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Abstract: Background: The growth of the number of vehicles in traffic has led to an exponen-
tial increase in the number of road accidents with many negative consequences, such as loss of
lives and pollution. Methods: This article focuses on using a new technology in automotive elec-
tronics by equipping a semi-autonomous vehicle with a complex sensor structure that is able to
provide centralized information regarding the physiological signals (Electro encephalogram—EEG,
electrocardiogram—ECG) of the driver/passengers and their location along with indoor temper-
ature changes, employing the Internet of Things (IoT) technology. Thus, transforming the vehicle
into a mobile sensor connected to the internet will help highlight and create a new perspective on
the cognitive and physiological conditions of passengers, which is useful for specific applications,
such as health management and a more effective intervention in case of road accidents. These sensor
structures mounted in vehicles will allow for a higher detection rate of potential dangers in real time.
The approach uses detection, recording, and transmission of relevant health information in the event
of an incident as support for e-Call or other emergency services, including telemedicine. Results: The
novelty of the research is based on the design of specialized non-invasive sensors for the acquisition
of EEG and ECG signals installed in the headrest and backrest of car seats, on the algorithms used
for data analysis and fusion, but also on the implementation of an IoT temperature measurement
system in several points that simultaneously uses sensors based on MEMS technology. The solution
can also be integrated with an e-Call system for telemedicine emergency assistance. Conclusion:
The research presents both positive and negative results of field experiments, with possible further
developments. In this context, the solution has been developed based on state-of-the-art technical
devices, methods, and technologies for monitoring vital functions of the driver/passengers (degree of
fatigue, cognitive state, heart rate, blood pressure). The purpose is to reduce the risk of accidents for
semi-autonomous vehicles and to also monitor the condition of passengers in the case of autonomous
vehicles for providing first aid in a timely manner. Reported abnormal values of vital parameters
(critical situations) will allow interveneing in a timely manner, saving the patient’s life, with the
support of the e-Call system.

Keywords: automated vehicles; connected vehicles; driver condition monitoring; safety stopping;
emergency automated call; wireless sensor network

1. Introduction

The trend now in worldwide automotive transportation is the rapid changing of
propulsion solutions from fossil fuel to electric stored energy or to hydrogen-based fuel
cells. Both solutions have advantages and drawbacks. Both need a dedicated infrastructure
construction, considering the distance between power supplying facilities, or hydrogen
re-charging stations. Neither of these two solutions would be beneficial for the environment
if the supplied energy would still be produced by classical means (burning of fossil hydro-
carbons or coal). For such a complex investment and economical change to be effective,
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only the use of green (renewable) energy is allowed. Moreover, the new developments now
point towards connected and autonomous vehicles, despite the fact that the road network
is not yet prepared for a mixture between non- and autonomous vehicles. Therefore, we
consider that firstly connecting vehicles and sharing relevant safety and dynamic infor-
mation might prove crucial for traffic development in safer conditions. In the conditions
of mixed traffic, detecting dynamics and estimating trajectories is essential for reducing
the accident rate. However, let us not forget that many of the traffic accidents have their
origin in bad driving or driving in a non-compatible health state (drunk people or with
other health conditions incompatible with driving a vehicle, such as the consumption of
illegal substances). Therefore, the development of a solution with minimal investigation of
driving conditions and/or passenger monitoring will be beneficial for reducing the chances
of an incident and helping emergency services with some previously collected medical
information in case the accident has already happened.

Between the elements that could affect the consciousness state of the driver or the
ability of the person in charge to take control of an automated vehicle in case of necessity,
the following conditions must be considered:

• Cabin noise level/pattern and ambience that may affect the attention of the vehicle driver.
• Temperature control in the cabin.
• Atmosphere control in the cabin, including gas concentrations of CO, NOx, PM, etc.
• Effects of vibration patterns (frequency, amplitude, direction).
• Ambient light and direct solar light influence on road visibility or on the attention the

driver pays to its actions.
• For electric cars, effects of long-term exposure to different electromagnetic fields.
• On-site or remote detection on consciousness state and attention in driving/surveillance

of autonomous vehicle driving.

Of course, this way of monitoring the driving cabin conditions is complex and in-
volves installing many sensors, in exchange having negative effects on the complexity and
reliability of the vehicle. However, because all these conditions are meant to be monitored
for maintaining a good state of consciousness and attention of the driver, a simpler way
would be the direct monitoring of these elements. In a future environment of connected
semi- or autonomous vehicles, one of the traffic safety conditions would be the ability
of a driver to take control of the vehicle and respond to complex situations, if necessary.
Therefore, a constant monitoring of the driver condition should be included, along with
vehicle dynamics monitoring, among the safety conditions that allow the movement of
the vehicle. Otherwise, if any abnormal situation is detected, the vehicle should be able to
come to a complete stop in a safe manner. The early detection of driver fatigue caused by
sleepiness is a key technology able to decrease the rate of fatal accidents. In a connected
vehicles environment, this detected information should also be used for announcing the
neighboring vehicles about the immediate stopping of the vehicle of which the driver is no
longer able to ensure safe driving conditions. Moreover, if a collision occurs, pre-recorded
information regarding the number of passengers or the driver state before the collision
could serve as primary information for medical help.

The paper exposes the research and experimentation activity during a prototype.
To begin with, the exact requirements of the system for monitoring the interior of a vehicle
are determined. The design and implementation of the systems follows, with the end
detailing the resulting devices, the data collected from the prototype mounted on the
test vehicle, and a procedure for using them. Nowadays, people spend a lot of time in a
car, mostly in traffic jams. Sensors based on MEMS (Micro-Electro-Mechanical Systems)
technology are small in size and suitable for multi-sensorial integration. Theoretical
and practical aspects were studied, such as methods, techniques, and systems already
existing today, in order to analyze the biomedical signals, temperature measurement
techniques, gesture detection, IoT device management and the use of MEMS sensors.
Several prototypes have been developed with the aim of solving problems of interest in
academia and research, with a possible wide applicability in the automotive industry,
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where the emphasis is put on the development of non-contact sensors for the acquisition
of biomedical EEG and ECG signals. The interface for viewing and managing data from
multiple IoT devices has been designed.

In order to solve problems of interest in academia and research, several prototypes
have been developed, with a possible wide applicability in the automotive industry, where
the emphasis is on the development of contactless sensors. The sensors were installed in
the headrest and the back of the driver’s seat, without the human subject and without
the subject being embarrassed in any way. EEG and ECG sensors can detect and collect
biomedical signals from a distance of up to 10 cm. Additionally, by analyzing brain
waves in addition to highlighting the state of drowsiness that may occur for the driver,
the EEG module presented in the article is also able to detect the cognitive states of the
driver/passengers, such as relaxation, emotion, stress and inattention. An interface for
observing and managing data on multiple IoT devices has also been designed. The test
results showed a detection rate for the analysis of cognitive states of 96.75%.

The rest of the paper is structured as follows: Section 2 presents a literature survey;
Section 3 presents the architecture of the IoT model for the integration of sensors for
the acquisition of biomedical signals, temperature, presence, algorithms for analysis and
detection of cognitive states, ECG parameters and sensors for detecting overheating of
vehicle components, as well as the results obtained by the new method proposed together
with the algorithms used in Section 4. In addition, in Section 4, a comparison is made
between the proposed method for determining EEG cognitive states and some relevant
articles dealing with the same topic.

