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Abstract

This paper describes work presented at the Nordic Symposium on Digital Pathology 
2015, in Linköping, Sweden. Prostatic intraepithelial neoplasia  (PIN) represents 
premalignant tissue involving epithelial growth confined in the lumen of prostatic acini. 
In the attempts to understand oncogenesis in the human prostate, early neoplastic 
changes can be modeled in the mouse with genetic manipulation of certain tumor 
suppressor genes or oncogenes. As with many early pathological changes, the PIN 
lesions in the mouse prostate are macroscopically small, but microscopically spanning 
areas often larger than single high magnification focus fields in microscopy. This poses 
a challenge to utilize full potential of the data acquired in histological specimens. We 
use whole prostates fixed in molecular fixative PAXgene™, embedded in paraffin, 
sectioned through and stained with H&E. To visualize and analyze the microscopic 
information spanning whole mouse PIN (mPIN) lesions, we utilize automated whole 
slide scanning and stacked sections through the tissue. The region of interests is masked, 
and the masked areas are processed using a cascade of automated image analysis steps. 
The images are normalized in color space, after which exclusion of secretion areas 
and feature extraction is performed. Machine learning is utilized to build a model of 
early PIN lesions for determining the probability for histological changes based on the 
calculated features. We performed a feature‑based analysis to mPIN lesions. First, a 
quantitative representation of over 100 features was built, including several features 
representing pathological changes in PIN, especially describing the spatial growth 
pattern of lesions in the prostate tissue. Furthermore, we built a classification model, 
which is able to align PIN lesions corresponding to grading by visual inspection to more 
advanced and mild lesions. The classifier allowed both determining the probability of 
early histological changes for uncategorized tissue samples and interpretation of the 
model parameters. Here, we develop quantitative 
image analysis pipeline to describe morphological 
changes in histological images. Even subtle changes 
in mPIN lesion characteristics can be described with 
feature analysis and machine learning. Constructing 
and using multidimensional feature data to represent 
histological changes enables richer analysis and 
interpretation of early pathological lesions.
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INTRODUCTION

This paper describes work presented at the Nordic 
Symposium on Digital Pathology 2015, in Linköping, 
Sweden.

Cancer is a major health care challenge and one of the 
most studied group of diseases worldwide.[1] In many 
cancers, e.g.,  with prostate cancer, differences between 
advanced cancer and normal tissue are relatively well 
known, yet the process of cancer development is still 
inadequately understood.[2] To gain further knowledge 
on the biological steps involved in oncogenesis, more 
understanding is needed for early changes leading to the 
development of cancer.

Prostatic intraepithelial neoplasia (PIN) represents a type 
of premalignant tissue with neoplastic epithelial growth 
confined in the lumen of prostatic acini.[3] To study 
oncogenesis in the prostate, early neoplastic changes 
in PIN are often modeled in the mouse by genetic 
manipulation of certain tumor suppressor genes or 
oncogenes.[4] E.g., it is well known that heterozygous 
deletion of tumor suppressor Pten induces PIN formation 
in the mouse prostate, in addition to hyperplasia and 
tumors in several other tissues.[5] Here, we analyze the 
histology of such mouse PIN  (mPIN) lesions formed in 
the prostates of 10–11 months old Pten ± mice.

Early pathological changes in tissue tend to be small 
and/or subtle as far as histology is concerned. The 
neoplastic mPIN lesions used as a model here represent 
a group of samples with such early pathological changes 
with relatively narrow, but detectable, histological scope of 
alterations, and thus represent a challenge for histological 
quantitation. No previous studies to our knowledge exist 
providing computational models for assessment of mPIN 
histology. The mPIN lesions are macroscopically so small 
that they are undetectable by eye from the whole organ 
preparation. However, microscopically, the mPIN lesions 
can span areas larger that can be visualized in several high 
magnification focus fields in microscopy  –  both with an 
actual microscope or with digital pathology applications 
with standard computer screens. The generally accepted 
way to analyze such histological data is to snapshot 
single to several fields within the region of interest (ROI) 
to perform the analyses. In this way, only a fraction 
of the ROI is utilized often leaving most of the data 
unanalyzed. In addition, subjective errors are introduced 
through selection bias. There is a tendency to select areas 
not immediately adjacent to edges of the ROI, resulting 
in quantitation representing more the middle area of the 
lesion and leaving possible differences near the edges 
ignored.

More comprehensive ways to utilize the full potential of 
whole‑slide scans and sequential sections are required. 
Visual inspection of only one to few slides and parts of the 

ROIs per lesion leaves a significant amount of information 
unobserved. Furthermore, to capture the potential spatial 
differences in the tissue, it is of importance to utilize 
information in three‑dimensional  (3D) to understand, 
e.g.,  cancer growth patterns better. By employing the full 
ROI areas and including 3D information, we can help 
basic scientific approaches to secure more comprehensive 
data. Eventually, using the enhanced methods for analysis, 
the goal is to ensure better clinical tools for the future.

Image analysis and machine learning provide powerful 
tools for processing microscope images and are 
increasingly applied in digital pathology.[6‑8] Image analysis 
can be used for segmenting tissue areas and for extracting 
multidimensional feature data from full resolution 
whole slide images. Machine learning can be used for 
computationally learning a descriptive or discriminative 
model from the data either for segmentation or sample 
classification. The rationale behind using quantitative 
approach over the common use of few, simple readouts, 
such as size and volume, is that when making decisions 
of histology, also experts use several characteristics of 
the intensity, spatial distribution, and morphology of the 
tissue components. By quantifying such features, and 
using them for learning‑based analysis, information about 
the properties common to tissue samples with histological 
changes can be acquired.

Our approach is to use a pipeline of automated image 
analysis methods for the exclusion of unwanted regions 
from further analysis and for extracting a large set of 
numerical descriptors for the studied tissue areas. Using 
this numerical representation of the ROIs, it is possible 
to visualize various properties and to observe similarities 
and differences within the population of samples. The 
features, along with the annotation obtained from ROIs 
segmented by an expert, are also used for training a 
classifier model. Machine learning enables incorporating 
expert knowledge in quantitative analysis in a 
sophisticated manner and is applicable in a small sample 
setting. Here, the classifier is used for determining 
the probability of histological changes in a given tissue 
sample. The contribution of individual features to 
classification provides information about differences in 
the histology of mPIN lesions.

METHODS

Tissue Material
We studied prostates of 10–11‑months‑old male 
FVB/N  mice heterozygous for tumor suppressor Pten 
(n  =  12; with 6 mPIN lesions/mouse on average). 
Half of the mice expressed ARR2PB‑miR32 transgene 
(Latonen L, Visakorpi T, unpublished). Ethical approval 
for animal experimentation has been admitted by the 
Regional State Administrative Agency for Southern 
Finland (ESAVI/6271/04.10.03/2011).
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Prostate tissues were fixed in PAXgene™ molecular fixative 
(PreAnalytiX GmbH, Hombrechtikon, Switzerland) 
according to manufacturer’s recommendations and 
embedded in paraffin. The tissue blocks were sectioned 
through, and H&E staining was performed to three 5 µm 
sections every 50  µm apart to study prostate histology 
throughout the prostate. The slides were scanned with a 
Zeiss Axioskop 40 microscope (Carl Zeiss MicroImaging, 
NY, USA) with  ×20 objective and a charge‑coupled 
device color camera  (QICAM Fast; QImaging, Canada) 
and a motorized specimen stage (Märzhäuser Wetzlar 
GmbH, Germany). The automated image acquisition was 
controlled by the Surveyor imaging system  (Objective 
Imaging, UK). Uncompressed bitmap output was 
converted by JVSdicom Compressor application to 
JPEG2000 WSI format.[9]

Histological Assessment
Mouse prostate histology was assessed by an expert. 
These mice develop mPIN without any evidence of 
invasion through the basement membrane  (Three, 
unpublished). Stages I–IV of mPIN were graded according 
to the guidelines introduced by Park et  al.[10] The mPIN 
lesions which included areas with clear nuclear atypia and 
represented Grades II–IV, were included in the study. The 
presence of prominent nucleoli and increased atypia in 
nuclei were regarded as determinants in Grades III–IV. 
However, it must be noted that as the analysis takes into 
account the whole of the lesions in 3D, most of the 
lesions include areas representing several mPIN grades 
within them. Thus, it is not suited for the aims of the 
study to categorize lesions according to the grades. Rather, 
the terms “mild” and “advanced” phenotypes are used to 
describe the most variable nature of the alterations seen 
within individual lesions. “Mild” refers to the lesion with 
majority of Stage II–III alterations, as “advanced” refers 
to the lesion with majority of Stage III–IV alterations.

Image Processing
In total, there were 72 mPIN lesions, with 387 ROIs, 
included in the analysis  (1–25 ROIs/lesion; mean 
value 5.4). A  multiresolution approach was used for 
segmentation of ROIs. The best quality section from 
three adjacent H&E‑stained sections was selected from 
each whole slide scan. The segmentation was done using 

a freehand selection tool in ImageJ,  (National Institutes 
of Health, Bethesda, MD, USA),[11] for a low‑resolution 
version of the original image obtained using the reduction 
levels in wavelet decomposition. The resulting binary 
mask was then resized to match the original image size 
and used for extracting the ROI from the full resolution 
original H&E image for further processing. The image 
processing pipeline, including feature extraction and 
machine learning, was developed using Matlab  (The 
MathWorks, Inc., Natick, MA, USA).

The colors of the extracted lesion areas were equalized 
using contrast‑limited adaptive histogram equalization. 
This reduces the color variation between different 
lesion sections, and the colors through the whole 
stack of images become more consistent. Exclusion of 
secretion‑filled and empty areas was performed to obtain 
effective tissue area within ROI. These extraction phases 
are based on the subtraction of different color channels, 
and the segmentation of these areas is done using basic 
thresholding method minimizing the intraclass intensity 
variance.

Feature Based Analysis
Information of ROIs in each section level was included 
in the calculation of features for each lesion. In this 
proof‑of‑principle study, we extracted features describing 
each lesion area from one color channel (red). For lesions 
spanning over more than one section, the feature values 
are averaged over the sections. Features are listed in 
Table  1. Morphological features refer to the quantitative 
analysis of form. Multiple features describing the shape 
and size, including features such as area, major axis 
length, and minor axis length and perimeter were 
extracted. Before subsequent analysis, the features were 
scaled to zero mean and unit variance.

Textures are complex visual patterns, properties of 
which can be quantified with features describing the 
frequency, regularity, roughness, linearity, or smoothness 
of the studied area. The extracted texture based features 
included, e.g., mean intensity value, contrast, correlation, 
and energy, calculated from gray level co‑occurrence 
matrix (GLCM). Textural features were also extracted 
using local binary pattern  (LBP).[12,13] Properties of 
the lesions were also extracted using histogram of 

Table 1: Feature categories

Feature type Description Number of features

Morphological feature Features describing the volume and shape of the lesion 18
Unwanted regions The amount of secretion and “empty area” inside the lesion 2
Intensity features Texture features describe the spatial arrangement of intensity values in an 

image region. These features can be structural or statistical
11

Local binary pattern Describe the appearance of an image in a small neighborhood around a pixel 10
Histogram of oriented gradients Counts occurrences if gradient orientations in localized image regions 81
Maximally stable extremal regions A method for blob detection from an image 5
Total 127
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oriented gradients  (HOG) descriptor[14,15] as well as with 
maximally stable extremal regions  (MSER).[16] MSER 
implementation by VLFeat[17] was used in this work.

Machine Learning for Detecting Histological 
Changes
Machine learning was applied for detection of 
histological changes in tissue as follows. We used the 
feature representations of lesions for building a model 
which determines the probability for a given lesion to 
belong to the group with more advanced histological 
changes when compared to the group with milder 
changes. The grouping of lesions to the training samples 
with advanced and mild histological changes was done 
by an expert for a subset of lesions  (see above; mild, 
n  =  11; advanced, n  =  9). A  logistic regression classifier 
with the lasso  (least absolute selection and shrinkage 
operation) regularization[18,19] was constructed using the 
training data. The output from the classifier is the class 
conditional probability of the advanced group, i.e., tissues 
with more prominent histological changes.

RESULTS

We screened mPIN lesions in whole mouse prostates 
by sectioning through the tissue with 5  µm sections 
[Figure  1]. To utilize full data and omit the subjective 
errors made by human‑directed field selection, we 
performed our analysis for lesion areas in a stack in z. 
H&E‑stained histological images every 50  µm apart 
were processed and used in the analysis. All mPIN 
lesions were masked as ROIs, and unwanted empty and 
secretion‑filled regions were selected out within the ROI 
areas [Figure  2]. Resulting tissue areas within ROIs were 
subjected to feature analysis.

We extracted in total 127 features assessing shape, 
texture and spatial arrangement of the lesions  [Table  1]. 
The features included morphological, textural, LBP, 
scale‑invariant feature transform, HOG, and MSER 
features. All sections through each lesion were processed 
and combined into a feature vector, which provides 
a numerical representation for each lesion. Principal 
component analysis of the lesions according to the 
features is shown in Figure  3a. The analysis shows the 
contribution of each feature to the two first principal 
components, and the features are shown as lines starting 
from the origo. The red dots represent mPIN lesions 
projected into the principal component space. The values 
for each lesion are calculated across all ROIs of that 
particular lesion and averaged per lesion. As several texture 
features (mainly HOG features) show separation roughly 
in both directions along the y‑axis, emphasis on size‑ and 
shape‑related features vs. composition and texture 
(e.g.,  solidity, Euler number, extent, homogeneity, convex 
area, area, axis lengths, bounding box, and equivalent 
diameter) is visible roughly along the x‑axis  [Figure  3a]. 
As an example of separation of lesions by composition 
and shape descriptors, a scatter plot of average solidity 
versus sum of the area of lesions is shown in Figure  3b. 
Lesions are separated by these descriptors to what can be 
interpreted as different growth patterns and/or stages of 
mPIN advancement, as is shown for representative lesions 
with example section masks [Figure 3c].

We applied machine learning for detection of the 
relatively small histological changes within the group of 
mPIN lesions. We used certain lesions as training samples 
for phenotypically mild  (n  =  11) and slightly advanced 
(n  =  9) lesions and used the feature representations 
of lesions for building a model which determines 

Figure 1: Processing of mouse prostate material for feature‑based analysis. Whole mouse prostates were sectioned through with 5 µm 
sections. Sections were H&E stained, and the whole slide scanned to obtain high‑resolution images. H&E‑stained histological image every 
50 µm apart was processed and used to mark mouse prostatic intraepithelial neoplasia lesions as a region of interests and subjected to 
image processing. All region of interests in a particular lesion obtained from a stack of histological images in z‑direction were included 
and subjected to feature analysis
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the probability for a given lesion to belong to either 
group  [Figure  4a]. The plotted probabilities are averages 
from 1000 repetitions of leave‑one‑out experiments, 
where a randomly picked lesion was out of the training 
samples in Figure 4a, positive training samples are shown 
in red and negative in green. The hold‑out experiment 
is a simulation of model stability in a small‑sample 
setup. In addition to the left‑out sample, the majority 
of all available lesions did not have an expert‑defined 
class, and thus, were not used for training  (blue markers 
in Figure  4a). The model successfully distinguished 
the remaining advanced lesions to the proper group 

with positive class conditional probabilities  >0.5 and 
left the milder lesions below the threshold, examples 
of lesion ROIs are shown in Figure  4b. The models 
obtained during the 1000 repetitions composed of four 
features representing aspects of lesion size combined to 
shape (major axis length, eccentricity, equivalent diameter, 
and perimeter) and several texture features (LBPs, HOGs, 
and MSER2)  [Figure  4c]. The histogram bins show the 
number of times each feature was selected in the model.

CONCLUSIONS

Studies of many diseases would benefit of enhanced 
quantitative assessment of early pathological changes. 
E.g., by understanding the alterations occurring early in 
cancer development, we could learn important aspects of 
neoplasia formation, which could help us find better ways 
to prevent, diagnose, and treat cancer. Early pathological 
changes leading to cancer formation are practically 
impossible to study in human samples, as early lesions go 
undetected and human samples lack the possibility for 
time series experimentation. Thus, as with many other 
diseases, cancer is often modeled in the mouse. Mice 
provide the possibility to follow neoplastic development 
and growth in time, as the genetically homogenous 
background of laboratory mice in combination with 
certain genetic manipulations provides relatively 
homogenous sample material over the specimens with a 
relatively constant development rate.

Early pathological changes in tissue tend to be 
macroscopically small and histologically subtle. However, 
they can span areas larger than single high magnification 
focus field in microscopy. To utilize the full potential of 
the data acquired in histological specimens with modern 
whole slide scanning systems, entire lesions should be 
used in quantitative assessments. This challenges the 
traditional way of analyzing few single focus fields with 
microscopes or snapshots from virtual slide viewers to 
obtain quantitative data. In this study, we tackled this 
problem by using sections with certain intervals  (50 µm; 
every 10th  of 5  µm sections) through the whole mouse 
prostate tissue and analyzing all ROIs of each lesion. 

Figure 2: Image processing steps. An example of a PIN lesion area in a H&E‑stained image (a) and its selection as a region of interest (b). 
Exclusion of secretion‑filled (c) and empty (d) areas is performed to obtain effective tissue area within region of interest (e) excluded 
areas shown in turquoise

dcba e

Figure  3: Feature analysis of mouse prostatic intraepithelial 
neoplasia lesions.  (a) Separation of individual lesions  (red dots, 
n  =  72) according to principal component analysis and the 
relative weights of features (blue lines). The values for each lesion 
are calculated across all region of interests of that particular 
lesion. (b) Scatter plot of mouse prostatic intraepithelial neoplasia 
lesions with average solidity and sum of the area across lesion 
(i.e., the sum of areas of all lesion region of interests in all sections 
in z). (c) Examples of the type of lesion region of interest masks 
representing the morphological groups separated by lesion solidity 
and size (e.g.,  lesion area or volume). Colors in (b) indicate the 
same lesions of which an individual region of interest mask is shown 
in (c). Region masks in (c) are in the same scale

cb
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The mPIN lesions, depending on their size and growth 
direction relative to cut orientation, spanned from 1 to 
25 images.

As expected, the size‑  and shape‑related morphological 
features were good descriptors of the mPIN lesion 
advancement. Size and visual complexity of growth 
pattern roughly correlate to growth rate and potency of 
neoplastic lesions, and characterization of such lesions 
by eye is partly dependent on these characters. As 
these parameters correspond well to what is observed 
by visual inspection of the lesion histology, it may not, 
at first, seem like their quantitation could bring novel 
information compared to human‑inspected pathological 
screening. However, human eye has difficulties keeping 
track of growth patterns over several sections, especially 
if the growth curls and intertwines with other structures 
in the tissue and/or several lesions are included in the 
same tissue. Thus, computer‑aided quantification enables 
inspection of lesion growth patterns in an additional 
dimension compared to two‑dimensional  (2D) visual 
inspection.

Parameters related to lesion size are sensitive to tissue 
cut orientation. E.g., in our case, mPIN in prostate tissue 
grow within the prostatic acini, creating more or less 
cylinder‑shaped lesions. It needs to be taken into account 
in which orientation acini are cut in relation to how many 
sections there are. As in many other parameters, mean of 
ROIs  (across sections) describes well the general result 

of each feature, in area‑related features the entity of the 
lesion needs to be taken into account using, e.g., sums of 
all ROIs of a particular lesion or relation to volumetric 
estimations.

Qualities such as shape, texture, and spatial arrangement 
of lesions can expand our understanding of tumor biology 
and eventually could have the potential to improve 
the accuracy of clinical prognosis. Histopathologic 
classification based on visual inspection of an expert 
is subjective even with experienced pathologists, a 
challenge to, e.g.  Gleason scoring for prostate cancer.[20] 
Features such as texture might be even impossible to 
accurately characterize by visually inspecting the images. 
Computer‑aided quantitative analysis of histological 
tissue images is an effective tool to detect specific and 
small alterations too subtle or small to be separated by 
eye. For example, here, the histological changes described 
in features such as solidity or convex area may be spotted 
by eye when prominent enough, however, computer‑aided 
quantitative analysis is far more accurate in positioning 
a particular sample within the range of variation within 
each parameter. Furthermore, the more complex and 
especially upto pixel‑fidelity features, such as LBP and 
HOG texture features, compose of information not 
necessarily detected by human eye, and thus can provide 
an additional level of resolution to histological subtyping.

Machine learning and statistical pattern recognition 
typically require large sample sizes in order to provide 

Figure 4: Mouse prostatic intraepithelial neoplasia lesion classifier model based on features obtained by machine learning. (a) Lesions 
sorted according to positive class conditional probabilities obtained during the 1000 repetitions of the classifier design by random 
hold‑out of a training sample. Training samples are marked with colors (red, advanced phenotype; green, mild phenotype). A probability 
threshold of 0.5 is marked with a dashed line. (b) Examples of lesion region of interests representing the two phenotypes in the classification 
model. Examples of both training samples and classified samples are shown. It must be noted that the lesions are not in the same 
scale. (c) The histogram bins showing the number of times the features have been selected in the classifier model

c
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reliable models for prediction purposes. However, 
machine learning may also be seen as a way of using 
the expert labeled training for learning more about the 
available data even when the number of samples is 
low, as is often the case with the costly mouse model 
studies. Here, we used a classifier for determining the 
likelihood for histological changes, enabling ranking of 
uncategorized samples. Furthermore, machine learning 
is potentially useful in providing information about the 
importance of individual features in grouping of samples. 
For the purpose of interpreting the data using the 
classifier model parameters, we chose regularized logistic 
regression classifier. The motivation for this selection 
is that logistic regression, where model complexity is 
penalized with regularization, tend to produce sparse 
models,[18] which can be used for providing a selection of 
an informative subset of features in various applications, 
e.g.,  in the analysis of growth and morphology.[21] Here, 
the features selected by the classifier are potentially 
interesting parameters related to mPIN histology.

The ROI size‑dependent parameters selected during the 
repeated training rounds, namely the sum of convex 
areas, eccentricity, equivalent diameter, and perimeter, 
can all be considered numerical descriptors of regularity 
versus irregularity in lesion shape. Early neoplastic 
lesions are small and regular in shape. As they grow, 
the space limitations of the tissue environment result 
in penetration to neighboring areas by growth pressure 
squeezing the surrounding tissue or, e.g.,  growth along 
lumen of an acinus. The more pronounced the growth, 
the stronger the pressure against the surrounding 
tissue, resulting in increasing acini diameters and the 
introduction of irregularity to formerly near‑spherical 
or ‑ cylindrical objects visible as round or elliptical shapes 
in 2D. Further progress to malignancy induces invasion 
to surrounding tissue. This generalized view of evolution 
in neoplastic growth patterns comply with the idea that 
increasing irregularity is a decent measure of histological 
stage of the lesion.

The texture features selected to the classifier are 
particularly interesting and potentially provide novel 
indicators of histological changes in early neoplastic 
tissue. Contrast, calculated from the GLCM, describes 
the difference of intensities between neighboring pixels. 
HOGs are edge and gradient based descriptors. The 
appearance and shape of an object can be characterized 
with the distribution of local gradients and edge 
directions without knowing the positions of the gradients 
and edges. The processed image is divided into smaller 
windows, and the distribution of local gradients and edge 
directions is calculated for each window.[15] MSER is an 
image element detector method, which generates features 
that are invariant to affine transformations.[16] The 
method is useful in baseline matching and in all, very 
robust and fast feature detector. LBP method in texture 

analysis is computationally simple and robust in terms 
of grayscale variations. These both are very important 
factors when considering histological image analysis, as 
the grayscale varies in these tissue section images due to 
lack of standard staining and scanning systems.

In summary, we report the development of quantitative 
image analysis pipeline to describe morphological changes 
in histological images using mPIN in mouse prostate 
tissue as a model for early neoplastic changes in the 
prostate. Our approach is to introduce quantitative rigor 
through image analysis and machine learning regardless 
of the sample size. To the best of our knowledge, such 
thorough computational pipeline for quantitative 
analysis of mouse PIN lesions using machine learning 
has not been presented elsewhere in the literature. 
Importantly, we show how these computational methods 
are powerful even in small sample settings, typical in 
mouse model studies. Representing histological changes 
by constructing and using multidimensional feature data 
can significantly contribute to interpretation and research 
of early pathological lesions. The methods described here, 
used in combination with potentially automated digital 
pathology applications, could provide improved and 
faster pipelines to grade early neoplastic lesions and to 
screen for potentially more malignant lesions from large 
sets of data. These methods could both enhance research 
of tumor models in, e.g.,  genetically manipulated model 
organism tissues, as well as aid in future attempts to 
develop better tools for digital pathology.
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