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Abstract
Network models are routinely downscaled compared to nature in terms of numbers of

nodes or edges because of a lack of computational resources, often without explicit mention

of the limitations this entails. While reliable methods have long existed to adjust parameters

such that the first-order statistics of network dynamics are conserved, here we show that

limitations already arise if also second-order statistics are to be maintained. The temporal

structure of pairwise averaged correlations in the activity of recurrent networks is deter-

mined by the effective population-level connectivity. We first show that in general the con-

verse is also true and explicitly mention degenerate cases when this one-to-one

relationship does not hold. The one-to-one correspondence between effective connectivity

and the temporal structure of pairwise averaged correlations implies that network scalings

should preserve the effective connectivity if pairwise averaged correlations are to be held

constant. Changes in effective connectivity can even push a network from a linearly stable

to an unstable, oscillatory regime and vice versa. On this basis, we derive conditions for the

preservation of both mean population-averaged activities and pairwise averaged correla-

tions under a change in numbers of neurons or synapses in the asynchronous regime typi-

cal of cortical networks. We find that mean activities and correlation structure can be

maintained by an appropriate scaling of the synaptic weights, but only over a range of num-

bers of synapses that is limited by the variance of external inputs to the network. Our results

therefore show that the reducibility of asynchronous networks is fundamentally limited.

Author Summary

Neural networks have two basic components: their structural elements (neurons and syn-
apses), and the dynamics of these constituents. The so-called effective connectivity com-
bines both components to yield a measure of the actual influence of physical connections.
Previous work showed effective connectivity to determine correlations, which quantify the
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co-activation of different neurons. Conversely, methods for estimating network structure
from correlations have been developed. We here extend the range of networks for which
the mapping between effective connectivity and correlations can be shown to be one-to-
one, and clarify the conditions under which this equivalence holds. These findings apply
to a class of networks that is often used, with some variations, to model the activity of cere-
bral cortex. Since the numbers of neurons and synapses in real mammalian brains are vast,
such models tend to be reduced in size for simulation purposes. However, our findings
imply that if we wish to retain the original dynamics including correlations, effective con-
nectivity needs to be unchanged, from which we derive scaling laws for synaptic strengths
and external inputs, and fundamental limits on the reducibility of network size. The work
points to the importance of considering networks with realistic numbers of neurons and
synapses.

Introduction
While many aspects of brain dynamics and function remain unexplored, the numbers of neu-
rons and synapses in a given volume are well known, and as such constitute basic parameters
that should be taken seriously. Despite rapid advances in neural network simulation technology
and increased availability of computing resources [1], memory and time constraints still lead to
neuronal networks being routinely downscaled both on traditional architectures [2] and in sys-
tems dedicated to neural network simulation [3]. As synapses outnumber neurons by a factor
of 103 − 105, these constitute the main constraint on network size. Computational capacity
ranges from a few tens of millions of synapses on laptop or desktop computers, or on dedicated
hardware when fully exploited [4, 5], to 1012 − 1013 synapses on supercomputers [6]. This
upper limit is still about two orders of magnitude below the full human brain, underlining the
need for downscaling in computational modeling. In fact, any brain model that approximates a
fraction of the recurrent connections as external inputs is in some sense downscaled: the miss-
ing interactions need to be absorbed into the network and input parameters in order to obtain
the appropriate statistics. Unfortunately, the implications of such scaling are usually not
investigated.

The opposite type of scaling, taking the infinite size limit, is sometimes used in order to sim-
plify equations describing the network (Fig 1A). Although this can lead to valuable insights,
real networks in the human brain often contain on the order of 105 − 107 neurons (Fig 1B), too
few to simplify certain equations in the limit of infinite size. This is illustrated in Fig 1C using
as an example the intrinsic contribution to correlations due to fluctuations generated within
the network, and the extrinsic contribution due to common external inputs to different neu-
rons in random networks. Although the intrinsic contribution falls off more rapidly than the
extrinsic one, it is the main contribution up to large network sizes (around 108 for the given
parameters). Therefore, taking the infinite size limit and neglecting the intrinsic contribution
leads to the wrong conclusions: The small correlations in finite random networks cannot be
explained by the network activity tracking the external drive [7], but rather require the consid-
eration of negative feedback [8] that suppresses intrinsically generated and externally
imprinted fluctuations alike [9].

Taking the infinite size limit for analytical tractability and downscaling to make networks
accessible by direct simulation are two separate problems. We concentrate in the remainder of
this study on such downscaling, which is often performed not only in neuroscience [10, 11, 12,
13] but also in other disciplines [14, 15, 16, 17]. Neurons and synapses may either be
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subsampled or aggregated [18]; here we focus on the former. One intuitive way of scaling is to
ensure that the statistics of particular quantities of interest in the downscaled network match
those of a subsample of the same size from the full network (Fig 1D). Alternatively, it may
sometimes be useful to preserve the statistics of population sums of certain quantities, for
instance population fluctuations.

We here focus on the preservation of mean population-averaged activities and pairwise
averaged correlations in the activity. We consider both the size and temporal structure of corre-
lations, but not distributions of mean activities and correlations across the network. Means and
correlations present themselves as natural quantities to consider, because they are the first- and
second-order and as such the most basic measures of the dynamics. If it is already difficult to
preserve these measures, it is even less likely that preserving higher-order statistics will be pos-
sible, in view of their higher dimensionality. However, other choices are possible, for instance
maintaining total input instead of output spike rates [19].

Besides being the most basic dynamical characteristics, means and correlations of neural
activity are biologically relevant. Mean firing rates are important in many theories of network
function [20, 21], and their relevance is supported by experimental results [22, 23]. For
instance, neurons exhibit orientation tuning of spike rate in the visual system [24] and direc-
tional tuning in the motor system [25], and sustained rates are implicated in the working mem-
ory function of the prefrontal cortex [22]. Firing rates have also been shown to be central to
pattern learning and retrieval in highly connected recurrent neural networks [21].

Fig 1. Framework for neural network scaling. A Downscaling facilitates simulations, while taking the N!1 limit often affords analytical insight.B
Relevant scales. The local cortical microcircuit containing roughly 105 neurons is the smallest network where the majority of the synapses (* 104 per neuron)
can be represented using realistic connection probabilities (* 0.1). C Results for theN!1 limit may not apply even for large networks. In this example,
analytically determined intrinsic and extrinsic contributions to correlations between excitatory neurons are shown. The extrinsic contribution to the correlation
between two neurons arises due common external input, and the intrinsic contribution due to fluctuations generated within the network (cf. [9] Eq 24). The
intrinsic contribution falls off more rapidly than the extrinsic contribution, but nevertheless dominates up to large network sizes, here around 108. The crosses
indicate simulation results. Adapted from [9] Fig 7. D Scaling transformations may be designed to preserve average single-neuron or pairwise statistics for
selected quantities, population statistics, or a combination of these. When average single-neuron and pairwise properties are preserved, the downscaled
network of sizeN behaves to second order like a subsample of the full network of sizeN0.

doi:10.1371/journal.pcbi.1004490.g001
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Furthermore, mean firing rates distinguish between states of arousal and attention [26, 27],
and between healthy and disease conditions [28]. The relevance of correlations is similarly sup-
ported by a large number of findings. They are widely present; multi-unit recordings have
revealed correlated neuronal activity in various animals and behavioral conditions [29, 30, 31].
Pairwise correlations were even shown to capture the bulk of the structure in the spiking activ-
ity of retinal and cultured cortical neurons [32]. They are also related to information processing
and behavior. Synchronous spiking (corresponding to a narrow peak in the cross-correlogram)
has for example been shown to occur in relation to behaviorally relevant events [33, 34, 35].
The relevance of correlations for information processing is further established by the fact that
they can increase or decrease the signal-to-noise ratio of population signals [36, 37]. Moreover,
correlations are important in networks with spike-timing-dependent plasticity, since they affect
the average change in synaptic strengths [38]. Correspondingly, for larger correlations, stron-
ger depression is needed for an equilibrium state with asynchronous firing and a unimodal
weight distribution to exist in balanced random networks [39]. The level of correlations in neu-
ronal activity has furthermore been shown to affect the spatial range of local field potentials
(LFPs) effectively sampled by extracellular electrodes [40]. More generally, mesoscopic and
macroscopic measures like the LFP and fMRI depend on interneuronal correlations [41]. Con-
sidering the wide range of dynamical and information processing properties affected by mean
activities and correlations, it is important that they are accurately modeled.

We allow the number of neurons N and the number of incoming synapses per neuron K
(the in-degree) to be varied independently, generalizing the common type of scaling where the
connection probability is held constant so that N and K change proportionally. It is well known
that reducing the number of neurons in asynchronous networks increases correlation sizes in
inverse proportion to the network size [19, 42, 43, 44, 45]. However, the influence of the num-
ber of synapses on the correlations, including their temporal structure, is less studied. When
reducing the number of synapses, one may attempt to recover aspects of the network dynamics
by adjusting parameters such as the synaptic weights J, the external drive, or neurotransmitter
release probabilities [11, 19]. In the present work, spike transmission is treated as perfectly reli-
able. We only adjust the synaptic weights and a combination of the neuronal threshold and the
mean and variance of the external drive to make up for changes in N and K.

A few suggestions have been made for adjusting synaptic weights to numbers of synapses.
In the balanced random network model, the asynchronous irregular (AI) firing often observed
in cortex is explained by a domination of inhibition which causes a mean membrane potential
below spike threshold, and sufficiently large fluctuations that trigger spikes [46]. In order to
achieve such an AI state for a large range of network sizes, one choice is to ensure that input
fluctuations remain similar in size, and adjust the threshold or a DC drive to maintain the
mean distance to threshold. As fluctuations are proportional to J2 K for independent inputs,
this suggests the scaling

J / 1ffiffiffiffi
K

p ð1Þ

proposed in [46]. Since the mean input to a neuron is proportional to J K, Eq (1) leads, all else

being equal, to an increase of the population feedback with
ffiffiffiffi
K

p
, changing the correlation struc-

ture of the network, as illustrated in Fig 2 for a simple network of inhibitory leaky integrate-
and-fire neurons (note that in this example we fix the connection probability). This suggests
the alternative [42, 44, 45]

J / 1

K
; ð2Þ
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where now the variance of the external drive needs to be adjusted to maintain the total input
variance onto neurons in the network.

For a given network size N and mean activity level, the size and temporal structure of pair-
wise averaged correlations are determined by the so-called effective connectivity, which quanti-
fies the linear dependence of the activity of each target population on the activity of each
source population. The effective connectivity is proportional to synaptic strength and the num-
ber of synapses a target neuron establishes with the source population, and additionally
depends on the activity of the target neurons. Effective connectivity has previously been
defined as “the experiment and time-dependent, simplest possible circuit diagram that would
replicate the observed timing relationships between the recorded neurons” [47]. In our analysis
we consider the stationary state, but at different times the network may be in a different state
exhibiting a different effective connectivity. The definition of [47] highlights the fact that iden-
tical neural timing relationships can in principle occur in different physical circuits and vice
versa. However, with a given model of interactions or coupling, the activity may allow a unique
effective connectivity to be derived [48]. We define effective connectivity in a forward manner
with knowledge of the physical connectivity as well as the form of interactions. We show in
this study that with this model of interactions, and with independent external inputs, the activ-
ity indeed determines a unique effective connectivity, so that the forward and reverse defini-
tions coincide. This complements the groundbreaking general insight of [47].