We consider that the present research might be helpful in the enhancement of safety
data exchange. The advantage of this proposal is that it integrates different technologies in
a non-intrusive package, allowing for a permanent observation of the conscious and health-
related state for the person occupying the driver’s seat, with the possibility of extending it
to other vehicles’ occupants. Moreover, the application is oriented towards a direct support
for e-health services, improving the efficiency in saving human lives in road accidents.

2. Literature Survey. Related Work

Intensive research has been pointed in this direction. Luca Salvati et al. [1] propose
an algorithm to detect the sleepiness state of a driver based on the measurement of pulse
rate variability generated by heartbeat. Then, the proposed method is validated via an
objective indicator (time-mediated percentage of eye closure—named PERCLOS) [2]. The
authors carried an experiment with three persons in a car exhibiting different conditions,
for which pulse rate had been monitored to detect autonomic nervous system (ANS) state
by the heart rate variability (HRV). In the same area of activities, studies on the possibilities
to detect driver state have been heading in two directions:

• Measurement of psychological-related state signals, such as electroencephalogram
(EEG) [3,4], eye movement and closure rate (EMCR) [5], longitudinal (Gripps modified)
model [6], and AI-based analysis of face characteristics or AI-based analysis of posture
and behavior (position of sitting, head position, etc.).

• Analysis of driving behavior and patterns with information collected from the vehicle’s
sensors and safety-related systems, such as lane keeping assistant (LKA) [7], steering
wheel movements, acceleration, and other dynamic parameters. Of course, this second
approach is available only for non- or semi-automated vehicles that are driving.

In the direction of a psychological parameter assessment, Dong Eun Lee et al. present [8]
a method for driver-gaze tracking based on a fuzzy-system method for detecting a driver’s
pupil and corneal specular reflection in a cabin of a vehicle. They consider two features,
which are passed through a fuzzy system, i.e., the symmetrical characteristics of face and
facial feature points to determine the status of a driver’s head rotation. The method suffers
the disadvantage of employing video analysis, which might be negatively influenced
by the ambient lighting. J. Chang et al. [9] extend the research and propose a context-
aware service system that is able to ensure a configurable architecture for the design
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and implementation of a specific health service system designed to increase safety in
traffic. The solution is designed to detect the driver’s health status and provide helpful
services to the driver. In addition, Lee B. et al. propose employing remote physiological
monitoring using Bluetooth to measure main parameters of consciousness state, such as
electroencephalogram (EEG) and respiration signals of a driver in the time and frequency
domains [10]. In order to reduce the stress of connected sensors or measurement techniques
that might disturb the driver from his main tasks, Barbusiak et al. [11] propose employing
a smart steering wheel to record and analyze the movement patterns performed by the
driver while driving. The developed intelligent steering wheel is usable in applications
designed for monitoring the driver’s state of health, drowsiness, or driving style. The
disadvantage of that method is that it only monitors a single health parameter. Other
authors [12] develop a solution for evaluating the cognitive workload for a professional
driver health examination to monitoring the mental state of people carrying out jobs of
high responsibility, such as train drivers, pilots, or airline traffic dispatchers. They employ
offline evaluation, with data acquisition based on registering the EEG signal of the person
performing arithmetical tasks divided into six intervals of advancement. The analysis
then includes preprocessing, feature extraction, and selection. The final phase executes
multiclass classification using several models. The main disadvantage of this methodology
is that it is not applicable while driving, but it could be useful in driving schools or
certification procedures. In [13], Wang J. et al. offer a guide to currently proposed sensor
systems for in-vehicle bio signal monitoring. Additionally, technologies such as radar and
capacitive measurements are used [14] for unobtrusive monitoring of drivers’ physiological
parameters. Here, the authors also put an accent on investigating the influence of vibrations
and other disturbances that may occur during the vehicle’s travel. This solution has the
disadvantage that it employs radiation of the subject with a high frequency electromagnetic
field. Internet of things (IoT) may also be used to connect various measurement devices
used for the assessment of the consciousness state of a driver, and such work is proposed
in [15]. The authors developed a solution for minimizing road accident risk by integrating
technologies employing mobile devices (phones) for ensuring medical assistance (mHealth
technologies) with a vehicular information system (VIS) using wireless body area network
sensors and devices. The method employs sensors directly in contact with the subject. They
also propose a secure environment, considering the data privacy. Janis Dröge et al. [16]
perform research on measuring the exposure to particulate matter (PM) in a car cabin
employing a mobile aerosol spectrometer. The atmosphere of the driving cabin is also
important for the health state of its occupants. In a similar scenario of measurements, the
authors of [17] perform experimental research on monitoring the carbon dioxide (CO2) and
total volatile organic compounds (TVOC) inside road vehicles with different cabin sizes
and with various numbers of occupants.

Various sensors were installed for detecting especially the health state of the driver
in different parts of the cabin: the steering wheel, back seat, headrest, rear looking mirror,
sun visor, etc. Such an example is given by [18], where the authors use the seatbelt for
including RFID low-powered detectors for monitoring seat belt state in buses. This does
not represent a direct measurement of passenger state of health but is a good approach
for increasing safety in very large passenger vehicles. Pointed towards the same area of
driving safety, an interesting application is presented in [19], where Alessandro Leone
et al. propose a module for Advanced Driver Assistance System (ADAS) to be used for
minimizing the accident frequency when caused by road rage, alerting the driver when a
predetermined level of rage is reached. The solution employs facial characteristics analysis
and assessment, having the typical disadvantages of using video cameras inside the driving
cabin: influence of incoming lighting. Another direction in the research of that domain now
has issues due to the expansion of electric vehicles in traffic: the exposure to increasing
electromagnetic fields. In this area, the authors of [20] analyze exposure to extremely low
frequencies (ELF) and magnetic fields (MF) in electric vehicles, based on the measurement
of flux densities and spectral components. They conclude that it is recommended to
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periodically monitor ELF and MF, especially after repairs of EVs, to avoid long exposures to
potentially dangerous magnetic fields and radiofrequency (RF). An evaluation on practical
sensors that have the potential to provide reliable monitoring and meaningful feedback
to vehicle operators in the diverse conditions of vibrations, temperature, air pressure and
lighting in a cabin of a car is shown in [21].

