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ABSTRACT

RNA interference is almost always associated with post-transcriptional silencing in the cytoplasm. MicroRNAs (miRNAs)
and critical RNAi protein factors like argonaute (AGO) and trinucleotide repeat binding containing 6 protein (TNRC6), how-
ever, are also found in cell nuclei, suggesting that nuclear miRNAs may be targets for gene regulation. Designed small du-
plex RNAs (dsRNAs) can modulate nuclear processes such as transcription and splicing, suggesting that they can also
provide leads for therapeutic discovery. The goal of this Perspective is to provide the background on nuclear RNAi neces-
sary to guide discussions on whether nuclear RNAi can play a role in therapeutic development programs.
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INTRODUCTION

The ability of double-stranded RNAs (dsRNAs) and anti-
sense oligonucleotides (ASOs) to control gene expression
and contribute to new therapies is now well established
(Shen and Corey 2018). Chemical modifications to stabilize
nucleic acid drugs, optimize their activity, andminimize tox-
icity have been well characterized (Khvorova and Watts
2017). The pharmacological properties of oligonucleotides
are understood. Delivery of ASOs and dsRNAs to the liver
is established, but progress has also been made with deliv-
ery to the central nervous system (Bennett 2019; Bennett
et al. 2019), the eye (Garanto 2022), lungs (Shin et al.
2022), muscle (Desjardins et al. 2022), and other organs.
Applications range from N=1 therapies for ultra-rare dis-
eases (Kim et al. 2019; Dhuri et al. 2020) to the potential
for broad use of dsRNAs to be used to reduce high choles-
terol levels (Migliorati et al. 2022).
Although this progress has established oligonucleotides

as a growing class of successful drugs, important questions
remain. How successful will oligonucleotides become?
Will they remain a relatively niche drug category providing
important benefits to a relative handful of patients, or will
they expand to a major category of therapeutics that are
commonly used in the clinic? Exploiting the full potential
of oligonucleotides will require clever identification of dis-
ease targets, which, in turn, will require a strong funda-

mental understanding of what cellular RNAs might be
targets.
For dsRNAs, targets are typically thought to be messen-

ger RNAs (mRNAs) that reside in the cytoplasm. The as-
sumption is that fully complementary dsRNAs, in complex
with argonaute 2 (AGO2) protein, will bind mRNA and in-
duce the cleavage of the target RNA, leading to lower levels
of protein. This mechanism is well understood and is the
basis of all six currently approved dsRNA drugs.
What if dsRNA action was not limited to cleavage of

mRNA in the cytoplasm? What if dsRNAs could also func-
tion in cell nuclei? What if they could affect transcription,
splicing, or other biological processes? What if they could
bind noncoding RNAs that are known to be the root causes
of several inherited diseases? (Pandolfo 2009; Wheeler
et al. 2009; DeJesus-Hernandez et al. 2011; Renton et al.
2011; Gattey et al. 2014; Mootha et al. 2017) What if
miRNAs had nuclear roles and these roles could also be
modulated? It is possible that new targets for drug discov-
ery could be identified that go beyond the targets possible
using dsRNAs that act in the cytoplasm. This Perspective
examines the basic science of nuclear RNAi and how that
understanding can be applied to therapeutic discovery.

Discovery of nuclear RNAi

Morris et al. (2004) reported that duplex RNAs that target
gene promoters could modulate gene expression by
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inducing DNA methylation and blocking transcription.
Although the control of transcription by small RNAs was
well known in plants (Wassenegger et al. 1994; Castel
and Martienssen 2013; Holoch and Moazed 2015), these
data suggesting mammalian nuclear RNAi ran counter to
established dogma that mammalian RNAi was restricted
to inhibition of translation in the cytoplasm.