We consider networks of binary model neurons and networks of leaky integrate-and-fire
(LIF) neurons with current-based synapses to investigate how and to what extent changes in
network parameters can be used to preserve mean population-averaged activities and pairwise
averaged correlations under reductions in the numbers of neurons and synapses. The parame-
ters allowed to vary are the synaptic weights, neuronal thresholds, and the mean and variance
of the external drive. We apply and extend the theory of correlations in randomly connected

Fig 2. Transforming synaptic strengths Jwith the square root of the number of incoming synapses per neuronK (the in-degree) upon scaling of
network sizeN changes correlation structure whenmean and variance of the input current are maintained. A reference network of 10,000 inhibitory
leaky integrate-and-fire neurons is scaled up to 50,000 neurons, fixing the connection probability and adjusting the external Poisson drive to keep the mean
and variance of total (external plus internal) inputs fixed. Single-neuron parameters and connection probability are as in Table 2. Delays are 1 ms, mean and
standard deviation of total inputs are 15 mV and 10 mV, respectively, and the reference network has J = 0.1 mV. Each network is simulated for 50 s. AOnset
of oscillations induced by scaling of network sizeN, visualized by changes in the poles z of the covariance function in the frequency domain. Re(z)
determines the frequency of oscillations and Im(z) their damping, such that -Im(z) > 0 means that small deviations from the fixed-point activity of the network
grow with time [cf. Eq (76)]. The transformation J / 1

K preserves the poles, while J / 1ffiffiffi
K

p induces a Hopf bifurcation so that the scaled network is outside the
linearly stable regime.B Covariance in the network where coupling strength J is scaled with the in-degree Kmatches that in the reference network, whereas
large oscillations appear in the network scaled with

ffiffiffiffi
K

p
. Colors as inA.

doi:10.1371/journal.pcbi.1004490.g002
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binary and LIF networks in the asynchronous regime developed in [7, 8, 9, 42, 45, 49, 50, 51,
52, 53], which explains the smallness and structure of correlations experimentally observed
during spontaneous activity in cortex [54, 55], and we compare analytical predictions of corre-
lations with results from simulations. The results are organized as follows. In “Correlations
uniquely determine effective connectivity: a simple example” we provide an intuitive exam-
ple that illustrates why the effective connectivity uniquely determines correlation structure. In
“Correlations uniquely determine effective connectivity: the general case” we show that this
one-to-one relationship generalizes to networks of several populations apart from degenerate
cases. In “Correlation-preserving scaling” we conclude that, in general, only scalings that pre-
serve the effective connectivity, such as J/ 1/K, are able to preserve correlations. In “Limit to
in-degree scaling” we identify the limits of the resulting scaling procedure, demonstrating the
restricted scalability of asynchronous networks. “Robustness of correlation-preserving scal-
ing” shows that the scaling J/ 1/K can preserve correlations, within the identified restrictive
bounds, for different networks either adhering to or deviating from the assumptions of the ana-
lytical theory. “Zero-lag correlations in binary network” investigates how to maintain the
instantaneous correlations in a binary network, while “Symmetric two-population spiking
network” considers the degenerate case of a connectivity with special symmetries, in which
correlations may be maintained under network scaling without preserving the effective connec-
tivity. Preliminary results have been published in abstract form [56].

Results

Correlations uniquely determine effective connectivity: A simple example
In this section we give an intuitive one-dimensional example to show that effective connectivity
determines the shapes of the average pairwise cross-covariances and vice versa. For the follow-
ing, we first introduce a few basic quantities. Consider a binary or spiking network consisting
of several excitatory and inhibitory populations with potentially source- and target-type-
dependent connectivity. For the spiking networks, we assume leaky integrate-and-fire (LIF)
dynamics with exponential synaptic currents. The dynamics of the binary and LIF networks
are respectively introduced in “Binary network dynamics” and “Spiking network dynamics”.
We assume irregular network activity, approximated as Poissonian for the spiking network,
with population means να. For the binary network, ν = hni is the expectation value of the binary
variable. For the spiking network, we absorb the membrane time constant into ν, defining ν =
τm r where r is the firing rate of the population. The external drive can consist of both a DC
component μα,ext and fluctuations with variance s2

a;ext, provided either by Poisson spikes or by

a Gaussian current. The working points of each population, characterized by mean μα and vari-
ance s2

a of the combined input from within and outside the network, are given by

ma ¼
X
b

JabKabnb þ ma;ext ð3Þ

s2
a ¼

X
b

J2abKab�b þ s2
a;ext: ð4Þ

with

� �
( ð1� hniÞhni for binary

n for LIF
;

ð5Þ

where Jαβ is the synaptic strength from population β to population α, and Kαβ is the number of
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synapses per target neuron (the in-degree) for the corresponding projection (we use� in the
sense of “is defined as”). We call s2

a;ext “external variance” in the following, and the remainder

“internal variance”. The mean population activities are determined by μα and σα according to
Eqs (39) and (67). Expressions for correlations in binary and LIF networks are given respec-
tively in “First and second moments of activity in the binary network” and “First and second
moments of activity in the spiking network”.

As a one-dimensional example, consider a binary network with a single population and van-
ishing transmission delays. The effective connectivityW is just a scalar, and the population-
averaged autocovariance a and cross-covariance c are functions of the time lag Δ. We define
the population-averaged effective connectivity as

W ¼ wðJ; m; sÞK; ð6Þ

where w(J, μ, σ) is an effective synaptic weight that depends on the mean μ [Eq (3)] and the var-
iance σ2 [Eq (4)] of the input. For LIF networks, w = @rtarget/@rsource is defined via Eq (68) and
can be obtained as the derivative of Eq (67). Note that we treat the effective influence of indi-
vidual inputs as independent. A more accurate definition of the population-level effective con-
nectivity, beyond the scope of this paper, could be obtained by also considering combinations
of inputs in the sense of a Volterra series [57]. When the dependence of w on J is linearized, the
effective connectivity can be written as

W ¼ Sðm; sÞJK; ð7Þ

where the susceptibility S(μ, σ) measures to linear order the effect of a unit input to a neuron
on its outgoing activity. In our one-dimensional example,W quantifies the self-influence of an
activity fluctuation back onto the population. Expressed in these measures, the differential
equation for the covariance function [Eq (52)] takes the form

t
1�W

d
dD

cðDÞ ¼ �cðDÞ þ W
1�W

aðDÞ
N

; ð8Þ

with initial condition [from Eq (41)]

ð1�WÞcð0Þ ¼ Wa
N

; ð9Þ

which is solved by

cðDÞ ¼ a
Nð1�WÞ e

W�1
t D � a

N
e�

D
t : ð10Þ

Eq (10) shows that the effective connectivityW together with the time constant τ of the neuron
(which we assume fixed under scaling) determines the temporal structure of the correlations.
Furthermore, since a sum of exponentials cannot equal a sum of exponentials with a different
set of exponents, the temporal structure of the correlations uniquely determinesW. Hence we
see that there is a one-to-one correspondence betweenW and the correlation structure if the
time constant τ is fixed, which implies that preserving correlation structure under a reduction
in the in-degrees K requires adjusting the effective synaptic weights w(J, μ, σ) such that the
effective connectivityW is maintained. If, in addition, the mean activity hni is kept constant
this also fixes the variance a = hni(1 − hni). Eq (10) shows that, under these circumstances with
W and a fixed, correlation sizes are determined by N.
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Correlations uniquely determine effective connectivity: The general case
More generally, networks consist of several neural populations each with different dynamic
properties and with population-dependent transmission delays dαβ. Since this setting does not
introduce additional symmetries, intuitively the one-to-one relationship between the effective
connectivity and the correlations should still hold. We here show that, under certain condi-
tions, this is indeed the case.

Instead of considering the covariance matrix in the time domain, for population-dependent
dynamic properties we find it convenient to stay in the frequency domain. The influence of a
fluctuating input on the output of the neuron can to lowest order be described by the transfer
function H(ω). This quantity measures the amplitude and phase of the modulation of the neu-
ronal activity given that the neuron receives a small sinusoidal perturbation of frequency ω in
its input. The transfer function depends on the mean μ [Eq (3)] and the variance σ2 [Eq (4)] of
the input to the neuron. We here first consider LIF networks; in the Supporting Information
we show how the results carry over to the binary model.

In “First and second moments of activity in the spiking network”, we give the covariance

matrix including the autocovariances in the frequency domain, �CðoÞ ¼ CðoÞ þAðoÞ, as

�CðoÞ ¼ ð1�MðoÞÞ�1
Að1�MTð�oÞÞ�1

; ð11Þ

whereM has elements Hαβ(ω)Wαβ. If �CðoÞ is invertible, we can expand the inverse of Eq (11)
to obtain

�C�1
ab ðoÞ ¼

X
g

ð1ag �Mgað�oÞÞA�1
g ð1gb �MgbðoÞÞ

¼ dab 1�Waa

eiodaa

1� iota

� �
A�1

a 1�Waa

e�iodaa

1þ iota

� �

þ ðdab � 1Þ
"

1�Waa

eiodaa

1� iota

� �
A�1

a Wab

e�iodab

1þ iota

þ Wba

eiodba

1� iotb
A�1

b 1�Wbb

e�iodbb

1þ iotb

 !#

þ
X
g 6¼a;b

Wga

eiodga

1� iotg
A�1

g Wgb

e�iodgb

1þ iotg
;

ð12Þ

where we assumed the transfer function to have the formHðoÞ ¼ e
�iodab

1þiota
; which is often a good

approximation for the LIF model [45]. In the second step we distinguish terms that only con-
tribute on the diagonal (α = β), those that only contribute off the diagonal (α 6¼ β), and those
that contribute in either case. For α = β, only the first and last terms contribute, and we get

�C�1
aa ¼ A�1

a

� Waa

Aa

e�iodaa

1þ iota
þ eiodaa

1� iota

� �

þ
X
g

W2
gaA

�1
g

1þ o2t2g
:

ð13Þ

If we want to preserve �C, this fixes Aα and thereby alsoWαα, since it multiplies terms with
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unique ω-dependence. For α 6¼ β, we obtain

�C�1
ab ¼ Wab

Aa

e�iodab � 1

1þ iota
þWaa

eiodaa

1þ o2t2a

� �

þ Wba

Ab

eiodba � 1

1� iotb
þWbb

e�iodbb

1þ o2t2b

 !

þ
X
g 6¼a;b

WgaWgb

Ag

eioðdga�dgbÞ

1þ o2t2g
:

ð14Þ

With Aα fixed, this additionally fixesWαβ, in view of the unique ω-dependence it multiplies.

SinceCðoÞ ¼ �CðoÞ �A, a constraint on A necessary for preserving �CðoÞmay not trans-
late into the same constraint when we only require the cross-covariances C(ω) to be preserved.