Returning to the detection of medical parameters of a driver, in work [22], the authors
offer a solution for a video-based measurement of the driver’s heart rate to prevent road
accidents caused by acute heart diseases, and in [23] a solution is described for a video-
based driver state monitoring system employing heart rate signals via capacitively coupled
and radar sensors. A human activity recognition algorithm is proposed in [24], employing
a various palette of sensors. For reducing the motion artifacts in the use of non-intrusive
ECG sensors, the authors of [25] propose an interesting approach: the use of two capacitive
ECG sensors (cECGs) for determining the ECG, with an additional two cECGs to obtain
the information on motion. Fatigue feature extraction, fatigue feature fusion and driver
drowsiness detection are used in [26] in a particular model employing convolutional
neural networks (CNNs), applied to video streaming from a camera pointed to the driver.
Not directly connected with driving cars and detecting sleepiness in the automotive field,
but closely related to it, is a study [26] concerning the use of special light glasses in reducing
sleepiness. Causes and effects that lead to drowsiness state are analyzed in [27], and the
result of this study classifies the first causes of drowsiness as being: exposure to recent
stress situations, medication and sleep deprivation. To determine the reduction in attention
by analyzing the heart rate of the driver, in [28], features of electrocardiography (ECG)
and electroencephalography (EEG) are detected and processed using a support vector
machine (SVM) classifier. The conclusion of this study is that monotony in driving is
an important factor in inducing an increased drowsiness state. Research in the same
direction, but employing the fusion of several optimized indicators, is based on driver
physical and driving performance measures taken from the ADAS system of the vehicle
is presented in [28]. Mixed traffic between non- and autonomous vehicles is a problem
that raises numerous questions regarding legal regulations in case of an accident. This
direction of research should not be left behind due to the numerous implications in legal,
social, and economic domains that it has. A study [29] deals with this problem and
concludes that contributing factors to the crash severity of an AV are not clearly defined.
The authors of [30] try to give a safer mode of driving to AVs by proposing a Model
Predictive Control (MPC), based on imitation of human behavior in driving. The same
analysis on driver behavior is pointed to a junction in the research of Xiamei Wen et al. [31].
Of course, one solution to the dual problem of mixed traffic between autonomous and non-
autonomous vehicles would be the data networking between vehicles, as shown in [32,33].
The autonomous vehicle and the driver make an intelligent human–machine–road system.
Some new approaches investigate the effects of introducing self-rotating chairs and even
investigate the effects in case of unexpected situations, based on several volunteers who
participate in this experiment. In work [34], the authors investigated the take-over reaction
time, remaining action time, crash, situation awareness and trust in automation. Remaining
in the human behavior-imitating automation, the authors of [35] propose a lane changing
decision control protocol. Finally, another interesting development of detecting the human
behavior when driving is applied in reference [36], where the authors propose a calibration
of autonomous driving functions based on automatic emotion recognition. Similar work
is presented in works [37–39], and other methods for non-intrusive detection of health
parameters are also described in [40–42].

In conclusion, we must admit that challenges in this direction of research remain:
the necessity to non-intrusively detect human conditions in both non- and autonomous
vehicles, to insert human-related parameters in data exchanged between connected vehicles
in order to improve traffic safety, and to deal with the problem of mixed traffic.
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3. Materials and Methods
3.1. Driver State Monitoring—Proposed Structure of the Onboard System

As presented above, the proposed solution is designated to improve the transition be-
tween man-driven vehicles and autonomous ones by introducing a system to permanently
monitor the condition of the person sitting in the driver’s place, no matter the vehicle’s
degree of automation. The system is also intended to ensure exchange of safety-related
information regarding the ability of taking control, driving the vehicle in a connected
vehicles environment, and/or to provide useful medical/passenger information in case of
an incident.

The internal hardware/software solution is described in the block diagram from
Figure 1. The onboard system is composed of the following sub-systems:

• The sensors hardware subsystem (SHM). This functional block enables detection
and collection of driver/passengers presence and weight-related data, cabin imaging
(with the possibility to include facial detection of drowsiness state of the driver),
non-intrusive ECG monitoring of driver, impact direction/intensity measurement,
and inclination of the vehicle.

• Communications Hardware Subsystem (CmHS)—includes the modules able to en-
sure interfacing and communications via GSM/GPRS (if needed for commercial
vehicles), e-Call system interfacing, and C-V2X/DSRC communications for a con-
nected vehicles environment.

• Core Hardware Subsystem (CrHS)—ensures the processing of all information and
ensures analysis of normal and abnormal conditions of the vehicle and its occupants.
It must be enabled with local storage of information in a loop, and in case of an
impact detection, with the possibility of storing acquired data of the last few seconds
and ability to transmit local imaging, position of vehicle after impact, and other
recorded parameters.

• Software Module (SM)—provides the algorithms and software programs designated for
data collection, processing, and issuing alarms in case of an abnormal situation detection.

Figure 1. The onboard system architecture.

3.2. Non-Intrusive Acquisition of Driver State Health Information

The electrocardiogram (ECG) is a frequently used technique for health monitoring,
and we may consider it as primary information. Based on ECG and other measured
parameters, the algorithms of machine learning will be employed for determining the
health state of the driver, with a focus on drowsiness and/or other driving non-compatible
states. ECG provides information regarding the heart activity based on the measurement
of electrical parameters. It may be used to detect both cardiovascular diseases and heart
attacks or other related health parameters that may affect the safety of traffic if applied to
a driver.
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Detection of attention and/or drowsiness are highlighted by employing an EEG sensor,
an analysis of brain waves related to cognitive changes, and by determining abnormal
positions of the driver, via a system based on video camera and Deep Learning analysis,
to detect abnormal behavior.

The purpose of the small vehicle-integrated medical sensory system is for an early
detection of critical conditions and initiate appropriate safety measures, including local
warning, cooperative warning, and/or vehicle safe stopping. To safely monitor the driver
state (for safety reasons), it is imperative that all sensors do not interfere with the driver’s
comfort, attention, or prevent him/her from making movements. Therefore, only non-
contact, non-intrusive measurements are taken into consideration. To monitor vital signs
as well as the vigilant state, heart activity represents a good source of information, along
with breathing rate or the surveillance of facial expressions via an artificial intelligence-
based software. For both the mechanical and electrical activities of the heart, there are few
methods of non-contact monitoring:

• Capacitive ECG measurement (or cECG).
• Ballistocardiogram-based (BCG) mechanical measurement of heart activity.
• Magnetic impedance measurement of respiratory and heart activities via the determi-

nation of rhythmic variations.
• Doppler-radar investigation of heart activity. However, this technique involves a

continuous irradiation of the subject, not recommended for long exposures due to its
possible secondary effects on health.

Another important aspect should be the integration of sensors in the vehicle’s equip-
ment without perturbing the normal position or activity of the subject or endangering
his/her health due to long exposures to contaminants or radiations. From this point of
view, the cECG approach seems to be the most appropriate to be installed in the cabin
of a road vehicle. The measurement principle is based on the evaluation of the capacity
between two electrodes, in between which the human body represents the electrolyte. From
the technological point of view, compared to direct contact, resistive measurement-based
methods, the evaluation of the signals produced by capacitive measurements need amplifi-
cation as close as possible to the coupling surface. The electronic equivalent diagram of the
measuring principle is presented in Figure 2 below.

Figure 2. Electronic equivalent circuit of the measurement setup.

Figure 2 presents the equivalent circuit of the capacitive measurement setup installed
in the backseat behind the driver. Since there are some insulating layers between the effec-
tive body of the driver and the measurement plate (capacitive electrode), their equivalent
impedance is represented by a series of inductive-capacitive circuits (LC) circuits, each
having the value:

Zi = jωLi +
1

jωCi
(1)
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with the total value of:
Ztot = ∑n

i=1(jωLi +
1

jωCi
) (2)

with the corresponding Li and Ci depending on the dielectric properties of the layer that
separates the human body from the sensor active plate, i.e., clothes, air, plastic, or textile
materials from the backseat, etc. As there is a vehicular environment, a disturbing source
of noise should be considered (this can be in the form of inductive currents, capacitive
interferences or direct voltage spikes present in the power supplying circuits due to engine
ignition, or electric motor inductive effects). To reduce this noisy environment influence,
a signal filtering module must be also provided. However, these types of interferences
can be significantly reduced if the amplification and signal conditioning module is placed
as close as possible to the transducer. In addition, for the linearization of the transducer
characteristics, a correction loop might be necessary on the negative amplification input.
Due to the relatively limited extent of electrical vehicles, there are no studies regarding
the possible influence of the power system of such a type of vehicle on the measurement
setup yet. However, according to some research [43], there is also the problem of static
electricity accumulation in the measurement setup; therefore, the component Zc must
also be comprised of a discharge impedance in parallel with the input impedance of the
amplifier. Modern vehicles include more plastic materials in their components, so there is
an increased probability of electric discharges. Causes that might produce static electricity
in vehicles may include:

• Vicinity of insulated metal parts, surrounded by plastic or textile materials.
• Unearthed metal ring fasteners.
• Friction between passenger clothes with plastic or textile materials in the cabin, espe-

cially in dry weather periods.