Our laboratory had been studying the inhibition of en-
dogenous gene transcription by single-stranded peptide
nucleic acids (PNAs) (Janowski et al. 2005a) and it was a
simple matter to adapt our assays to use promoter-target-
ed dsRNAs. To our surprise (because first experiments al-
most never succeed), we immediately observed potent
and reproducible inhibition of gene expression by duplex
RNAs that target sequences immediately adjacent to the
most upstream experimentally determined start site
(Janowski et al. 2005b). Subsequent experiments showed
that inhibition occurred at the level of transcription and
that one strand of the inhibitory dsRNA was binding to
an antisense transcript (not the mRNA nor chromosomal
DNA) (Schwartz et al. 2008). Inhibition required expression
of argonaute (AGO) protein (Chu et al. 2010).

The inhibition of transcription by promoter-targeted
RNAwas reminiscent of themechanism of action of protein
transcription factors (Fig. 1). Since protein transcription fac-
tors are known to inhibit expression in some contexts while
activating expression in others, we examined whether
gene activation was also possible. We had achieved tran-
scriptional inhibition by dsRNA in a cell line, T47D, where
expression of our progesterone receptor target gene was
high (Janowski et al. 2005b). We reasoned that we might
be able to see activation in a cell line, MCF7, where pro-
gesterone receptor expression was low. As with inhibition
of transcription, activation of transcription was easily
achieved, efficient, and reproducible (Janowski et al.
2007). The sequences of the activating or inhibitory strands
were similar in that they targeted the same region of the
promoter antisense transcript, but we observed that shift-
ing the sequence just one or two bases could affect wheth-
er a strand was capable of potent gene activation or

inhibition. Once again, the molecular target was an anti-
sense promoter transcript and expression of AGO2protein
was necessary (Schwartz et al. 2008).

Cyclooxygenase-2 (COX-2), a model for activating
gene transcription

Just as proteins have the potential to control transcription
through many different mechanisms, it is possible that
dsRNAs may also act through many different mechanisms.
We examined themechanism at one gene locus in detail—
the control of cyclooxygenase-2 (COX-2) expression by
dsRNAs (Fig. 2A; Matsui et al. 2013). COX-2 was chosen
because it had low- and high-expression states that were
responsive to a variety of environmental inputs.

COX-2 proved to be a rich source of insights into mech-
anism (Fig. 2B; Matsui et al. 2013). The molecular target of
the duplex RNAwas a rare, approximately one to two cop-
ies per cell, sense transcript that overlapped the highly de-
fined TATA-box promoter of COX-2. There were two
binding sites for miR-589 within that transcript immediate-
ly upstream of the promoter’s transcription start site and
we found that miR-589 bound that site and activated tran-
scription. Designed synthetic RNAs complementary to the
transcription start site also activated transcription and
were sensitive to mismatches within the sequence. AGO2-
mediated cleavage of the target transcript was not neces-
sary—introduction of a mismatch at position 9, a mismatch
that inactivates cleavage, does not reduce gene activation.
Activation required RNAi factors AGO2 and TNRC6. Levels
of activation were substantial—20- to 30-fold with just the
dsRNA and 90- to 100-fold when combined with known
pro-inflammatory activators, IL1β or TNFα.

Phospholipase A2 (PLA2G4A) is the enzyme that makes
arachidonic acid, the substrate for COX-2. The gene en-
coding PLA2G4A is the nearest gene to COX-2 (149 kB
distant), which led us to test whether RNA-mediated con-
trol of COX-2 might influence expression of PLA2G4A.
We found that both miR-589 and synthetic designed
RNAs complementary to the COX-2 promoter also con-

trolled PLA2G4A transcription. As
with regulation of COX-2, RNA-medi-
ated regulation of PLA2G4A expres-
sion required expression of AGO2
and TNRC6. How could RNAs
complementary to the COX-2 pro-
moter also control expression of a
gene separated by 149,000 bases?
Chromosome conformation capture
(3C) analysis showed that the COX-2
and PLA2G4A transcription start re-
gions contact one another, suggest-
ing gene looping and the possibility
of common mechanisms for gene
regulation. These data suggested