However, C(ω) and �CðoÞ have identical ω-dependence, as they differ only by constants on the
diagonal (approximating autocorrelations as delta functions in the time domain [45]). To
derive conditions for preserving C(ω), we therefore ignore the constraint on A but still require
the ω-dependence to be unchanged. A potential transformation leaving the ω-dependent terms
in both Eqs (13) and (14) unchanged is Aα ! kAα,Wαβ! kWαβ,Wαα ! kWαα, but this only
works if τα = τγ, dαα − dαβ = dγα − dγβ for some γ, and if the terms for the corresponding γ are
also transformed to offset the change inWaaWabA

�1
a ; or if some of the entries ofW vanish. The

ω-dependence of �C and C would otherwise change, showing that, at least in the absence of
such symmetries in the delays or time constants, or zeros in the effective connectivity matrix
(i.e., absent connections at the population level, or inactive populations), there is a one-to-one
relationship between covariances and effective connectivity. Hence, preserving the covariances
requires preserving A andW except in degenerate cases. Note that the autocovariances and
hence the firing rates can be changed while affecting only the size but not the shape of the cor-
relations, but that the correlation shapes determineW.

Even in case of identical transfer functions across populations, including in particular equal
transmission delays and identical τ, the one-to-one correspondence between effective connec-
tivity and correlations can be demonstrated except for a narrower set of degenerate cases. The
argument for d = 0 proceeds in the time domain along the same lines as “Correlations
uniquely determine effective connectivity: a simple example”, using the fact that for a popu-
lation-independent transfer function, the correlations can be expressed in terms of the eigen-
values and eigenvectors of the effective connectivity matrix (cf. “First and second moments of
activity in the binary network” and “First and second moments of activity in the spiking
network”). For general delays, a derivation in the frequency domain can be used. Through
these arguments, we show in the Supporting Information that the one-to-one correspondence
holds at least ifW is diagonalizable and has no eigenvalues that are zero or degenerate.

Correlation-preserving scaling
If the working point (μ, σ) is maintained, the one-to-one correspondence between the effective
connectivity and the correlations implies that requiring unchanged average covariances leaves
no freedom for network scaling except for a possible trade-off between in-degrees and synaptic
weights. In the linear approximationW(J, μ, σ) = S(μ, σ)JK, this trade-off is J/ 1/K.

When this scaling is implemented naively without adjusting the external drive to recover
the original working point, the covariances change, as illustrated in Fig 3B for a two-population
binary network with parameters given in Table 1. The results of J/ 1/K scaling with appropri-
ate adjustment of the external drive are shown in Fig 3C. The scaling shown in Fig 3B also
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Fig 3. Correlations from theory and simulations for a two-population binary network with asymmetric connectivity. A Average pairwise cross-
covariances from simulations (solid curves) and Eq (55) (dashed curves).B Naive scaling with J/ 1/K but without adjustment of the external drive changes
the correlation structure. CWith an appropriate adjustment of the external drive (σex = 53.4, σix = 17.7), scaling synaptic weights as J/ 1/K is able to
preserve correlation structure as long as N and K are reduced by comparable factors.D The same holds for J / 1=

ffiffiffiffi
K

p
(μex = 43.3, μix = 34.6, σex = 46.2, σix =

15.3), but the susceptibility S is increased by about 20% already for N = 0.75 N0 in this case. InB, C, andD, results of simulations are shown. The curves in C
andD are identical because internal inputs, the standard deviation of the external drive, and the distance to threshold due to the DC component of the drive in

D are exactly
ffiffiffiffi
K
K0

q
times those in C. Hence, identical realizations of the random numbers for the connectivity and the Gaussian external drive cause the total

inputs to the neurons to exceed the threshold at exactly the same points in time in the two simulations. The simulated time is 30 s, and the population activity
is sampled at a resolution of 0.3 ms.

doi:10.1371/journal.pcbi.1004490.g003

Table 1. Parameters of the asymmetric binary network.

numbers of neurons Ne, Ni 5000, 5000

neuron time constant τ 10 ms

threshold θ 0

connection probabilities pee, pei, pie, pii 0.1, 0.2, 0.3, 0.4

transmission delay d 0.1 ms

synaptic weights Jee, Jei, Jie, Jii 3, −5, 3, −6

mean external drive mex, mix 50, 40

SD of external drive σex, σix 60, 50

doi:10.1371/journal.pcbi.1004490.t001
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increases the mean activities (E: from 0.16 to 0.23, I: from 0.07 to 0.11), whereas that in Fig 3C
preserves them.

If one relaxes the constraint on the working point while still requiring mean activities to be
preserved, the network does have additional symmetries due to the fact that only some combi-
nation of μ and σ needs to be fixed, rather than each of these separately. This combination is
more easily determined for binary than for LIF networks, for which the mean firing rates
depend on μ and σ in a complex manner [cf. Eq (67)]. When the derivative of the gain function
is narrow (e.g., having zero width in the case of the Heaviside function used here) compared to
the input distribution, the mean activities of binary networks depend only on (μ − θ)/σ [9].
Changing σ while preserving (μ − θ)/σ leads for a Heaviside gain function to a new susceptibil-
ity S0 = (σ/σ0)S [cf. Eq (43)]. For constant K, if the standard deviation of the external drive is
changed proportionally to the internal standard deviation, we have σ/ J and thus J0 S0 = JS,
implying an insensitivity of the covariances to the synaptic weights J [52]. In particular, this
symmetry applies in the absence of an external drive. When K is altered, this choice for adjust-
ing the external drive causes the covariances to change. However, adjusting the external drive
such that σ0/σ = (J0 K0)/(JK), the change in S is countered to preserveW and correlations. This

is illustrated in Fig 3D for J / 1=
ffiffiffiffi
K

p
, which is another natural choice, as it preserves the inter-

nal variance if one ignores the typically small contribution of the correlations to the input vari-
ance ([9] Correlation-preserving scaling Fig 3D illustrates the smallness of this contribution for
an example network). This is only one of a continuum of possible scalings preserving mean
activities and covariances (within the bounds described in the following section) when the
working point and hence the susceptibility are allowed to change.

Limit to in-degree scaling
We now show that both the scaling J/ 1/K for LIF networks (for which we do not consider
changes to the working point, as analytic expressions for countering these changes are intracta-
ble), and correlation-preserving scalings for binary networks (where we allow changes to the
working point that preserve mean activities) are applicable only up to a limit that depends on
the external variance.

For the binary network, assume a generic scaling K0 = κK, J0 = ιJ and a Heaviside gain func-
tion. We denote variances due to inputs from within the network and due to the external drive
respectively by s2

int and s
2
ext: The preservation of the mean activities implies S0 = (σ/σ0)S as

above, where s2 ¼ s2
ext þ s2

int. To keep SJK fixed we thus require

s2
int

0 þ s2
ext

0 ¼ ðikÞ2ðs2
int þ s2

extÞ
s2
ext

0 ¼ i2k½ðk� 1Þs2
int þ ks2

ext�;
ð15Þ

where we have used s0
int � i

ffiffiffi
k

p
sint in the second line. For σext = 0 this scaling only works for κ

> 1, i.e., increasing instead of decreasing the in-degrees. More generally, the limit to downscal-
ing occurs when s0

ext ¼ 0; or

k ¼ s2
int

s2
int þ s2

ext

; ð16Þ

independent of the scaling of the synaptic weights. Thus, larger external and smaller internal
variance before scaling allow a greater reduction in the number of synapses. The in-degrees of
the example network of Fig 3 could be maximally reduced to 73%. Note that ι could in princi-
ple be chosen in a κ-dependent manner such that s2

ext is fixed or increased instead of decreased
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upon downscaling, namely i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
ext

k2s2
ext

þkðk�1Þs2
int

r
. However, Eq (16) is still the limit beyond

which this fails, as ι then diverges at that point.
Note that the limit to the in-degree scaling also implies a limit on the reduction in the num-

ber of neurons for which the scaling equations derived here allow the correlation structure to
be preserved, as a greater reduction of N compared to K increases the number of common
inputs neurons receive and thereby the deviation from the assumptions of the diffusion
approximation. This is shown by the thin curves in Fig 3C,3D.

Now consider correlation-preserving scaling of LIF networks. Reduced K with constant JK
does not affect mean inputs [cf. Eq (3)] but increases the internal variance according to Eq (4).
To maintain the working point (μ, σ), it is therefore necessary to reduce the variance of the
external drive. When the drive consists of excitatory Poisson input, one way of keeping the
mean external drive constant while changing the variance is to add an inhibitory Poisson drive.
With K0 = K/ι and J0 = ιJ, the change in internal variance is ði� 1Þs2

int, where s
2
int is the internal

variance due to input currents in the full-scale model. This is canceled by an opposite change
in s2

ext by choosing excitatory and inhibitory Poisson rates

re;ext ¼ re;0 þ
ð1� iÞs2

int

tmJ2extð1þ gÞ ; ð17Þ

ri;ext ¼
ð1� iÞs2

int

tmJ2extgð1þ gÞ ; ð18Þ

where re,0 is the Poisson rate in the full-scale model, and the excitatory and inhibitory synapses
have weights Jext and −g Jext, respectively. Eqs (17) and (18) match Eq (E.1) in [45] except for
the 1 + g in the denominator, which was there erroneously given as 1+g2. Since downscaling K
implies ι> 1, it is seen that the required rate of the inhibitory inputs is negative. Therefore, this
method only allows upscaling. An alternative is to use a balanced Poisson drive with weights
Jext and − Jext, choosing the rate of both excitatory and inhibitory inputs to generate the desired
variance, and adding a DC drive Iext to recover the mean input,

re;ext ¼ ri;ext ¼ re;0
2

þ ð1� iÞs2
int

2tmJ2ext
; ð19Þ

Iext ¼ tmre;0Jext: ð20Þ

In this manner, the network can be downscaled up to the point where the variance of the exter-
nal drive vanishes. Substituting this condition into Eq (15), the same expression for the mini-
mal in-degree scaling factor Eq (16) is obtained as for the binary network.

Robustness of correlation-preserving scaling
In this section, we show that the scaling J/ 1/K, which maintains the population-level feed-
back quantified by the effective connectivity, can preserve correlations (within the bounds
given in “Limit to in-degree scaling”) under fairly general conditions. To this end, we consider
two types of networks: 1. a multi-layer cortical microcircuit model with distributed in- and
out-degrees and lognormally distributed synaptic strengths (cf. “Network structure and nota-
tion”); 2. a two-population LIF network with different mean firing rates (parameters in

Table 2). For both types of models, we contrast the scaling J/ 1/K with J / 1=
ffiffiffiffi
K

p
, in each

case maintaining the working point given by Eqs (3) and (4). Fig 4 illustrates that the former
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closely preserves average pairwise cross-covariances in the cortical microcircuit model, whereas
the latter changes both their size and temporal structure.