For permanent protection of the input circuitry of the measurement system against
electrostatic discharges (ESD), different solutions might include diodes connecting to the
ground, capacitive circuitry, etc., but these measures should be calculated in such a way
that they do not affect the high frequencies of the useful signal and, therefore, the accuracy
of determining the heart rate and other significant health parameters (Figures 3–5).

Figure 3. Passive resistive-capacitive (RC) protective circuitry for static electrical discharges.

Figure 4. Passive protection using a mixture of a varistor and passive RC protective circuitry.
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Figure 5. Passive electrostatic discharge (ESD) protection employing diodes.

If the measurement system is based on a supervised machine learning solution, then
the training should also take into consideration different measurement conditions, such as
winter periods, when the driver might wear thicker clothing, or summer, when there is
thinner clothing and more humidity due to sweating. The measurement accuracy might
vary due to these conditions, and an efficient calibration and fine tuning might be necessary
before correctly determining the health parameters of the driver.

3.3. Method for Determining Heart Rate (ECG) without Physical Contact with the Subject

In recent years, engineering efforts have focused on developing methods for moni-
toring heart rate or respiratory rhythm without involving the physical contact of sensors
with the subject. The advantages of such an approach are obvious in situations where the
investigated subject is the driver of a transport vehicle (car, train, plane), the victim of a
fire (experiencing severe burns on the surface of the body), an avalanche or an earthquake,
or if the measurement targets military applications—discovering enemies hidden behind
walls or assessing the condition of combatants on the battlefield.

The realization of this desideratum (non-contact, remote measurement of vital param-
eters) has a starting point in our approach by the employment of processing algorithms
and a multiresolution analysis based on wavelet decompositions.

An ECG signal typical of a cardiac cycle consists of a P-wave, a QRS complex, a T-wave
(repolarization), and a U-wave, which is normally invisible in 50–75% of ECGs because it
is hidden by waves. T and the new P wave follow the baseline of the electrocardiogram
(flat horizontal segments). The ECG signal consists of a series of cardiac cycles, practically
a repetition of an ECG wave. For example, the shape of the ECG signal may differ from
patient to patient, depending on each person’s health problems. The distribution of
characteristics changes depending on the different classes of blood pressure. In this context,
through the measurements performed on some patients with heart problems, we found
the following:

1. In patients with values within normal heart rate and blood pressure, the shape of the
EKG signal is shown in Figure 6a;

2. In patients with heart problems (hypotension), the EKG signal resembles Figure 6b;
3. In patients with heart problems (hypertension), the EKG signal resembles Figure 6c.

3.3.1. Filtering of Technical Interference from the EKG Signal

When acquiring medical signals, there is a risk that the useful information from the
subject will be “contaminated” by certain interference induced by the instrumentation
amplifier, the signal recording system, or electromagnetic waves from the electronic equip-
ment of a transport vehicle. To these, in many cases, the mains noise (50 or 60 Hz) and
its harmonics if the system is powered from the mains are added, with the 50/60 Hz
interference being considered a high frequency artifact if we take into account that the
spectrum the EKG signal is par excellence a low frequency one (up to 100 Hz) [44–46].
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Figure 6. QRS cardio analysis for: (a) clinically normal; (b) hypotension; (c) hypertension.

3.3.2. Wavelet Transforms (WT) ECG Processing

In the last two decades, one of the topics that enjoyed a high interest is the one
specific to signal theory—more precisely, that of the Wavelet transform. With the notable
exception of signals whose characteristics cannot be separated from those of the systems
that generated them, multi-resolution analysis techniques, especially those that have
focused on the use of the Wavelet transform, have always been the focus of many research
centers but have also successfully penetrated the most diverse practical applications.
Unlike the Fourier transform, about which data are found much faster and in much larger
quantities, and which enjoys a much greater popularity so it can be applied much more
easily, the Wavelet transform involves obtaining additional information from the signal,
which is available in its raw form. In order to overcome the resolution problem, an
alternative to the short-term Fourier transform (STFT) is the use of the Wavelet transform.

The wavelet function is the result of a third-band filter and a scaling that aims to halve
the bandwidth (problems arise for covering the entire spectrum; to solve this requirement
would require an infinite number of levels). The scaling function has the role of filtering
the lowest level of the transform and ensures the coverage of the whole spectrum. Multi-
resolution analysis allows us to analyze the signal at different frequencies with different
resolutions. A Wavelet can provide good temporal resolution at high frequencies and good
frequency resolution for low frequency cases. This is not desirable when talking about
signal analysis because low frequencies require a slow evolution of the signal, while high
ones are found in sudden transitions in the signal, whose “capture” is favored by a good
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temporal resolution. This represents a “supervised learning” method, in which the basic
functions are chosen a priori; detailed information may be found in [47–50].

This way of sharing the time–frequency plane can be obtained by translating and
scaling on the time axis a unique function called the mother wave Ψ(t) : ψs,τ = 1√

sψ
( t−τ

s
)
,

where the scale (s) variables and those of positioning on the time axis (τ) are continuous
variables. If we try to discretize these variables, we will be able to obtain a discrete version
of the parent wave, ψj,k(t). It should be noted that it is not the time variable that gives the
discretized version of the wavelet, but its other two parameters:

ψj,k(t) = s
−j
2

0 ψ
(

s−j
0 t− kτ0

)
(3)

In order to obtain this discretized version of the wavelet family,
{

Ψj,k(t)
}

, the relations

used were: s = sj
0 and τ = ksj

0τ0. A common choice for s0 is s0 = 2, which leads to the
wavelet used in the case of the transform called Diadic Wavelet Transformation. If we now
refer to a continuous time signal x(t), the discretized version of the continuous wavelet
transformation will be of the form:

DWTx(j, k) =
∫ ∞

−∞
x(t)ψ∗j,k(t)dt (4)

The relationship mentioned above actually defines a scalar product between our
signal x(t) and a function in the family

{
Ψj.k(t)

}
. It resembles the relation that allows

the calculation of the Fourier coefficients of a periodic signal. Daubechies [51,52] showed
that for there to be a wavelet function {Ψ(t)}, there must be another function called the
scaling function, which has the notation ϕ(t). The scaled versions of this function are
∅j(t) = ∅

(
2−jt

)
. Any wavelet function at scale j can be generated as a linear combination

of scale functions at scale j − 1. For example, a wavelet mother wave of scale 0 can be
written like this:

ψ0(t) = ∑k akϕ(2t− k) (5)

One property that is very well known when talking about wavelet functions is that
they can generate orthogonal bases of L2(<).

In order to be able to prove that this property is valid, we need for the family Ψj.k(t)
to satisfy two conditions, namely:

1. The condition of orthogonality
2. To form a complete basis.

For the second condition, it is necessary that any signal in L2(<) be written as a linear
combination of functions in the wavelet family. This property from a mathematical point
of view can be formulated as in the relation below:〈

ψj,k,ψm,n

〉
=

{
1, if j = m and k = n

0, otherwise
(6)

In a particular case that can be highlighted, this property is also valid if we restrict to
a single decomposition scale (i.e., j = m in the above equation). In this situation, it can be
said that the family that is obtained by translating in time the mother wave Ψ(t), namely:

{Ψ(t− k)}k∈Z (7)

represents an orthonormal family.