FIGURE 1. Model showing a potential mechanism for transcriptional activation or repression.
The RNA:AGO:TNRC6 complex binds at a promoter to a nascent transcript (not directly to
chromosomal DNA) and alters the mix of proteins necessary for gene activation or repression.
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that RNA is instrumental to the regulation of a mammalian
gene operon consisting of COX-2 and PLA2G4A.
Taken together, the data on transcriptional regulation

from our studies focusing on the control of PR and COX2
can best be explained by the hypothesis that the small
RNA/AGO2 complex acts like a transcription factor. The
complex binds a nascent noncoding transcript that over-
laps the gene promoter while the transcript remains teth-
ered to the chromosome. Given the correct context of
basal gene expression (low basal expression makes activa-
tion more achievable, high basal expression is better suit-
ed for gene repression), RNA-mediated modulation of
gene expression can be achieved.

Controlling gene splicing with duplex RNAs

ASOs that are designed to bind and disrupt the recognition
of RNA sequences by the protein splicing machinery are ro-
bust agents for controlling splicing (Dominski and Kole
1993; Havens and Hastings 2016). We reasoned that duplex
RNAs that target similar sites might also be able to block crit-
ical regulatory elements and affect splicing (Fig. 3). To test
this hypothesis, we targeted duplex RNAs to known se-
quences within a well-characterized luciferase-based splicing
model (Kanget al. 1998) and intronic sequenceswithin estab-
lished therapeutic targets, survival motor neuron 2 (SMN2,
spinal muscular atrophy) (Lim and Hertel 2001; Miyajima

et al. 2002; Cartegni and Krainer
2003; Skordis et al. 2003; Hua et al.
2008), and dystrophin (Duchenne mus-
cular dystrophy) (Aartsma-Rus et al.
2003; Arechavala-Gomeza et al. 2007;
van Deutekom et al. 2007; Lu et al.
2011; Voit et al. 2014).

In all three cases, the dsRNAs modu-
lated splicing (Liu et al. 2012). The
Kornblihtt Laboratory has observed
regulation of splicing by a different
mechanism that involves modulation
of histone modification (Allo et al.
2009; Naftelberg et al. 2015). These
data from different splice-modulation
strategies suggest that dsRNAs may of-
fer an alternative to the use of ASOs for
modulating the splicing of genes for
therapeutic discovery and develop-
ment. It is important to note that se-
quences for active double-stranded
RNAs cannot be directly inferred from
the sequences of active ASOs and will
need to be determined empirically.

RNAi factors are in mammalian
cell nuclei

Despite the observation of robust con-
trol of transcription and splicing in mul-
tiple experimental systems by our
laboratory and others (Kawasaki and
Taira 2004; Morris et al. 2004; Ting et
al. 2005; Janowski et al. 2005b, 2006,
2007; Kim et al. 2008; Schwartz et al.
2008; Allo et al. 2009; Chu et al. 2010;
Matsui et al. 2010; Younger and Corey
2011; Ameyar-Zazoua et al. 2012; Liu
et al. 2012; Matsui et al. 2013; Allo
et al. 2014; Salmanidis et al. 2014;
Naftelberg et al. 2015; Kalantari et al.
2016a), many researchers continued

FIGURE 2. Model of promoter-mediated activation of transcription of COX-2. (A) In the basal
state, promoter RNAs are expressed at the COX-2 promoter in the sense direction. COX-2 and
PLA2G4A are expressed at low levels. The sense promoter RNA is a platform for recognition by
a small complementary RNA (endogenous or synthetic) and recruitment of AGO2 and TNRC6.
For gene activation, binding of a small RNA in complex with AGO2 and TNRC6 leads to asso-
ciation of transcription factors and WDR5 and an increase in activating histone marks. Gene
looping that juxtaposes the COX-2 and PLA2G4Apromoters enables activation of both genes.
(B) Summary of some of the key mechanistic findings from RNA-mediated COX-2 activation.
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to assume that critical RNAi factors like AGO were restricted
to cell cytoplasm. These assumptions slowed dissemination
of research results and progress investigating the biochemi-
cal and mechanistic basis of nuclear RNAi. After realizing
that disagreement over the existence of nuclear RNAi factors
was an obstacle, we reexamined experimental data and ap-
proaches related to cellular distribution of AGO and other
RNAi factors (Gagnon et al. 2014a,b).

We first developed a nuclear purification protocol that
removes the endoplasmic reticulum (ER), eliminating the
possibility that RNAi factors in the ERmight be contaminat-
ing nuclear preparations. We later learned that this proto-
col may need to be revised depending on the cell line or
tissue being used in a study (Fig. 4). Fractionation of nuclei
followed by western analysis showed that RNAi factors in-
cluding AGO, Dicer, TRBP, and TNRC6A can be detected
in cell nuclei. In parallel experiments, AGO2 and TNRC6A
can be detected in nuclei by microscopy and appear to
overlap. Size exclusion chromatography of nuclear extract
reveals the formation of high molecular weight complexes
that include AGO2, TNRC6A, and other RNAi factors.

Loading of miRNAs into AGO2 occurs in the cytoplasm,
but recognition and cleavage of target RNAs can occur in
the nucleus as well as in the cytoplasm (Fig. 5). Loading in
the cytoplasm is consistent with the observation that the
loading factors Trax and Translin are restricted to the cyto-
plasm and are not observed in cell nuclei. miRNAs can
also be found in cell nuclei, and their distribution is like
the distribution observed in cell cytoplasm. These multiple,
independent lines of evidence build a strong case that
strand loading occurs in the cytoplasm, but that miRNAs
and protein RNAi factors can enter cell nuclei and promote
recognition of RNA.

Nuclear RNAi, samemechanism as cytoplasmic RNAi,
or different?

Applying nuclear RNAi for therapy requires an understand-
ing of how complexes of RNA and protein RNAi factors act

in concert to modulate gene ex-
pression. We have a relatively mature
understanding of how fully comple-
mentary designed RNAs recognize
mRNA in cell cytoplasm. The prolifer-
ation of dsRNA drugs is evidence of
the value of these insights into
mechanism.
Are the rules governing nuclear

RNAi and cytoplasmic RNAi the
same? Can an understanding of cyto-
plasmic RNAi be directly applied to
nuclear RNAi? It is obvious that cyto-
plasmic RNAi offers lessons for RNAi.
Specifically, the complex of AGO:
RNA has the potential to efficiently

recognize complementary sequences within cellular
RNA. The basic fact that AGO:RNA drives recognition is
the starting point for any study. However, there is more
to the story.

The pools of RNA in the cytoplasm and the nucleus are
not the same. Cytoplasmic RNA is mostly mature mRNA.
Nuclear RNAi offers the potential to recognize intronic se-
quences, RNAs that are retained in the nucleus, or are as-
sociated with chromosomal DNA. So, at the basic level of
potential RNA targets, the two processes, nuclear and cy-
toplasmic, differ.

Themolecular mechanisms of RNA recognitionmay also
differ. Most uses of dsRNAs as gene silencing tools or ther-
apeutics rely on dsRNAs promoting cleavage of fully com-
plementary RNA targets in the cytoplasm. This routine
cleavage is assumed in most gene silencing experiments
commonly used in laboratories.

Do fully complementary duplex RNAs also cause cleav-
age of RNA targets in cell nuclei? Lennox and Behlke

FIGURE 3. Model showing a potential mechanism for RNAi-mediated control of alternative
splicing. The RISC complex binds within intronic regions near a splice site and blocks associ-
ation of the spliceosome and alters exon inclusion.

FIGURE 4. Western blot of cytoplasm and nuclear fractionation of
HCT116 cells. Cellular localization of AGO2, TNRC6A, and fraction
purity markers shown. Calnexin is a marker for endoplasmic reticulum
(ER) (Gagnon et al. 2014a,b).
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examined this question using panels of dsRNAs and ASOs
targeting RNAs known to have different cellular localiza-
tions (Lennox and Behlke 2016). They concluded that the
answer was “maybe.” They found that ASOs weremore re-
liable and potent knockdown tools in cell nuclei, whereas
dsRNAs were more reliable in cell cytoplasm. The greater
potency of ASOs in cell nuclei is consistent with the
integral role played by RNase H in the mechanism of
gapmer-mediated cleavage of target transcripts.
In our experience with RNAs complementary to gene

promoters, fully complementary dsRNAs that were de-
signed to target promoter transcripts did not induce cleav-
age of the promoter transcripts. Consistent with the results
of Behlke and Lennox, gapmer ASOs targeting the pro-
moter transcripts cause transcript cleavage. dsRNAs com-
plementary to intron/exon junctions that modulated
splicing did not cause detectable cleavage of the target
RNA (Liu et al. 2012)
However, again consistent with data from Behlke and

Lennox, we observed cleavage of the well-expressed nu-
clear RNA MALAT-1 (Gagnon et al. 2014a). 5′-RACE
even detected cleavage products on isolated chromatin.
At this stage, we have too little mechanistic data to ratio-
nalize why the efficient cleavage in the cytoplasm is
much less predictable in the nucleus. Robust cleavage of
nuclear targets by dsRNAs cannot be assumed. It must
be demonstrated experimentally.
Differences in mechanism of action may arise from as-

sembly of distinct protein complexes. Critical RNAi factors,
AGO and TNRC6, interact with different protein partners
in cytoplasm and nuclei. Using immunoprecipitation cou-
pled with mass spectrometry in purified cytoplasm and nu-
clear lysates, we have examined the shell of interacting
proteins associated with AGO2 and TNRC6A. Proteins
necessary for loading small RNAs into AGO protein

interact with AGO2 proteins in the
cytoplasm but are not enriched
in association with nuclear AGO2
(Kalantari et al. 2016b). Most of
AGO2’s interacting proteins in the cy-
toplasm and nucleus are core compo-
nents of the RNAi machinery such as
the TNRC6 proteins.

In stark contrast to this narrow
group of AGO2-mediated interac-
tions, TNRC6A functions as a scaffold-
ing protein and bridges interactions
with many more proteins. TNRC6A in-
teracts with proteins involved in pro-
tein degradation, RNAi, the CCR4-
NOT complex, themediator complex,
histone modifying complexes, and
DNA repair (Fig. 6; Hicks et al. 2017).
These protein interaction profiles re-
inforce the primary role of AGO pro-

teins in recognition of RNA targets regardless of cellular
compartment and expand the functional repertoire of
TNRC6 proteins in scaffolding and recruitment of nonca-
nonical, nuclear-specific effector protein complexes.

Nuclear regulation by endogenous microRNAs

Although nuclear regulation of splicing by synthetic RNAs
can be robust, the endogenous role of microRNAs in the
nucleus remains unclear. Using enhanced crosslinking im-
munoprecipitation sequencing (eCLIP-seq), we mapped
AGO2 protein binding sites in isolated cytoplasm and nu-
clei. Comparing the AGO2–eCLIP sequencing data from
the cytoplasm (Chu et al. 2020) and the nucleus (Chu
et al. 2021) revealed that the most abundant miRNAs
were distributed similarly between both cellular com-
partments under normal growth conditions. In agreement

FIGURE 5. Model showing small RNA loading into RNA-induced silencing complex (RISC)
in the cytoplasm prior to cleavage, mRNA decay, or import into the nucleus (Gagnon et al.
2014a,b).

FIGURE 6. Model showing assembly of different protein complexes
in the nucleus based on recruitment of cofactors by RNAi scaffolding
protein, TNRC6. AGO loaded with small RNA guide facilitates recog-
nition of RNA targets, and TNRC6 bridges diverse protein interactions
(Hicks et al. 2017).

Nuclear RNAi

www.rnajournal.org 419



with the canonical microRNA mechanism, most AGO2
binding sites within RNA in the cytoplasm were mapped
to 3′UTR regions (Chu et al. 2020). The majority of AGO2
binding sites in the nucleus, however, were found within
intronic sequences, with almost 10-fold more AGO2 occu-
pancy within intronic RNA than within the 3′UTR (Chu et al.
2021).

We examined the hypothesis that AGO2 binding with
miRNAs along intronic regions may contribute to alterna-
tive splicing. We analyzed splicing changes from RNA-
sequencing in WT HCT116 and AGO knockout cells along
genes with AGO2–eCLIP-sequencing binding sites, yet
even the deletion of three AGO paralogs in the triple
knockout cell line, AGO1/2/3−/−, revealed less than fifty al-
ternative splicing events associated with AGO2 binding
sites within introns (Chu et al. 2021). Under normal growth
conditions, AGO:miRNA complexes can target intronic re-
gions and affect a small number of validated endogenous
alternative splicing events. This number may increase un-
der different cellular contexts in physiology and disease
and examining cells under conditions that are more ex-
treme than normal cell culture will be an important priority
for future research.

Practical considerations

We note that rigorous experimental tests for nuclear RNAi
are not always simple. A nuclear RNA may be primarily in
the nucleus, but “nuclear” RNAs like MALAT-1 can also
be detected in the cytoplasm. It is possible to imagine a
scenario in which the minor portion of “nuclear” RNA is
in the cytoplasm, is cleaved there, and the fragments recy-
cled into the nucleus. To ensure that cleavage can take
place in the nucleus, experiments can be performed in nu-
clear extract (Gagnon et al. 2014b).

Obtaining nuclear extracts that rigorously exclude al-
most all cytoplasmic contamination is also not always
straightforward. We find that a protocol which leads to
pure nuclei for one cell line cannot be relied on to produce
pure nuclei for other cell lines or tissues. Detergent, phys-
ical extraction method, or other steps may need to be op-
timized. All purifications need to be verified by western
analysis of appropriate compartment-specific control
proteins.

The endogenous distribution of RNAi machinery varies
widely depending on cellular and environmental context.
The choice of cell line, growth condition, and disease state
can have a profound impact on cellular localization of
miRNAs, their protein partners, and the availability of
RNA targets.

Finally, we note that miRNAs are likely to control gene
expression through complex mechanisms. Even for cyto-
plasmic RNAi, which has been studied for two decades,
the understanding of miRNA action and gene regulation
is incompletely understood (Kilikevicius et al. 2022).

Studies of nuclear RNAi mechanism, recognition, and reg-
ulation should be well controlled and transparent.
Whereas this Perspective describes examples of RNA-me-
diated control of transcription and splicing, it is necessary
to consider whether RNAi factorsmay also play a role in the
modulation of other nuclear processes that involve RNA.

The clinic is the ultimate test for all hypotheses related to
nucleic acid therapeutics. Currently, MiNA Therapeutics is
testing a duplex RNA, MTL-CEBPA, in clinical trials to treat
hepatocellular carcinoma (Hashimoto et al. 2021). The com-
pound is designed to activate CCAAT/enhancer binding
protein alpha (C/EMP-α) and enhance the efficacy of cancer
therapies for solid tumors. MTL-CEBPA is currently being
tested in Phase 1 and Phase 2 trials in combination with
Atezolizumab/Bevacizumab and Sorafenib, respectively.

Conclusions

dsRNAs are proving to be a successful strategy for drug
development. Optimized chemistries, efficient large-scale
synthesis protocols, and new conjugation strategies for
delivery to a broader range of tissues will likely combine
to increase the positive impact of dsRNAs for patients.
Soon, the limitation will be the identification of disease tar-
gets where dsRNAs have a competitive advantage relative
to gene therapy, small molecule drugs, or antibodies. The
nucleus offers many targets that do not exist in cell cyto-
plasm and the broad potential for nuclear regulation is
clear. The challenge for applying this gene control mech-
anism to therapy is to learn more about the basic science
of nuclear RNAi and apply those insights to identify and
regulate therapeutic target genes.
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