Fig 5 demonstrates the robustness of J/ 1/K scaling to the firing rate of the network. In this
example, both the full-scale network and the downscaled networks receive a balanced Poisson
drive producing the desired variance, while the mean input is provided by a DC drive. By
changing the parameters of the external drive, we create two networks each with irregular spik-
ing but with widely different mean rates (3.3 spikes/s and 29.6 spikes/s). Downscaling only the
number of synapses but not the number of neurons, both the temporal structure and the size of

Table 2. Full-scale parameters of the two-population spiking networks used to demonstrate the
robustness of J/ 1/K scaling to mean firing rates. The two networks are distinguished by their external
drives.

number of excitatory neurons N 8000

relative inhibitory population size γ 0.25

membrane time constant τm 20 ms

synaptic time constant τs 2 ms

refractory period τref 2 ms

membrane resistance Rm 20 MΩ

resting and reset potential Vr 0 mV

threshold θ 15 mV

connection probability p 0.1

transmission delay d 3 ms

excitatory synaptic weight J 0.1 mV

relative inhibitory synaptic weight g 5

mean and standard deviation of external drive (μext, σext) (10 mV, 5 mV);

(25 mV, 20 mV)

doi:10.1371/journal.pcbi.1004490.t002

Fig 4. Within the restrictive bounds imposed by Eq (16), preserving effective connectivity can preserve correlations also in a complex network.
Simulation results for the cortical microcircuit at full scale and with in-degrees reduced to 90%. Synaptic strengths are scaled as indicated, and the external
drive is adjusted to restore the working point. Mean pairwise cross-covariances are shown for population 2/3E. Qualitatively identical results are obtained
within and across other populations. The simulation duration is 30 s and covariances are determined with a resolution of 0.5 ms. To enable downscaling with
J/ 1/K, the excitatory Poisson input of the original implementation of [58] is replaced by balanced inhibitory and excitatory Poisson input with a DC drive
according to Eqs (19) and (20). A Scaling synaptic strengths as J / 1=

ffiffiffiffi
K

p
changes the mean covariance. Light green curve: stretching the covariance of the

scaled network along the vertical axis to match the zero-lag correlation of the full-scale network shows that not only the size but also the temporal structure of
the covariance is affected. B Scaling synaptic strengths as J/ 1/K closely preserves the covariance of the full-scale network. However, note that this scaling
is only applicable down to the in-degree scaling factor given by Eq (16), which for this example is approximately 0.9.

doi:10.1371/journal.pcbi.1004490.g004
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the correlations are closely preserved. Reducing the in-degrees and the number of neurons N
by the same factor, the correlations are scaled by 1/N. Hence, the correlations of the full-scale
network of size N0 can be estimated simply by multiplying those of the reduced network by

N/N0. In contrast, J / 1=
ffiffiffiffi
K

p
changes correlation sizes even when N is held constant, and com-

bined scaling of N and K can therefore not simply be compensated for by the factor N/N0. In
the high-rate network, the spiking statistics of the neurons is non-Poissonian, as seen from the
gap in the autocorrelations (insets in Fig 5B, 5D). Nevertheless, J/ 1/K preserves the correla-

tions more closely than J / 1=
ffiffiffiffi
K

p
, showing that the predicted scaling properties hold beyond

the strict domain of validity of the underlying theory.

Zero-lag correlations in binary network
Although it is not generally possible to keep mean activities and correlations invariant upon
downscaling, transformations may be found when only one aspect of the correlations is impor-
tant, such as their zero-lag values. We illustrate this using a simple, randomly connected binary

Fig 5. Scaling synaptic strengths as J/ 1/K can preserve correlations in networks with widely different firing rates. Results of simulations of a LIF
network consisting of one excitatory and one inhibitory population (Table 2). Average cross-covariances are determined with a resolution of 0.1 ms and are
shown for excitatory-inhibitory neuron pairs. Each network receives a balanced Poisson drive with excitatory and inhibitory rates both given by s2

ext=ð2 tm J2Þ,
where s2

ext is chosen to maintain the working point of the full-scale network. The synaptic strengths for the external drive are 0.1 mV and −0.1 mV for
excitatory and inhibitory synapses, respectively. A DC drive with strength μext is similarly adjusted to maintain the full-scale working point. All networks are
simulated for 100 s. For each population, cross-covariances are computed as averages over all neuron pairs across two disjoint groups ofN × 1000 neurons,
whereN is the scaling factor for the number of neurons (a given pair has one neuron in each group). Autocovariances are computed as averages over 100
neurons in each population. A, B Reducing in-degrees K to 50% while the number of neuronsN is held constant, J/ 1/K closely preserves both the size and
the shape of the covariances, while J / 1=

ffiffiffiffi
K

p
diminishes their size.C, D Reducing bothN and K to 50%, covariance sizes scale with 1/N for J/ 1/K but with

a different factor for J / 1=
ffiffiffiffi
K

p
. Dashed curves represent theoretical predictions. The insets showmean autocovariances for time lags Δ 2 (−30, 30) ms.

doi:10.1371/journal.pcbi.1004490.g005
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network of N excitatory and γN inhibitory binary neurons, where each neuron receives K = pN
excitatory and γK inhibitory inputs. The parameters are given in Table 3. The linearized effec-
tive connectivity matrix for this example is

W ¼ Sðm; sÞJK
1 �gg

1 �gg

 !
: ð21Þ

When the threshold θ is� 0, the network is spontaneously active without external inputs.
In the diffusion approximation and assuming stationarity, the mean zero-lag cross-covariances
between pairs of neurons from each population can be estimated from Eq (41) (see also [52])

1 0

0 1

� �
�We

2

2� gg �gg
1 1� 2gg

� �� �
cee
cii

� �
¼ Wea

N
1

�g

� �

cei ¼ cie ¼
1

2
ðcee þ ciiÞ; ð22Þ

where the subscripts e and i respectively denote excitatory and inhibitory populations. More-
over,We is the effective excitatory coupling,

We ¼ Sðm; sÞJK; ð23Þ

with S the susceptibility as defined in Eq (43). Furthermore, a is the variance of the single-neu-
ron activity,

a ¼ hnið1� hniÞ; ð24Þ

which is identical for the excitatory and inhibitory populations. The mean input to each neuron
is given by [cf. Eq (3)],

m ¼ JKð1� ggÞhni; ð25Þ

and, under the assumption of near-independence of the neurons, the variance of the inputs is
well approximated by the sum of the variances from each sending neuron [cf. Eq (4)],

s2 ¼ J2Kð1þ gg2Þhnið1� hniÞ: ð26Þ

Finally, the mean activity can be obtained from the self-consistency relation Eq (39).

Table 3. Parameters of the symmetric binary network.

number of excitatory neurons N 1000

relative inhibitory population size γ 1

neuron time constant τ 10 ms

threshold θ −3

connection probability p 0.2

transmission delay d 0.1 ms

excitatory synaptic weight J 1=
ffiffiffiffiffiffiffiffiffiffi
1000

p

relative inhibitory synaptic weight g 3

external drive mx 0

doi:10.1371/journal.pcbi.1004490.t003
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Eq (22) shows that, when excitatory and inhibitory synaptic weights are scaled equally, the
covariances scale with 1/N as long as the network feedback is strong (We � 1), (for this argu-
ment, we assume that hni is held constant, which may be achieved by adjusting a combination
of θ and the external drive). Hence, conventional downscaling of population sizes tends to
increase covariances.

We use Eq (22) to perform a more sophisticated downscaling (cf. Fig 6). Let the new size of
the excitatory population be N0. Eq (22) shows that the covariances can only be preserved

Fig 6. Binary network scaling that approximately preserves bothmean activities and zero-lag covariances. A Increased covariances due to reduced
network size can be countered by a change in the relative inhibitory synaptic weight combined with a redistribution of the synapses so that a fraction comes
from outside the network. Adjusting a combination of the threshold and external drive restores the working point.B Scaling parameters versus relative
network size for an example network. Since γ = 1 in this example, the scaling only works down to g = 1 (indicated by the horizontal and vertical dashed lines):
Lower values of g only allow a silent or fully active network as steady states. C, E The mean activities are well preserved both by the conventional scaling in
Eq (1) with an appropriate adjustment of θ (panelC), and by the method proposed here (panel E). D, F Conventional scaling increases the magnitude of zero-
lag covariances in simulated data (panelD), while the proposed method preserves them (panel F). Dark colors: full-scale network. Light colors: downscaled
network. Crosses and dots indicate zero-lag correlations in the full-scale and downscaled networks, respectively.

doi:10.1371/journal.pcbi.1004490.g006
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when a combination ofWe, γ, and g is adjusted. We take γ constant, and apply the transforma-
tion

We ! fWe; g ! g 0: ð27Þ

Solving Eq (22) for f and g0 yields (cf. Fig 6B)

f ¼
a cee
N 0 þ g cii

2
ðcee � ciiÞ

We

a
N 0 þ cee
� � a

N
þ gcii

� �
� g
4
ðcee þ ciiÞ2

h i ð28Þ

g 0 ¼
ceeðcee � ciiÞ �

2a
N 0 cii

g ciiðcee � ciiÞ þ
2a
N 0 cee

: ð29Þ

The change inWe can be captured by K! f K as long as the working point (μ, σ) is maintained.
This intuitively corresponds to a redistribution of the synapses so that a fraction f comes from
inside the network, and 1 − f from outside (cf. Fig 6A). However, the external drive does not
have the same mean and variance as the internal inputs, since it needs to make up for the
change in g. The external input can be modeled as a Gaussian noise with parameters

mext ¼ KJð1� ggÞhni � fKJð1� gg 0Þhni ð30Þ

s2
ext ¼ KJ2ð1þ gg2Þa� fKJ2ð1þ gg 02Þa; ð31Þ

independent for each neuron.
An alternative is to perform the downscaling in two steps: First change the relative inhibi-

tory weights according to Eq (29) but keep the connection probability constant. The mean
activity can be preserved by solving Eq (39) for θ, but the covariances are changed. The second
step, which restores the original covariances, then amounts to redistributing the synapses so

that a fraction ~f comes from inside the network, and 1� ~f from outside, where the external
(non-modeled) neurons have the same mean activity as those inside the network. This mean
activity is negative, as the balanced regime implies stronger inhibition than excitation. Note

that ~f 6¼ f , sinceWe changes already in the first step.
The requirement that inhibition dominate excitation places a lower limit on the network

size for which the scaling is effective. The reason is that g decreases with network size, so that a
bifurcation occurs at g = 1/γ, beyond which the only steady states correspond to a silent net-
work or a fully active one.

Symmetric two-population spiking network
We have seen that the one-to-one relationship between effective connectivity and correlations
does not hold in certain degenerate cases. Here we consider such a degenerate case and perform
a scaling that preserves mean activities as well as both the size and the temporal structure of the
correlations under reductions in both the number of neurons and the number of synapses. The
network consists of one excitatory and one inhibitory population of LIF neurons with a popula-
tion-independent connection probability and vanishing transmission delays. Due to the
appearance of the eigenvalues in the numerator of the expression for the correlations in LIF
networks [cf. Eqs (70) and (71)], such networks are subject to a reduced number of constraints
whenW has a zero eigenvalue, as this leaves a freedom to change the corresponding
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eigenvectors. Furthermore, identically vanishing delays greatly simplify the equations for the
covariances.