3.4. EEG Analysis to Determine Drivers’ Drowsiness and Cognitive State

The acquisition of EEG signals for drivers of transport vehicles may be performed
using a non-contact capacitive type system. The capacitive sensor is installed in the back
of the driver’s seat (headrest), thus monitoring the EEG signals in the occipital area. The
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principle diagram for a non-contact sensor is shown in Figure 2. The EEG signals that are to
be monitored and analyzed, in order to determine the states of fatigue and drowsiness, are:

• Alpha: studies have shown that for an awakened person, the presence of alpha waves
indicates relaxation. Alpha waves are in the range of 8 Hz to 12 Hz and have an almost
sinusoidal shape and a level between 5 and 150 microvolts [µV] (typically between
20 and 50 µV).

• Beta: When a person thinks or responds to an external stimulus, alpha waves are
replaced by beta waves. These are in the range of 14 Hz to 25 Hz and have a
lower amplitude.

According to research in the field and our studies [53], we found that alpha and beta
waves are associated with open/closed eye movements, and this variation of alpha and
beta waves can highlight the installed drowsiness and low attention/concentration to
drivers in transport systems.

EEG Analysis Using the Welch Method

Aperiodic finite energy signals are analyzed in the frequency domain using the Fourier
transform. In order to estimate the spectral characteristics of the signals considered to be
random processes, it is not possible to apply the Fourier analysis directly, but a statistical
treatment of them is adopted. The Fourier transform of the autocorrelation function of
stationary random processes, which represents the power spectral density, makes the
connection between time and frequency domain. Based on a finite set of observations,
the spectral components of a random process can be extracted. In this article, the random
process is represented by brain activity (EEG signal).

To determine the estimated power spectral density, the following nonparametric meth-
ods can be used: direct method (periodogram), Bartlett method (mediated periodogram),
Welch method (modified mediated periodogram) and Blackman–Tukey method. For the
experimentally obtained data, the nonparametric Welch method has been applied.

Next, we make a brief presentation of the mathematical support on which the Welch
function algorithm is developed. The segments obtained from the initial vector can overlap,
and a window is applied to each segment. Let x[n] be a sequence of N. The segments are
obtained as follows:

xi[n] = x[n + iD] f or n = 0, 1, 2, . . . .., M− 1 and i = 0, 1, 2, . . . , K− 1 (8)

The results are K segments, each of length M. If M = D, the segments do not overlap. If
it has the value M

2 , there is 50% overlap between successive segments and L = 2K segments.
K segments of length 2M each can be obtained. This overlapping of the segments causes
a reduction of dispersion. Before calculating the periodogram, the data segments are
weighted with a window, which leads to a modified periodogram:

P̃(i)
xx ( f ) =

1
MxU

∣∣∣∑M−1
n=0 xi[n]w[n]e−j2πn f

∣∣∣2 for i = 0, 1 . . . .L− 1 (9)

where U is a factor of power normalization of the window function and is chosen as:

U =
1
M ∑M−1

n=0 w2[n] (10)

The use of the window function has the effect of reducing the lateral lobes and,
therefore, of the spectral leakage phenomenon. The estimated Welch power spectral
density is the arithmetic mean of these modified periodograms:

Pw
xx( f ) =

1
L ∑L−1

i=0 P̃(i)
xx ( f ) (11)
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The power spectral density was estimated on 8-s segments of the initial signal. In order
to obtain the representation of the recorded signal in the figures below, the following steps
were followed:

- acquisition: with a sampling frequency of 1 kHz;
- filtered: Notch filter (50 Hz frequency rejection), bandpass filter (8–12 Hz alpha rate

and 14–25 Hz beta wave);
- Welch analysis is performed.

3.5. O2 Saturation Monitoring

In severe cases, hypoxemia can interfere with brain activity, producing headaches
and breath shortness. These symptoms may affect the ability of a non-autonomous car
driver to react to different stimuli in the normal driving process. This is why we also
consider it necessary to evaluate the combination of blood oxygen saturation and pulse.
The SpO2 monitor (pulse oximeter) non-invasively measures the concentration of O2 in
the blood (O2 in the blood is bound to hemoglobin, and only a small part is dissolved
in the plasma). The principle of operation of the pulse oximeter is based on absorption
spectrophotometry (Beer–Lambert law), which measures the changes in light absorption
by two forms of hemoglobin (HbO2—oxyhemoglobin and Hb-reduced hemoglobin).

The pulse oximeter uses two light sources: an infrared spectrum source (IR—910 nm)
and a visible–red spectrum source (R—660 nm) and a photoreceptor (PIN diode). The
light sources and the photoreceptor (optical sensor) are mounted in a pair that attaches
to the fingertip or earlobe. As the background absorption of radiation by venous blood
occurs, subcutaneous tissue and skin is practically constant, and the only variable is the
amount of Hb (pulsating wave) in the vascular bed [54]. Figure 7 shows the graphs for
light absorption by the two forms of Hb.

Figure 7. Light absorption by the two forms of Hb.

Figure 8 shows the configuration of the sensor modified for O2 saturation mounted
inside the steering wheel of the vehicle.

Oxygen saturation is measured at the top of the pulsating wave to isolate the arterial
signal [55,56]:

SpO2 =
[HbO2]

[HbO2] + [Hb]
[%] (12)

To eliminate the effects produced by venous blood or other tissues, the differences
in absorption given by the arterial pulse are measured in relation to the two light sources
used according to the formula:

R =
log
(

IACR /IDCR

)
log
(

IACIR /IDCIR

) (13)
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where IAC and IDC represent the alternative component, respectively, and the continuous
component (of R and IR) of the signal intensity is measured at the photoreceptor.

Figure 8. O2 saturation sensor modified configuration mounted inside the steering wheel of the vehicle.

In practice, the relationship between SpO2 and R is not perfectly linear. Therefore, for
the correct determination of SpO2, the pulse oximeter uses a conversion table (stored in the
EEPROM memory of the microcontroller).

3.6. Algorithm for Cooperative Driving and Enhanced e-Call Support

To increase the overall traffic safety, a solution for merging driver-operated vehicle
information with autonomous vehicle information in a cooperative scenario is presented in
Figure 9. A description of the algorithm is: the proposed algorithm is intended to be used
in a cooperative driving environment (with mixed participants, that is, driver-operated
vehicles, semi-autonomous vehicles, and autonomous ones) and able to communicate with
each other via C-V2X, DSRC, or other enabled technology. The purpose is to increase traffic
safety and to reduce accident rates via an early warning of an abnormal state of a driver,
a safe stopping (if available), or a collision alert. Additionally, the algorithm should be
able to initiate the enhanced e-Call/other telemedicine-type support, meaning the accident
pre-recorded data made available to the rescue team and enabling of the video and sound
streaming from the vehicle subjected to the impact. The pre-recorded data may include
vehicle ID, number of detected occupants including driver, driver state pre-impact recorded
data, dynamic parameters of vehicle before impact, position of the vehicle, and/or other
important information that could help the rescue team and shorten the intervention time.
It is a well-known fact that seconds matter when a rescue team has to arrive to an accident
site to save human lives.

The thresholds between normal, yellow, red, and collision alert may include, but are
not limited to (research still in progress):

- Phase 1: system training: the driver’s specific patterns are “learned” by the system
during a pre-determined period or via an assisted process at initial configuration.
Alerting: initial configuration and system calibration.

- Phase 2: normal state (green) when average recorded parameters are in a pre-determined
threshold and no abrupt variations are recorded or metrics values exceeding certain
thresholds constantly (e.g., pulse rate: 70–90, oximetry 100–95, etc.). No alerting
is performed.

- Phase 3: alert state (yellow) when a single metric exceeds over a declared period
of time (e.g., pulse rate over 100, oximetry 94–90). Alerting modes: sounds and
displaying of abnormal values. The system may require specific acknowledgement
measures, such as reducing speed or pressing a button, according to safety rules.
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- Phase 4: alert state (red) when at least two metrics exceed maximal threshold values
(e.g., pulse rate between 40–60 or 100–120, oximetry below 90, ECG detects cardiac
arrhythmias, EEG detects drowsiness state). Alerting modes: sound, display, reducing
speed of car or performing automatic safety stopping for autonomous cars. In case of
connected vehicles: alerting neighboring vehicles or vehicles behind.

- Phase 5: collision alert. This phase occurs only in case of a collision, detected by the
impact and position/inclination sensors (not part of the solution developed here).
In this case, pre-recorded or actual medical parameters are made available for e-Call
or telemedicine services.

Figure 9. Algorithm for cooperative driving information exchange with enhanced e-Call/
telemedicine support.

4. Results
4.1. IoT System for Data Acquisition

This system is based on the Bitalino multi-sensor acquisition system and combines
several sensors developed in research for the acquisition of EEG and ECG signals and
MEMS sensors capable of measuring temperature and locating car components that may
have temperature increases. Internet access is provided by the use of the ESP8266 micro-
controller, which can be installed in the on-board computer of the vehicle, and the mode
of interaction with the system in the vehicle is achieved by using a display system. The
system is made of several interconnected subsystems and modular components to have
high adaptability and increased efficiency, using all resources.
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Figure 10a shows the block diagram of the system, which has the following compo-
nents: EEG and ECG sensors developed in the project and the modality to install them
in the headrest and backrest of the car, Bitalino multisensor acquisition board, and data
acquisition by the on-board computer and their transmission to the e-Call/telemedicine
system using the ESP8266 microcontroller. In tests, a laptop was used instead of the car’s
on-board computer.

Figure 10. (a) IoT system block diagram for the acquisition of biomedical information; (b) shows the location of the EEG
non-contact sensor in the head restraint of the driver/passenger seat, which acquires the cerebral signals from a distance of
max 10 cm and the analyzed cognitive states.

Figure 10b shows the location of the EEG non-contact sensor in the headrest of the
driver’s/passenger seat, which acquires brain signals from a distance of max 10 cm and
cognitive states that can be analyzed (drowsiness, relaxation, stress, emotion, distraction,
and cognitive load) using the proposed system.

Figure 11a shows the user interface (GUI) developed in the project for the acquisition
of signals from sensors through the Bitalino acquisition system, and Figure 11b shows the
acquisition of EEG signals from the driver.
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Figure 11. (a) GUI Software application developed for the acquisition of biomedical signals using Bitalino hardware; (b) the
acquisition of EEG signals from the driver/passenger is presented.

Next, we present the results obtained for the processing and analysis of biomedical signals.

4.2. The Results Obtained for the Processing of ECG Signals

As the capacitive systems installed inside the vehicles are composed of hardware
and software elements, and the algorithms for processing the received ECG signals are
installed in the monitoring centers (telemedicine), the algorithms for filtering, processing,
and analyzing the ECG signals become very important.

Materials and methods: The experiments with the capacitive ECG sensor were per-
formed in the university laboratory, with the captive sensor powered by batteries. The
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results of the obtained ECG waveform are shown in Figure 12, and the measured values
are shown in Table 1.

Figure 12. Acquired ECG signal with noise.

Table 1. Operating values for the ECG sensor.

Parameter Voltage
[V]

Amplitude
Pk-Pk [V]

Load Current
[A]

Signal
Shape

Value 1.8–3.5 1.82 163 × 10−6 good

The software results obtained for a medium sliding filter, followed by a Butterworth
filter, in band-pass configuration are shown in Figure 13, where frequency spectrum and
magnitude response show that 0–35 Hz is the band of interest.

Figure 13. ECG signal filtering results in the 0–35 Hz band of interest.

Wavelet transformed ECG signal analysis is an optimal method because it does not
require large resources in terms of hardware and software. For autonomous vehicles, this
is a very important aspect, as these types of applications should not consume too much of
the information processing resources of such a vehicle, which are already in high demand
due to the autonomous driving process. WT processing has the advantage that it retains
the shape of the signal, allowing only changes in extension over time.

Figure 14 shows the good result obtained with the Haar SWT function on three levels;
the specific soft values for the threshold were selected after several attempts.
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Figure 14. ECG signal analysis results using wavelet transform and Haar function.

4.3. EEG Analysis to Detect Drowsiness and Cognition State
4.3.1. EEG Analysis Using the Welch-Type Power Spectral Density Method for Drowsiness

To estimate/predict the occurrence of drowsiness of drivers, EEG recording was
performed using the capacitive sensor installed in the seat headrest. Using the PSD Welch
method, the power spectra for alpha, beta brain waves were determined, which show by
their succession the closing and opening of the eyes (blinking of the eyes).

Figures 15 and 16 show the spectra of alpha and beta brain waves analyzed for
attention span and the time of drowsiness.

From the comparison of the spectra represented in Figures 15 and 16, we notice that
the amplitude of the alpha waves increased and the beta decreased during the state of
relaxation, showing the onset of drowsiness. Following studies and research in the field of
EEG, increasing the aptitude of alpha waves is associated with the installation of states of
relaxation and drowsiness, and increasing the amplitude of beta waves is associated with
thinking and responding to external stimuli.

4.3.2. EEG Analysis for Cognitive State Using the Modified RBF Network

The architecture of the proposed network may be observed in Figure 17. For classifica-
tion, we proposed a modified RBF network (RBFMod) based on a recurring neural network
(RNN) architecture, to which we added an additional MLP layer to increase performance.
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Figure 15. Frequency spectrum for alpha and beta brain waves when eyes are open.
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Figure 16. Frequency spectrum for alpha and beta brain waves when eyes are closed.
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Figure 17. The architecture proposed for a modifed RBF network.

A completely different class of networks is recurrent neural networks (NNRs). As
the name suggests, this family of networks assumes that information is returned to the
network. Recurrent neural networks (NNRs) are specially designed to classify the data
that make up the sequences of cognitive states (stress, emotion, relaxation, distraction).
The essential difference between the proposed neural network and the classical neural
networks is represented by the recurrent layers in which the connections between the
neurons are made cyclically. RNNs receive at input a series of elements that belong to
a sequence and generate the next element in the sequence—depending on the network
architecture—input vectors related to cognitive states, and the values of the parameters
resulting from the testing process. Unlike the problems studied so far, recurrent networks
specialize in the analysis of data sequences. Each sample in the sequence is analyzed in
order, with the result then being returned to the network to participate in the processing
of the next sample. An extension of the RNN is the LSTM (Long Short-Term Memory)
network, in which the recurring layers have a series of additional components, called
gates. These have the role of alleviating the problems caused by gradients with too low or
too high values (disappearance gradients, explosion gradients). The proposed modified
RBF network contains the following modules: a spatial transformation module for EEG
signals, a module for extracting the characteristics of cognitive salts resulting from RBF,
and an MLP to combine the signatures of recognized cognitive salts from EEG signals in
the vicinity of each nucleus. By using spatial transformation, the input samples will be
aligned in a canonical space so that they are invariant to the artifacts that can influence the
stability of the signals and, implicitly, the recognition and classification of cognitive states.

Figure 18 shows the results of simulated detection of cognitive states of meditation
and attention using the modified RBF neural network.

4.4. Simultaneous Multiple-Point Measurement of Temperature Based on a MEMS
Technology Sensor

To determine the temperature changes inside the vehicle, or to determine the heat-
ing/overheating of certain components in the construction of vehicles and to prevent the
occurrence of flames, a MEMS sensor type AMG8834 was used. This sensor is based on
the analysis of infrared radiation (IR) of the environment inside the vehicle, making it
possible to scan it based on 64 measuring points, passively, thus allowing monitoring areas
of interest, setting the temperature gradient, and imposing prayers of alarm.

The sensor has the ability to measure the temperature of a surface (human body,
car parts) at several points and not the ambient air temperature, as existing modules on
the market. It mainly targets the use of the system inside autonomous vehicles; as they
become more and more advanced, they will act as a driver, taking children from school,
transporting injured people as an ambulance, and many other activities that will become
common in everyday life. As there will be no person in the car to monitor, the need for
an alert in case of danger is growing. Vehicles usually heat up quickly, with much of the
indoor temperature rising in the first 15 to 30 min; indoor temperatures rise very quickly
and have been found to reach a critical temperature of 40 ◦C in about 8 min on a summer
day. The system will be conveniently placed inside the vehicle.
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Figure 18. Simultaneous detection of cognitive states of meditation and attention using the modified
RBF neural network.

For this, the best location for the sensor was studied in order to determine its optimal
position so that it will have the largest field of view. Based on this information, it was
chosen to place the sensor in the rear of the vehicle in order to have a field of view as
large as possible, so that it could detect infrared radiation coming from both the rear seats,
but also from the front and from the dashboard. Figure 19a shows the location inside the
vehicle of the temperature monitoring system with MEMS.

MEMS AMG8834 sensors can be used in a Grid-EYE network, as they are a versatile
configuration and economical sensor, being ideal for IoT applications. In this research, we
proposed the installation of a Grid-EYE network inside the vehicle to prevent potential
overheating and fires. The system was tested and calibrated experimentally by creating
different heating temperatures, and the results were measured and compared. High
temperatures (flames) were detected and analyzed by the sensor based on changes in pixel
values in the successive frames analyzed. Thus, using the infrared temperature detection
device, it was possible to passively map the temperature and the thermal distribution
for 64 points of a scanned surface without intrusion, which allowed, depending on each
scanned area, the establishment of acceptable temperature, as well as alarm thresholds.
At the same time, for certain scanned surfaces, the gradient of the temperature change
can also be set, as well as the alert thresholds. The proposed system may be the basis for
the development of other subsequent applications, such as alarm systems and burglary
prevention. In stark contrast to single-element thermal sensors and pyroelectric sensors,
the system can simultaneously detect multiple people on the move or in steady position,
and surface temperature can be measured extremely accurately in real time.

Figure 19b shows the transition of pixel values for ambient temperature (black), values
after a slight warming (yellow), and high flame temperatures (orange). When heating,
overheating, or flame temperatures are detected, the MEMS network sends alerts on board
the vehicle and on the internet to the data center.
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Figure 19. IoT temperature measurement system. (a) MEMS sensor location and field of view;
(b) changing pixel values for ambient temperature (black), values after light heating (yellow), and
high flame temperatures (orange).

The MEMS Grid-EYE network proposed in the article can also be used for other
IoT applications, such as burglary detection systems, because the proposed network can
simultaneously detect several moving people, and temperature changes are determined in
real time with high accuracy.

4.5. Solution for Viewing and Centralizing Online Data Received from IoT Devices

In order to be able to view and store the data received from the IoT sensor nodes,
several existing options were researched. The problems that needed to be solved were
the visualization of the data from each sensor node on a map, the storage of data in the
cloud for its analysis, the alert signaling of possible real-time events, and the visualization
of information received from sensors using the cloud, while also pursuing the security
of communications. Several options on the market that offer solutions for managing
devices connected to the internet have been studied and some of them have been chosen for
extensive analysis. The exclusive use of online platforms without the use of local servers for
better data management and security was considered. Some of the important information
that needs to be viewed in real time is location data, the time the data were sent, and sensor
information. Solutions were also sought for sending alerts on a smartphone device in
case of possible dangers. The system needs a node with two ESP8266 microcontrollers
mounted inside an autonomous vehicle, one of them for monitoring the temperature levels
of surfaces or people in the passenger compartment. It needs also to alert, using the
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application installed on the smartphone, the user of the presence of people or animals
inside, which may be in an alert situation due to an excessive temperature in the passenger
compartment or by monitoring the cognitive condition and heart rate of the passengers in
the vehicle. The second ESP8266 microcontroller present in the passenger compartment
needs to take care of collecting data from the sensors and transmit it to the cloud to be
analyzed and viewed in real time (Figure 20a).

Figure 20. (a) IoT management system diagram for a sensor node; (b) view of the WEB page developed for data integration.



Sensors 2021, 21, 8272 25 of 29

The purpose of the IoT network proposed in this article is to assess the states of
drowsiness, stress, and the level of oxygen saturation for the driver of the vehicle and
detect, in advance, the possible problems that may occur inside the vehicle or certain
components of the car. The system also maps people inside the vehicle, enabling it to issue
real-time alarms in the event of potential danger and store information in a database.

To achieve the system of visualization, transmission, and storage of data from IoT
nodes installed inside a vehicle or in any means of air, railway, and naval transport, we tried
to propose an optimal solution by performing an analysis of the systems currently used.
The problems we wanted to solve were the visualization of data from each IoT node related
to physiological sensors (EEG, ECG), temperature and oxygen saturation monitoring on a
virtual map with a display in a web browser, storing data in the cloud for further analysis
and signaling the occurrence of possible events in real time, and achieving the security
of data communications. The proposed solution used online platforms without the use
of local servers because this architecture ensured good data management and security.
Another argument in choosing this solution was that the data viewed in real time were
given by location, time of occurrence of events, and physiological information obtained
from IoT sensors. The database could be transmitted to a dispatcher (security service, car
insurance, emergency e-Call system 112) in case of accidents so as to reach a high level of
information on the condition/health of passengers in time.

Regarding our research, after the implementation of the IoT architecture of the pro-
posed system, the next step was to develop a web page, using Google Sites, to facilitate
access to centralized data visualization. The web page was made using HTML, CSS, and
JavaScript, and Figure 20 shows some of the information available on the web browser
page. The web browser application was made in LabVIEW.

For further developments, we are looking for solutions to expand the IoT network
related to physiological sensors for all people inside the vehicle. This proposal can be used
for future autonomous vehicles/drones. The architecture we will use to expand the IoT
network involves using a server and an application installed on a smartphone device, so
that the IoT network user can view the acquired data in real time and receive alerts in case
of potential events that occur. The ultimate goal is the management of all devices by a
single operator.

To compare the results obtained with the proposed method, we referred to the follow-
ing articles [57–61], which focused on the automatic detection of drowsiness and cognitive
states for the driver of a vehicle. The comparative results are presented in Table 2.

Table 2. Comparison of methods used in the automatic detection of drowsiness and cognitive states.

Reference Year EEG Sensor Method Used Detection Result

[57] 2021 EEG headset CNN 94.68%
[58] 2021 EEG headset JTFA 92.00%
[59] 2020 EEG headset MLP 95.35%
[60] 2020 EEG headset MLP-CNN 96.50%
[61] 2019 EEG headset PCANet 95.00%

Proposed Method 2021 EEG non-contact RBF Modified 96.75%

5. Discussion and Conclusions

In this article, a proposal on creating a multi-sensory system for detecting/estimating
drowsiness, ECG parameters, and stress levels for non-, semi-, or fully automated cars’
drivers has been investigated and tested in laboratory conditions. To this ensemble, a
module for predicting the possibility of overheating vehicle components has been added.
The purpose was to improve the response speed, efficiency, and effectiveness of emergency
services for all types of cars equipped with this sensing infrastructure. The analysis of
biomedical signals performed by the system was based on the analysis of the power
spectrum density (PSD) of the electroencephalogram (EEG) and the correlation with the
heart rate (ECG), or the respiratory rate. In this project, it was proposed to collect EEG
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and ECG data, using a sensory system of a capacitive type installed in the headrest and
the back of the driver’s seat, which does not involve the wearing of sensors by humans.
Oximetry was also added with the intention of helping to more effectively assess the
consciousness and healthy state of different occupants of a vehicle, mostly for the person
occupying the driver’s seat. With the help of this screening, analysis, and diagnosis
system, a significant increase of both safety and security in the field of road transport
is expected to be achieved. The solution addresses the most frequent causes of road
accidents: human attention and ability to react. Additionally, the presented system can be
connected to an emergency system (such as e-Call), and the physiological parameters can
be transmitted to the emergency medical team. Despite the efforts made by the research
team and collaborators, we consider that there is still a a considerable amount of work to
perform in this direction in order to produce a finite, expandable, and reliable solution
that is ready for inclusion in the majority of vehicles. This is due to the numerous factors
that may influence the precision and trust of indirect measurements of human health and
drowsiness metrics. Therefore, we consider that our proposed solution is just a starting
point for future investigations that must expand this system for the provision of more
accurate medical care information (telemedicine/telemonitoring) remotely for patients
with heart problems and cognition. Among the people targeted, an important category
which should be prioritized, are drivers with different types of disabilities.

In conclusion, the article presents an IoT system for monitoring the physiological
states (cognitive, ECG) of passengers, pulse oximeter, and monitoring the possibility of
heating of some components of the structure of a semi-autonomous/autonomous vehicle.
The novelty is determined by the development and placement of contactless sensors for
the acquisition/analysis of EEG/ECG signals that are located in the headrest and back
of the driver’s/passenger seat, acquiring biomedical signals from a maximum distance
of 10 cm and also by algorithms implemented for analyzing them. As can be seen from
Table 2, the novelty of our proposal consists primarily of the use of an EEG sensor without
contact with the human subject, because the methods presented in the literature use an
EEG headset, and the detection is performed with 96.75%.

Additionally, the proposed system can be installed in any semi-autonomous and
autonomous car, allowing the transmission of acquired data on an IoT structure to the
e-Call system or telemedicine systems.

An important aspect for the practical application of the proposed device and method
is related to the connection made with the emergency medical system and with the mobile
telephony systems to improve telemedicine services.

Real-time telemonitoring of patients, both preventively and after major medical events,
is a procedure increasingly used in medical practice. It requires devices with increasing
performance for the acquisition and transmission of vital parameters. A limitation of
telemonitoring of vital parameters is the failure of these systems to detect important
physiological changes: the detection of massive blood loss, insufficient plasma volume in
patients with burns, or the identification of serious diseases in children. Vital parameters
within normal limits do not guarantee a stable physiological state, thus suggesting that
the usefulness of their telemonitoring is rather an indicator of the need for more future
investigations. The telemonitoring systems shown can be used as alarm systems in case
of monitoring during normal activity or physical exercise. The effects of the large-scale
introduction of telemonitoring systems are materialized by increasing the access to modern
technologies in the medical field and the quality of the medical act, by reducing equipment
costs, having as result an increase in population’s health, thus a decrease of mortality.
From their point of view, patients can save time, money, and comfort by maintaining or
increasing the quality of the medical act, physically lowered right at the patient’s home.
From an economic point of view, the introduction of telemonitoring systems achieves a
reduction in social costs in the field of health, not infrequently quite expensive. The costs
of acquiring, storing, and managing medical data by automating them will be significantly
reduced. Continuous telemonitoring of patients will reduce hospitalization periods and
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patient time in polyclinics and medical practices. Telemedicine systems will gradually
complement the classic medical data storage systems, which currently take up a lot of
space, require significant time for data access, and do not allow the recording of complex
data. Finally, it is found that information systems, in the case of telemonitoring based on
embedded systems, actively and efficiently compete for the quality of medical decisions,
especially in situations where the lack of an in situ specialist is still a reality on the threshold
of the third millennium.
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5. Kołodziej, P.; Tuszyńska-Bogucka, W.; Dzieńkowski, M.; Bogucki, J.; Kocki, J.; Milosz, M.; Kocki, M.; Reszka, P.; Kocki, W.;

Bogucka-Kocka, A. Eye Tracking—An Innovative Tool in Medical Parasitology. J. Clin. Med. 2021, 10, 2989. [CrossRef]
6. Peng, H. Evaluation of driver assistance systems—A human centered approach. In Proceedings of the International Symposium

on Advanced Vehicle Control (AVEC), Hiroshima, Japan, 9–13 September 2002; pp. 17–24.
7. Salvati, L.; D’Amore, M.; Fiorentino, A.; Pellegrino, A.; Sena, P.; Villecco, F. Development and Testing of a Methodology for the

Assessment of Acceptability of LKA Systems. Machines 2020, 8, 47. [CrossRef]
8. Lee, D.E.; Yoon, H.S.; Gil Hong, H.; Park, K.R. Fuzzy-System-Based Detection of Pupil Center and Corneal Specular Reflection for

a Driver-Gaze Tracking System Based on the Symmetrical Characteristics of Face and Facial Feature Points. Symmetry 2017, 9, 267.
[CrossRef]

9. Chang, J.; Yao, W.; Li, X. A Context-Aware S-Health Service System for Drivers. Sensors 2017, 17, 609. [CrossRef] [PubMed]
10. Lee, B.G.; Lee, B.L.; Chung, W.-Y. Mobile Healthcare for Automatic Driving Sleep-Onset Detection Using Wavelet-Based EEG and

Respiration Signals. Sensors 2014, 14, 17915–17936. [CrossRef]
11. Babusiak, B.; Hajducik, A.; Medvecky, S.; Lukac, M.; Klarak, J. Design of Smart Steering Wheel for Unobtrusive Health and

Drowsiness Monitoring. Sensors 2021, 21, 5285. [CrossRef]
12. Plechawska-Wójcik, M.; Tokovarov, M.; Kaczorowska, M.; Zapała, D. A Three-Class Classification of Cognitive Workload Based

on EEG Spectral Data. Appl. Sci. 2019, 9, 5340. [CrossRef]
13. Wang, J.; Warnecke, J.M.; Haghi, M.; Deserno, T.M. Unobtrusive Health Monitoring in Private Spaces: The Smart Vehicle. Sensors

2020, 20, 2442. [CrossRef] [PubMed]
14. Mercuri, M.; Liu, Y.-H.; Young, A.; Torfs, T.; Bourdoux, A.; Van Hoof, C.C. Digital Phase-Tracking Doppler Radar for Accurate

Displacement Measurements and Vital Signs Monitoring. In Proceedings of the 2017 IEEE MTT-S International Microwave
Symposium (IMS), Honolulu, HI, USA, 4–9 June 2017; pp. 1–4.

15. Kang, J.J.; