods to manipulation the extinctic astrocyte environment to direct astrocytes in ways that will be beneficial in the context of pathology.
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(Zhang and Barres, 2010; Schitine et al., 2015; Matias et al., 2019)
and the recent increase in tools to assess cell diversity, astrocyte
diversity in CNS pathologies remains an exciting and promising
field of future research.

CONCLUSION

Astrocytes display substantial diversity in ischemic stroke, CNS
demyelination, and CNS traumatic injury, including temporal,
topographical, sex-specific, and age-specific differences. Single-
cell transcriptional approaches have significantly expanded our
knowledge of the extent of this diversity, in the process altering
our view of reactive astrocytes from a binary categorization
to that of a spectrum of nuanced activation states involving
hundreds of differentially expressed genes. Despite this, there
are notable gaps in our knowledge, most notably whether
this identified diversity represents heterogeneity or plasticity.
As discussed throughout the review, the combination of
transcriptomics approaches to further characterize the extent
of diversity present with parallel functional assessments and
expanded fate-mapping studies are critical areas of future study
to fully develop our understanding of this diversity and to guide
development of therapeutic approaches aimed at mitigating the
morbidity and mortality of those afflicted with these conditions.
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