The single-neuron and network parameters are as in Table 2 except that, here, N = 10,000,
J = 0.2 mV, and the external drive is chosen such that the mean and standard deviation of the
total input to each neuron are μ = 15 mV, σ = 10 mV. Furthermore, the delay is chosen equal to
the simulation time step to approximate d = 0, which we assume here. The effective connectiv-
ity matrix for this network is

W ¼ wK
1 �gg

1 �gg

 !
; ð32Þ

where w = @rtarget/@rsource is the effective excitatory synaptic weight obtained as the derivative of
Eq (67). Here, we take into account the dependence of w on J to quadratic order. The inhibitory
weight is approximated as gw to allow an analytical expression for the relative inhibitory weight

in the scaled network to be derived. The left and right eigenvectors are v1 ¼ 1ffiffiffiffiffiffiffi
1�gg

p 1

�gg

 !
;

u1 ¼ 1ffiffiffiffiffiffiffi
1�gg

p 1

1

 !
corresponding to eigenvalue L = w K(1 − γ g) and v2 ¼ 1ffiffiffiffiffiffi

1� 1
gg

p 1

�1

 !
;

u2 ¼ 1ffiffiffiffiffiffi
1� 1

gg

p
1

1

gg

0
@

1
A corresponding to eigenvalue 0. The normalization is chosen such that the bi-

orthogonality condition Eq (47) is fulfilled.
A transformed connectivity matrix should have the same eigenvalues asW, and can thus be

written as

W0 ¼ w0K 0
1 �b

c �bc

 !
ð33Þ

where b ¼ 1

c
1� wK

w0K 0 ð1� ggÞ
� �

: ð34Þ

Denote the new population sizes by N1 and N2. Equating the covariances before and after the
transformation yields using Eq (71) and Ajk = vjT A vk [cf. Eq (49)],

a1
N

þ gg2
a2
N

ð1� ggÞ2ð2� 2LÞ
1 1

1 1

 !
þ

a1
N

þ g
a2
N

2� gg � 1

gg

� �
ð2� LÞ

1
1

gg

1
1

gg

0
BBB@

1
CCCA

¼
a1
N1

þ b2
a2
N2

ð1� bcÞ2ð2� 2LÞ
1 c

c c2

 !
þ

a1
N1

þ b
c
a2
N2

2� bc� 1

bc

� �
ð2� LÞ

1
1

b

c
c
b

0
BB@

1
CCA:

ð35Þ

In Eq (35) we have assumed that the working points, and thus a1 and a2, are preserved, which
may be achieved with an appropriate external drive as long as the corresponding variance
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remains positive. The four equations are simultaneously solved by

N1 ¼ Nw0K 0a1ð2� LÞ
wKga2ðwK � w0K 0Þ þ a1½2w0K 0 � wKðw0K 0 � ggwKÞ�

N2 ¼ Na2
wK

LðL� w0K 0 � 2Þ þ 2w0K 0

ga2ð2� LÞ þ ðw0K 0 � wKÞða1 þ ga2Þ
c ¼ 1;

ð36Þ

where w0 K0 may be chosen freely. Thus, the new connectivity matrix reads

W0 ¼ w0 K 0
1

wK
w0K 0 ð1� g gÞ � 1

1
wK
w0K 0 ð1� g gÞ � 1

0
BBB@

1
CCCA; ð37Þ

which may also be cast into the form

W0 ¼ w0 K 0
1 �g0 g 0

1 �g0 g 0

 !
; ð38Þ

where γ0 = N2/N1 and g 0 ¼ w0K 0�L
w0K 0g0 .

When the populations receive statistically identical external inputs, we have a1 = a2 = r, since
the internal inputs are also equal. Fig 7 illustrates the network scaling for the choice w0 = w.
Results are shown as a function of the relative size N1/N of the excitatory population. External
drive is provided at each network size to keep the mean and standard deviation of the total inputs
to each neuron at the level indicated. The mean is supplied as a constant current input, while the
variability is afforded by Poisson inputs according to Eqs (17) and (18) (Fig 7D). It is seen that
the transformations (Fig 7B) are able to reduce both the total numbers of neurons and the total
number of synapses (Fig 7C) while approximately preserving covariance sizes and shapes (Fig
7E,7F). Small fluctuations in the theoretical predictions in Fig 7E are due to the discreteness of
numbers of neurons and synapses, and deviations of the effective inhibitory weight from the lin-
ear approximation g w. The fact that the theoretical prediction in Fig 7F misses the small dips
around t = 0 may be due to the approximation of the autocorrelations by delta functions, elimi-
nating the relative refractoriness due to the reset. The numbers of neurons and synapses increase
again below some N1/N, and diverge as g0 becomes zero. This limits the scalability despite the
additional freedom provided by the symmetry.

Discussion
By applying and extending the theory of correlations in asynchronous networks of binary and
networks of leaky integrate-and-fire (LIF) neurons, our present work shows that the scalability
of numbers of neurons and synapses is fundamentally limited if mean activities and pairwise
averaged activity correlations are to be preserved. We analytically derive a limit on the reduc-
ibility of the number of incoming synapses per neuron, K (the in-degree), which depends on
the variance of the external drive, and which indirectly restricts the scalability of the number of
neurons. Within these restrictive bounds, we propose a scaling of the synaptic strengths J and
the external drive with K that can preserve mean activities and the size and temporal structure
of pairwise averaged correlations. Mean activities can be approximately preserved by maintain-
ing the mean and variance of the total input currents to the neurons, also referred to as the
working point. The temporal structure of pairwise averaged correlations depends on the
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Fig 7. Spiking network scaling that approximately preservesmean firing rates and covariances. A Diagram illustrating the network and indicating the
parameters that are adjusted. B Excitatory in-degrees K0, relative inhibitory synaptic weight g0, and relative number of inhibitory neurons γ0 versus scaling
factorN1/N. The dashed vertical line indicates the limit below which the scaling fails. C Total number of neurons Ntotal = (1+γ0)N1 and total number of
synapsesNsyn = (1+γ0)2 K0 N1 versus scaling factor.D Rates of external excitatory and inhibitory Poisson inputs necessary for keeping firing rates constant.
Average firing rates are between 23.1 and 23.5 spikes/s for both excitatory and inhibitory populations and all network sizes. E Integrated covariances,
corresponding to zero-frequency components in the Fourier domain. Crosses: simulation results, dots: theoretical predictions. F Average covariance
between excitatory-inhibitory neuron pairs for different network sizes. The dashed curve indicates the theoretical prediction for N = 10,000. Each network was
simulated for 100 s.

doi:10.1371/journal.pcbi.1004490.g007
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effective connectivity, a measure of the effective influence of source populations on target popu-
lations determined both by the physical connectivity and the working point of the target neu-
rons. When the dependence of the effective connectivity on the synaptic strengths J is
linearized, it can be written as SJK, where S is the susceptibility of the target neurons (quantify-
ing the change in output activity for a unit change in input). Scalings and analytical predictions
of pairwise averaged correlations are tested using direct simulations of randomly connected
networks of excitatory and inhibitory neurons.

Our most important findings are:

1. The population-level effective connectivity matrix and pairwise averaged correlations are
linked by a one-to-one mapping except in degenerate cases. Therefore, with few exceptions,
any network scaling that preserves the correlations needs to preserve the effective
connectivity.

2. The most straightforward way of simultaneously preserving mean activities and pairwise
averaged correlations is to change the synaptic strengths in inverse proportion to the in-
degrees (J/ 1/K), and to adjust the variance of the external drive to make up for the change

in variance of inputs from within the network. Other scalings, such as J / 1=
ffiffiffiffi
K

p
, can in

principle also preserve both mean activities and pairwise averaged correlations, but then
change the working point (hence the neuronal susceptibility determining the strength of
stimulus responses, and the degree to which the activity is mean- or fluctuation-driven),
and are analytically intractable for LIF networks due to the complicated dependence of the
firing rates and the impulse response on the mean and variance of the inputs.

3. When downscaling the in-degrees K and scaling synaptic strengths as J/ 1/K, the variance
of inputs from within the network increases, so that the variance of external inputs needs to
be decreased to restore the working point. This is only possible up to the point where the
variance of the external drive vanishes. The minimal in-degree scaling factor equals the
ratio between the variance of inputs coming from within the network, and the total input
variance due to both internal inputs and the external drive. The same limit to in-degree scal-
ing holds more generally for scalings that simultaneously preserve mean activities and cor-
relations. Thus, in the absence of a variable external drive, no downscaling is possible
without changing mean activities, correlations, or both.

4. Within the identified restrictive bounds, the scaling J/ 1/K, where the external variance is
adjusted to maintain the working point, can preserve mean activities and pairwise averaged
correlations also in asynchronous networks deviating from the assumptions of the analytical
theory presented here. We show this robustness for an example network with distributed
in- and out-degrees and distributed synaptic weights, and for a network with non-Poisso-
nian spiking.

5. For a sufficiently large change in in-degrees, a scaling that affects correlations can push the
network from the linearly stable to an oscillatory regime or vice versa.

6. Transformations derived using the diffusion approximation are able to closely preserve the
relevant quantities (mean activities, correlation shapes and sizes) in simulated networks of
binary and spiking neurons within the given bounds. Reducing the number of neurons only
increases correlation magnitudes without affecting their structure in this approximation.
However, strong deviations from the assumptions of the diffusion approximation can cause
also correlation structure to change in simulated networks under scalings originally con-
structed to maintain correlation structure. This occurs for instance when a drastic reduction
in network size is coupled with a less than proportional reduction in in-degrees, leading to

Limits to Network Scaling

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004490 September 1, 2015 21 / 37



large numbers of common inputs and increased synchrony. Thus, the scalability of the
number of neurons with available analytical results is indirectly limited by the minimal in-
degree scaling factor.

In conclusion, we have identified limits to the reducibility of neural networks, even when
only considering first- and second-order statistical properties. Networks are inevitably irreduc-
ible in some sense, in that downscaled networks are clearly not identical to their full-scale
counterparts. However, mean activity, a first-order macroscopic quantity, can usually be pre-
served. The present work makes it clear that non-reducibility already sets in at the second-
order macroscopic level of correlations. This does not imply a general minimal size for network
models to be valid, merely that each network in question needs to be studied near its natural
size to verify results from any scaled versions.

Our analytical theory is based on the diffusion approximation, in which inputs are treated
as Gaussian noise, valid in the asynchronous irregular regime when activities are sufficiently
high and synaptic weights are small. Moreover, external inputs are taken to be independent
across populations, and delays and time constants are assumed to be unchanged under scaling.
A further assumption of the theory is that the dynamics is stationary and linearly stable.

The one-to-one correspondence between effective connectivity and correlations applies
with a few exceptions. For non-identical populations with different impulse responses, an anal-
ysis in the frequency domain demonstrates the equivalence under the assumption that the cor-
relation matrix is invertible. An argument that assumes a diagonalizable effective connectivity
matrix extends the equivalence to identical populations apart from cases where the effective
connectivity matrix has eigenvalues that are zero or degenerate.

The equivalence of correlations and effective connectivity ties in with efforts to infer struc-
ture from activity, not only in neuroscience [59, 60, 61, 62, 63, 64, 65, 66] but also in other dis-
ciplines [67, 68, 69], as it implies that one should in principle be able to find the only—and
therefore the real—effective connectivity that accounts for the correlations. Within the same
framework as that used here, [65] shows that knowledge of the cross-spectrum at two distinct
frequencies allows a unique reconstruction of the effective connectivity matrix by splitting the
covariance matrix into symmetric and antisymmetric parts. The derivation considers a class of
transfer functions (the Fourier transform of the neuronal impulse response) rather than any
specific form, but the transfer function is taken to be unique, whereas the present work allows
for differences between populations. Furthermore, we here present a more straightforward der-
ivation of the equivalence, not focused on the practical aim of network reconstruction, and
clarify the conditions under which reconstruction is possible.

In practice, using our results to infer structure from correlations may not be straightfor-
ward, due to both deviations from the assumptions of the theory and problems with measuring
the relevant quantities. For instance, neural activity is often nonstationary [70], transfer func-
tions are normally not measured directly, and correlations are imperfectly known due to mea-
surement noise. Furthermore, inference of anatomical from functional connectivity
(correlations) is often done based on functional magnetic resonance imaging (fMRI) measure-
ments, which are sensitive only to very low frequencies and therefore only allow the symmetric
part of the effective connectivity to be reliably determined [66]. The presence of unobserved
populations providing correlated input to two or more observed populations can also hinder
inference of network structure. Thus, high-resolution measurements (e.g., two-photon micros-
copy combined with optogenetics to record activity in a cell-type-specific manner [71, 72]) of
networks with controlled input (e.g., in brain slices) hold the most promise for network recon-
struction from correlations.
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The effects on correlation-based synaptic plasticity of scaling-related changes in correlations
may be partly compensated for by adjusting the learning parameters. For instance, an increase in
average correlation size with factor 1/N without a change in temporal shape may be to some
extent countered by reducing the learning rate by the same factor. Changes in the temporal struc-
ture of the correlations are more difficult to compensate for. When learning is linear or slow, so
that the learning function can be approximated as constant (independent of the weights), the
mean drift in the synaptic weights is determined by the integral of the product of the correlations
and the learning function [73, 74]. Therefore, this mean drift may be kept constant under a
change in correlation shapes by adjusting the learning function such that this product is pre-
served for all time lags. However, given that the expression for the correlations is a complicated
function of the network parameters, the required adjustment of the learning function will also be
complex. Moreover, the effects of this adjustment on precise patterns of weights are difficult to
predict, since the distribution of correlations between neuron pairs may change under the pro-
posed scalings, and this solution does not apply when learning is fast and weight-dependent.

The groundbreaking work of [46] identified a dynamic balance between excitation and
inhibition as a mechanism for the asynchronous irregular activity in cortex, and showed that

J / 1=
ffiffiffiffi
K

p
can robustly lead to a balanced state in the limit N!1 for constant K/N. How-

ever, it is not necessary to scale synaptic weights as 1=
ffiffiffiffi
K

p
in order to obtain a balanced net-

work state, even in the limit of infinite network size (and infinite K). For instance, J/ 1/K can
retain balance in the infinite size limit in the sense that the sum of the excitatory and inhibitory
inputs is small compared to each of these inputs separately. To retain irregular activity with
this scaling one merely needs to ensure a variable external drive, as the internal variance van-
ishes for N!1. Moreover, in binary networks with neurons that have a Heaviside gain func-
tion (a hard threshold) identical across neurons, one does not even need a variable drive in
order to stay in a balanced state [46, p. 1360]. This can be seen from a simple example of a net-
work of N excitatory and γN inhibitory neurons with random connectivity with probability p,
where J = J0/N> 0 is the synaptic amplitude of an excitatory synapse, and −gJ the amplitude of
an inhibitory synapse. The network may receive a DC drive, which we absorb into the thresh-
old θ. The summed input to each cell is then μ = pNJ(1 − γg) n, where n 2 [0, 1] is the mean
activity in the network. For a balanced state to arise, the negative feedback must be sufficiently
strong, so that the mean activity n settles on a level where the summed input is close to the
threshold μ’ θ. This will always be achieved if pJ0(1 − γg)< θ< 0: in a completely activated
network (n = 1) the summed input is below threshold, and in a silent network (n = 0) the
summed input is above threshold, and hence the activity will settle close to the value n’ θ/
[pJ0(1 − γg)]. As the variance of the synaptic input decreases with network size, the latter esti-
mate of the mean activity will become exact in the limit N!1. The underlying reason for

both 1/K and 1=
ffiffiffiffi
K

p
scaling to lead to a qualitatively identical balanced state is the absence of a

characteristic scale on which to measure the synaptic input: the threshold is hard. Only by
introducing a characteristic scale, for example distributed values for the thresholds, the 1/K
scaling with a DC drive will in the large N limit lead to a freezing of the balanced state due to

the vanishing variance of the summed input, while with either 1=
ffiffiffiffi
K

p
scaling, or 1/K scaling

with a fluctuating external drive, the balanced state is conserved.

In [46], J / 1=
ffiffiffiffi
K

p
refers not only to a comparison between differently-sized networks, but

also to the assumption that approximately
ffiffiffiffi
K

p
excitatory synapses need to be active to reach

spike threshold. However, this is also not a necessary condition for balance, which can arise for a
wide range of synaptic strengths relative to threshold, as long as inhibition is sufficiently strong
compared to excitation. As discussed in “Correlation-preserving scaling”, with appropriately
chosen external drive, J even drops out of the mean-field theory for binary networks with a
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Heaviside gain function altogether [52]. The difficulty in the interpretation of the [46] results
illustrates a more general point: The primary goal of scaling studies is to identify the mechanisms
governing network dynamics. Nevertheless, these studies usually also specify requirements on
the robustness of the mechanism, leading to scaling laws for network parameters that may be
more restrictive than a description of the mechanism per se. An example is the robustness to

strong synapses, defined such that activation of	 ffiffiffiffi
K

p
excitatory synapses suffices to reach

threshold in the absence of an external drive [46, p. 1324]. This scenario was considered in order
to create a condition under which dynamic balance is clearly necessary for achieving asynchro-
nous irregular activity in balanced random networks, since combined inputs would otherwise far
exceed the threshold. However, dynamic balance can arise also with weak synapses, e.g., with
strength* 1/K of the distance to threshold. Without questioning the value of scaling studies,
which can distill essential mechanisms and are sometimes possible where finite-size analytical
descriptions are intractable, this shows that scaling laws need to be interpreted with care.

The issue of the interrelation between network size, synaptic strengths, numbers of synapses
per neuron, and activity is embedded in the wider context of anatomical and physiological scaling
laws observed experimentally. In homeostatic synaptic plasticity, synaptic strengths are adjusted
in a manner that keeps the activity of the postsynaptic neurons within a certain operating range
[75, 76, 77]. Since postsynaptic activity depends not only on the strength of inputs but also on
their number, this may induce a correlation between synaptic strengths and in-degree. In line
with this hypothesis, excitatory postsynaptic currents (EPSCs) at single synapses were found to
be inversely related to the density of active synapses onto cultured hippocampal neurons [78],
and the size of both miniature EPSCs and evoked EPSCs between neurons decreased with net-
work size and with the number of synapses per neuron in patterned cultures [79], although con-
trasting results have also been reported [80, 81]. In the development of a mammal, the neuronal
network grows by orders of magnitude and is continuously modified. For instance, the amplitude
of miniature EPSCs is reduced in a period of heightened synaptogenesis in rat primary visual cor-
tex [82]. During such developmental processes, some functions are conserved and new functions
emerge. This balance between stability and flexibility is an intriguing theoretical problem. Here,
network scaling is deeply related to biological principles. Our results open up a new perspective
for analyzing and interpreting such biological scaling laws.

Certainly, most network models will not fit neatly into the categories considered here, and
detailed models often provide valuable insights regardless of whether they are scaled in a sys-
tematic manner. Nevertheless, it is usually possible to at least mention whether and how a par-
ticular model is scaled. When the results are not amenable to mathematical analysis, we
suggest investigating through simulations of networks of different sizes how essential charac-
teristics depend on numbers of neurons and synapses (the relevant characteristics depend on
the model at hand, and do not necessarily include mean activities or correlations). Thus, while
both the investigation of the infinity limit and the exploration of downscaled networks remain
powerful methods of computational neuroscience, we argue for a more careful approach to net-
work scaling than has hitherto been customary, making the type of scaling and its conse-
quences explicit. Fortunately, in neuroscience full-scale simulations are now becoming
routinely possible due to the technological advances of recent years.

Methods

Software
We verify analytical results for networks of binary neurons and networks of spiking neurons
using direct simulations performed with NEST [83] revisions 10711 and 11264 for the spiking
networks and revision 11540 for the binary networks. For simulating the multi-layer microcircuit
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model, PyNN version 0.7.6 (revision 1312) [84] was used with NEST 2.6.0 as back end, single-
threaded on 12MPI processes on a high-performance cluster. All simulations have a time step of
0.1 ms. Spike times in the microcircuit model are constrained to the grid. The other spiking net-
work simulations use precise spike timing [85]. In part, Sage was used for symbolic linear algebra
[86]. Pre- and post-processing and numerical analysis were performed with Python.

Network structure and notation
For both the binary and the spiking networks, we derive analytical results where both the num-
ber of populations Npop and the population-level connectivity are arbitrary. Specific examples
are given of networks with a single, inhibitory population, or with two populations (one excit-
atory, one inhibitory) with either population-specific or population-independent connectivi-
ties. In addition, we discuss a multi-layer spiking cortical microcircuit model consisting of
77,169 neurons with approximately 3 × 108 synapses, with eight populations (2/3E, 2/3I, 4E, 4I,
5E, 5I, 6E, 6I) and population-specific connection probabilities [58], slightly adjusted to
enhance the asynchrony of the activity. The adjustments consist of replacing normally by log-
normally distributed weights with the same mean and with coefficient of variation 3; and using
4.5 instead of 4 as the relative strength of synapses from 4I to 4E compared to excitatory synap-
tic strengths. Besides distributed synaptic strengths, the model has binomially distributed in-
and out-degrees, and normally distributed delays (clipped at the simulation time step), thereby
deviating from the assumptions of our analytic theory. It thus serves to evaluate the robustness
of our analytical results to such deviations from the underlying assumptions.

In all cases, pairs of populations are randomly connected. In the binary and one- and two-
population LIF network simulations, in-degrees are fixed and multiple directed connections
between pairs of neurons (multapses) are disallowed. In the multi-layer microcircuit model, in-
degrees are distributed and multapses are allowed. In case of population-specific connectivities,
we denote the (unique or mean) in-degree for connections from population β to population α
by Kαβ, and synaptic strengths by Jαβ. Population sizes are denoted by Nα. For the example net-
works with population-independent connection probability, we denote the size of the excit-
atory population by N, the in-degree from excitatory neurons by K = pN, and the size of the
inhibitory relative to the excitatory population by γ, so that the inhibitory in-degree is γK. Syn-
aptic strengths are also taken to only depend on the source population, and are written as J for
excitatory and −gJ for inhibitory synapses.

Binary network dynamics
We denote the activity of neuron j by nj(t). The state nj(t) of a binary neuron is either 0 or 1,
where 1 indicates activity, 0 inactivity [7, 42, 87]. The state of the network of N such neurons is
described by a binary vector n = (n1, . . ., nN) 2 {0,1}N. We denote the mean activity by hnj(t)it,
where the average hit is over time and realizations of the stochastic activity. The neuron model
shows stochastic transitions (at random points in time) between the two states 0 and 1. In each
infinitesimal interval [t, t + δt), each neuron in the network has the probability 1

t dt to be chosen
for update [88], where τ is the time constant of the neuronal dynamics. We use an equivalent
implementation in which the time points of update are drawn independently for all neurons.
For a particular neuron, the sequence of update points has exponentially distributed intervals
with mean duration τ, i.e., update times form a Poisson process with rate τ−1. The stochastic
update constitutes a source of noise in the system. Given that the j-th neuron is selected for
update, the probability to end in the up state (nj = 1) is determined by the gain function
Fj(n(t)) = Θ(∑k Jjk nk(t) − θ) which in general depends on the activity n of all other neurons.
Here θ denotes the threshold of the neuron and Θ(x) the Heaviside function. The probability
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of ending in the down state (nj = 0) is 1 − Fj(n). This model has been considered previously
[42, 87, 89], and here we follow the notation introduced in [87] that we also employed in our
earlier works. We skip details of the derivation here that are already contained in [9].

First and second moments of activity in the binary network
The combined distribution of large numbers of independent inputs can be approximated as a
GaussianN(μ, σ2) by the central limit theorem. The arguments μ and σ are the mean and stan-
dard deviation of the synaptic input noise, together referred to as the working point [cf. Eqs (3)
and (4)]. The stationary mean activity of a given population of neurons then obeys [7, 9, 46, 52]

hni ¼ hFðnÞi

’
Z1
�1

Yðx � yÞN ðm; s2; xÞdx

¼
Z1
y

N ðm; s2; xÞdx

¼ 1

2
erfc

y� mðhniÞffiffiffi
2

p
sðhniÞ

 !
:

ð39Þ

This equation needs to be solved self-consistently because hni influences μ, σ through interactions
within the population itself and with other populations.

When network activity is stationary, the covariance of the activities of a pair (j, k) of neurons
is defined as cjk(Δ) = hδnj(t + Δ)δnk(t)it, where δnj(t) = nj(t) − hnj(t)it is the deviation of neuron
j’s activity from expectation, and Δ is a time lag. Instead of the raw correlation hnj(t + Δ)nk(t)it,
here and for the spiking networks we measure the covariance, i.e., the second centralized
moment, which is also identical to the second cumulant. To derive analytical expressions for
the covariances in binary networks in the asynchronous regime, we follow the theory developed
in [7, 9, 42, 52, 53]. We first consider the case of vanishing transmission delays d = 0 and then
discuss networks with delays.

Let

cab ¼
1

NaNb

X
j2a;k2b;j 6¼k

cjk ð40Þ

be the covariance averaged over disjoint pairs of neurons in two (possibly identical) popula-
tions α, β, and aa ¼ 1

Na

P
j2aaj the population-averaged single-neuron variance aj(Δ) = hδnj(t +

Δ)δnj(t)it. Note that for α = β there are only Nα(Nα − 1) disjoint pairs of neurons, so cαα differs
from the average pairwise cross-correlation by a factor (Nα − 1)/Nα, but we choose this defini-
tion because it slightly simplifies the population-level equations. For sufficiently weak synapses
and sufficiently high firing rates, and when higher-order correlations can be neglected, a linear-
ized equation relating these quantities can be derived for the case d = 0 ([42] Eqs (9.14)–(9.16);
[7] supplementary material Eq (36), [9] Eq (10)),

2cab ¼
X
g

Wagcgb þWbgcga
	 
þWab

ab
Nb

þWba

aa
Na

: ð41Þ

Here, we have assumed identical time constants across populations, and

Wab ¼ Sðma; saÞJabKab ð42Þ
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is the linearized effective connectivity. The susceptibility S is defined as the slope of the gain
function averaged over the noisy input to each neuron [9, 52, 53], reducing for a Heaviside
gain function to

Sðm; sÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�

ðm�yÞ2
2s2 : ð43Þ

With the definitions

�cab �
1

NaNb

X
j2a;k2b

cjk ¼ cab þ dab
aa
Na

ð44Þ

Pab � dab �Wab ð45Þ

Eq (41) is recognized as a continuous Lyapunov equation

P�c þ ðP�cÞT ¼ 2diag
aa
Na

� �
� 2A; ð46Þ

which can be solved using known methods. Let vj,uk be the left and right eigenvectors ofW,
with eigenvalues λj and λk, respectively. Choose the normalization such that the left and right
eigenvectors are biorthogonal,

vjTuk ¼ djk: ð47Þ

Then multiplying Eq (46) from the left with vjT and from the right with vk yields

ð1� ljÞvjT�cvk þ vjT�cvkð1� lkÞ ¼ 2vjTAvk: ð48Þ

Define

mjk � vjTmvk; ð49Þ

form ¼ c; �c;A. Then solving Eq (48) for �c gives

�c ¼
X
j;k

2Ajk

2� lj � lk
ujukT ; ð50Þ

as can be verified using Eq (47). This provides an approximation of the population-averaged
zero-lag correlations, including contributions from both auto- and cross-correlations.

To determine the temporal structure of the population-averaged cross-correlations, we start
from the single-neuron level, for which the correlations approximately obey ([53] Eq (29))

t
d
dD

cjkðDÞ þ cjkðDÞ ¼
X

i

wjicikðDÞ; D � 0; ð51Þ

where wij is the neuron-level effective connectivity (wij = Si Jij if a connection exists and wij = 0
otherwise). This equation also holds on the diagonal, j = k. To obtain the population-level
equation, we use Eqs (40) and (44) and count the numbers of connections, which yields a factor
Kαβ for each projection. Eq (51) then becomes

t
d
dD

�cðDÞ ¼ �P�cðDÞ; D � 0: ð52Þ

This step from the single-neuron to the population level constitutes an approximation when
the out-degrees are distributed, but is exact for fixed out-degree [8, 53]. The correlations for
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Δ< 0 are determined by �cabð�DÞ ¼ �cbaðDÞ. With the definition Eq (49), Eq (52) yields

t
d
dD

�cjkðDÞ ¼ ðlj � 1Þ�cjkðDÞ D � 0: ð53Þ

Using the initial condition for �c from Eq (50) and multiplying Eq (53) by uj ukT, summing over
j and k, we obtain the solution

�cðD � 0Þ ¼
X
j;k

2Ajk

2� lj � lk
ujukTe

lj�1

t D: ð54Þ

The shape of the autocovariances is well approximated by that for isolated neurons,Ae�
D
t , with

corrections due to interactions being O(1/N) [42]. Substituting this form in Eq (54) leads to

cðD � 0Þ ¼
X
j;k

2Ajk

2� lj � lk
ujukTe

lj�1

t D �Ae�
D
t ; ð55Þ

equivalent to [42] Eq (6.20). Note that this equation still needs to be solved self-consistently,
because the variance of the inputs to the neurons, which goes into S(μ, σ), depends on the cor-
relations. However, correlations tend to contribute only a small fraction of the input variance
in the asynchronous regime (cf. [9] Fig 3D). The accuracy of the result Eq (55) is illustrated in
Fig 3A for a network with parameters given in Table 1 by comparison with a direct simulation.
Note that the delays were not zero but equal to the simulation time step of 0.1 ms, sufficiently
small for the correlations to be well approximated by Eq (55).

Now consider arbitrary transmission delay d> 0, and let both d and the input statistics be
population-independent. This case is most easily approached from the Fourier domain, where
the population-averaged covariances including autocovariances can be approximated as [53]

�CðoÞ ¼ ðHðoÞ�1 �WÞ�1
2tAðHð�oÞ�1 �WTÞ�1

: ð56Þ

Here, H(ω) is the transfer function

HðoÞ ¼ e�iod

1þ iot
; ð57Þ

which is equal for all populations under the assumptions made. The transfer function is the
Fourier transform of the impulse response, which is a jump followed by an exponential relaxa-
tion,

hðtÞ ¼ Yðt � dÞ 1
t
e�

t�d
t ; ð58Þ

where Θ is the Heaviside step function.
For the case of population-independentH(ω), Fourier back transformation to the time

domain is feasible, and was performed in [53] for symmetric connectivity matrices. Here, we
consider generic connectivity (insofar as consistent with equal H(ω)), and again use projection
onto the eigenspaces ofW to obtain a form similar to Eq (55), i.e., insert the identity matrix

X
j

ujvjT ¼ 1 ð59Þ
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both on the left and on the right of Eq (56), and Fourier transform to obtain

2p�cðDÞ ¼
Zþ1

�1

�CðoÞeioDdo

¼
Zþ1

�1

eioD
X
j;k

uj 1

HðoÞ�1 � lj
2tvjTAvk 1

Hð�oÞ�1 � lk
ukTdo

¼ 2t
X
j;k

ujukT Ajk

Zþ1

�1

fjkðoÞ eioD do

with fjkðoÞ � 1

HðoÞ�1 � lj

1

Hð�oÞ�1 � lk
:

ð60Þ

In the third line of Eq (60), we used Ajk = vjT A vk and collected the frequency-dependent terms
for clarity. The exponential eiωΔ does not have any poles, so the only poles stem from fjk, which
we denote by zl(λj) and the corresponding residues by Resj,k[zl(λj)]. We only need to consider Δ
� 0, since the solution for negative lags follows from �cðDÞ ¼ �cTð�DÞ. The equation can then
be solved by contour integration over the upper half of the complex plane, as the integrand
vanishes at ω! +i1. Stability requires that the poles of the first term of Eq (60) lie only in the
upper half plane (note that the linear approximation we have employed only applies in the sta-
ble regime). The poles of the second term correspondingly lie in the lower half plane and hence
need not be considered. For d> 0, the locations of the poles are given by [53] Eq (12),

zlðljÞ ¼
i
t
� i
d
Wl lj

d
t
ed=t

� �
; ð61Þ

whereWl is the l
th of the infinitely many branches of the Lambert-W function defined by

x =W(x)eW(x) [90]. For d = 0, the poles are zðljÞ ¼ � i
t lj � 1
� �

. Using the residue theorem

thus brings Eq (60) into the form

�cðD � 0Þ ¼ 2tiIðgÞ
X
j;k;l

ujukT AjkResj;k½zlðljÞ�eizlðljÞD

¼
X
j;k;l

ajklu
jukTeizlðljÞD;

with ajkl � 2tiIðgÞAjkResj;k½zlðljÞ�;

ð62Þ

where I(γ) = 1 is the winding number of the contour γ around the poles. To see that Eq (62)

reduces to Eq (55) when d = 0, substitute the poles in the upper half plane zðljÞ ¼ � i
t lj � 1
� �

with residues [iτ(2 − λj − λk)]
−1 and note that cðDÞ ¼ �cðDÞ �AðDÞ.

When the input statistics and hence transfer functions are population-specific, Eq (56)
becomes

�CðoÞ ¼ ð1�MðoÞÞ�1
DðoÞð1�MTð�oÞÞ�1

; ð63Þ

DðoÞ � diag
2taaa

Nað1þ o2t2aÞ
� �

a¼1...Npop

 !
; ð64Þ

whereMαβ(ω) =Hαβ(ω)Wαβ.
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Spiking network dynamics
The spiking networks consist of single-compartment leaky integrate-and-fire neurons with
exponential current-based synapses. The subthreshold dynamics of neuron i is given by

tm
dVi

dt
¼ �Vi þ IiðtÞ;

ts
dIi
dt

¼ �Ii þ tm
X

j

Jijsjðt � dÞ;
ð65Þ

where we have set the resting potential to zero without loss of generality, and absorbed the
membrane resistance into the synaptic current Ii, in line with previous works [45, 91]. Bringing
back the corresponding parameters, the dynamics reads

tm
d ~V i

dt
¼ �ð~V i � ELÞ þ Rm

~I iðtÞ;

ts
d~I i
dt

¼ �~I i þ ts
X

j

~J ijsjðt � dÞ:
ð66Þ

Thus, our scaled synaptic amplitudes Jij in terms of the amplitudes ~J ij of the synaptic current

due to a single spike are Jij ¼ Rmts=tm~J ij. Here, τm and τs are membrane and synaptic time con-

stants, EL is the leak or resting potential, Rm is the membrane resistance, d is the transmission

delay, ~I i ¼ Ii=Rm is the total synaptic current, and sj ¼
P

kdðt � tjkÞ are the incoming spike

trains. When Vi reaches a threshold θ, a spike is assumed, and the membrane potential is
clamped to a level Vr for a refractory period τref. Threshold and reset potential in physical units

are shifted by the leak potential (y ¼ ~y � EL, Vr ¼ ~Vr � EL), showing that the assumption
EL = 0 in Eq (65) does not limit generality. The intrinsic dynamics of the neurons in the differ-
ent populations are taken to be identical, so that population differences are only expressed in
the couplings.

First and second moments of activity in the spiking network
An approximation of the stationary mean firing rate of LIF networks with exponential current-
based synapses was derived in [91],

r ¼ tm
ffiffiffi
p

p Z y�m
s þa

2

ffiffiffiffiffi
ts
tm

r

Vr�m
s þa

2

ffiffiffiffiffi
ts
tm

r CðsÞ ds
0
@

1
A

�1

;

CðsÞ ¼ es
2ð1þ erfðsÞÞ;

a ¼ ffiffiffi
2

p z 1

2

� �;
ð67Þ

where the summed synaptic input is characterized by a Gaussian noise with first moment μ
and second moment σ2 based on the diffusion approximation, and z is the Riemann zeta
function.

For the covariances, we follow and extend the theory developed in [45, 53], starting with the
average influence of a single synapse. Assuming that the network is in the asynchronous state,
and that synaptic amplitudes are small, the synaptic influences can be averaged around the
mean activity rj of each neuron j. These influences are characterized by linear response kernels
hjk(t, t0) defined as the derivative of the density of spikes of spike train sj(t) of neuron j with
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respect to an incoming spike train sk(t0), averaged over realizations of the remaining incoming
spike trains s\sk that act as noise. In the stationary state, the kernel only depends on the time
difference t − t0, giving

hsjðtÞjskisnsk ¼ rj þ
Z t

�1

hjkðt � t0Þðskðt0Þ � rkÞ dt0;

hjkðt � t0Þ ¼
�

dsjðtÞ
dskðt0Þ

�
snsk

� wjkhðt � t0Þ;
ð68Þ

where δsj � sj − rj is the j-th centralized (zero-mean) spike train. Here, wjk is the integral of

hjk(t − t0), and h(t − t0) is a normalized function capturing its time dependence, which may be
source- and target-specific. The dimensionless effective weights wjk are determined nonlinearly
by the synaptic strengths Jjk, the single-neuron parameters, and the working point (μj,σj) (cf.
[45] Eq (A.3) but note that β as given there has a spurious factor J). We approximate the
impulse response by the form Eq (58), where τ is now an effective time constant depending on
the working point (μj,σj) and the parameters of the target neurons. This form of the impulse
response, corresponding to a low-pass filter, appears to be a good approximation in the noisy
regime when the neuron fires irregularly. In the mean-driven regime (μ� σ) the transfer func-
tion of the LIF neuron is known to exhibit resonant behavior with a peak close to its firing rate.
In this regime a single exponential response kernel is expected to be a poor approximation (see,
e.g., [92] Fig 1). In general, the source population dependence of Eq (58) comes in through the
delay d, and the target population dependence through both τ and d.

As for binary networks with delays, the average pairwise covariance functions cij(Δ)� hδsi(t
+ Δ)δsj(t)it are most conveniently derived starting from the frequency domain. In case of iden-
tical transfer functions for all populations, the matrix of average cross-covariances is given by
[53] Eq (16) minus the autocovariance contribution,

CðoÞ ¼ ðHðoÞ�1 �WÞ�1
WAWTðHð�oÞ�1 �WTÞ�1

þ ðHðoÞ�1 �WÞ�1
WA

þ AWTðHð�oÞ�1 �WTÞ�1
:

ð69Þ

Here,W contains the effective weights of single synapses from population β to population α
times the corresponding in-degrees, wαβ Kαβ; and A contains the population-averaged autoco-
variances, which we approximate as dab

ra
Na
, with rα the mean firing rate, as also done in [45]. In

[53], Eq (69) was written using a more general diagonal matrix instead of A, to help clarify
close similarities between binary and LIF networks and Ornstein-Uhlenbeck processes or linear
rate models; however, for LIF networks, this diagonal matrix corresponds precisely to the auto-
covariance matrix. We chose the form Eq (69) because it separates terms that vanish at either
ω! i1 or ω! −i1 depending on Δ. This facilitates Fourier back transformation, as contour
integration with an appropriate contour can be used for each term.

To perform the Fourier back transformation, we apply the same method as used for the
binary network. Let vj,uj be the left and right eigenvectors of the connectivity matrixW, and λj
the corresponding eigenvalues. Insert ∑j u

j vjT = 1 into Eq (69) on the left and right, and Fourier
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transform,

2pcðDÞ ¼
Zþ1

�1

CðoÞeioDdo

¼
Zþ1

�1

eioD
(X

j;k

uj
lj

HðoÞ�1 � lj
vjTAvk lk

Hð�oÞ�1 � lk
ukT

þ
X
j;k

uj
lj

HðoÞ�1 � lj

vjTAvkukT

þ
X
j;k

ujvjTAvk lk
Hð�oÞ�1 � lk

ukT

)
do: ð70Þ

As for the binary case, we only need to consider Δ� 0, as the solution for Δ< 0 is given by
c(Δ) = cT(−Δ). The contour can then be closed over the upper half plane, where the term con-
taining only H(−ω) has no poles due to the stability condition. When Δ< d, the contour for
the term containing only H(ω) can also be closed in the lower half plane where it has no poles,
so that the corresponding integral vanishes. Analogously, the integral of the term with only
H(−ω) vanishes when 0> Δ> −d. Therefore, the second and third terms represent ‘echoes’ of
spikes arriving after one transmission delay [53]. For Δ = 0 and d> 0, only the first term con-
tributes, and the contour can be closed in either half plane. As before, the poles are given by Eq

(61) for d> 0, and by zðljÞ ¼ 
 i
t lj � 1
� �

for d = 0. The residue theorem yields a solution of

the form Eq (62), the only difference being the precise form of the residues, and the fact that we
here consider c as opposed to �c.

In the absence of delays, an explicit solution can again be derived. For Δ> 0, the poles inside
the contour are zðljÞ ¼ � i

t ðlj � 1Þ corresponding to the terms with H(ω)−1. The residue cor-

responding to
lj

HðoÞ�1�lj
is

lj
it, and the term

lk
Hð�oÞ�1�lk

is finite and evaluates at the pole to lk
2�lj�lk

.

Using Ajk = vjT A vk we get

cðD > 0Þ ¼
X
j;k

Ajk

t

ljð2� ljÞ
2� lj � lk

ujukTe
lj�1

t D; ð71Þ

which is reminiscent of but not identical to Eq (55) for the binary network. Note that Eq (71)
for the LIF network corresponds to spike train covariances with the dimensionality of 1/t2 due
to [Ajk] = [1/t] and the factor 1/τ, whereas the covariances for the binary network are
dimensionless.

The population-specific generalization of Eq (69) reads

CðoÞ ¼ ð1�MðoÞÞ�1
MðoÞAMTð�oÞð1�MTð�oÞÞ�1

þð1�MðoÞÞ�1
MðoÞA

þAMTð�oÞð1�MTð�oÞÞ�1
;

ð72Þ

whereM(ω) has elementsHαβ(ω)Kαβ wαβ, as before. The covariance matrix including autoco-
variances can be more simply written as

�CðoÞ ¼ ð1�MðoÞÞ�1
Að1�MTð�oÞÞ�1

: ð73Þ

The only difference compared to the expression Eq (63) for the binary network is the form of
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the diagonal matrix, here analogous to white output noise in a linear rate model, whereas the
binary network resembles a linear rate model with white noise on the input side, which is
passed through the transfer function before affecting the correlations [53].

Fluctuating rate equation and stability condition
An alternative description of the spiking dynamics can be obtained by considering a system of
linear coupled rate equations that produces the same moments to second order as the spiking
dynamics [53]. The convolution equation

yjðtÞ ¼
X
k

Z
hjkðt � t0Þykðt0Þ dt0 þ xjðtÞ

with

hxjðtÞxkðsÞi ¼ djk rj dðt � sÞ;

ð74Þ

with pairwise uncorrelated white noises xj and the response kernel hjk given by Eq (68) can be
shown to yield a cross-covariance matrix of the form Eq (69) by considering the Fourier trans-
form of Eq (74), written in matrix notation as

YðoÞ ¼ HðoÞWYðoÞ þXðoÞ: ð75Þ
We can expand the latter equation into eigenmodes by multiplying from the left with the left-
sided eigenvector vk ofW and by writing the general solution as a linear combination of right-
sided eigenmodes Y(ω) = ∑j ηj(ω) u

j to obtain (with the bi-orthogonality relation vkT uj = δkj)

ZkðoÞ ¼ HðoÞ lkZkðoÞ þ vkTXðoÞ

ZkðoÞ ¼ 1

1� lkHðoÞ v
kTXðoÞ: ð76Þ

The latter equation shows that the same poles z(λk) that appear in the covariance function Eq
(70) also determine the evolution of the effective rate equation. Moreover, transforming Eq
(76) back to the time domain, we see with

ZkðtÞ ¼ i
X

poles zðlkÞ
Res

1

1� lkHðzÞ ; zðlkÞ
� �

vkXðzÞ e izðlkÞ t

that the eigenmodes have a time evolution determined by eiz(λk)t. Hence the imaginary part of
the pole z(λk) controls whether the mode is exponentially growing (Im(z)< 0) or decaying
(Im(z)> 0), while the real part determines the oscillation frequency.

Supporting Information
S1 Text. Derivation of one-to-one relationship between effective connectivity and correla-
tions for binary networks and networks consisting of populations with identical response
properties.
(PDF)
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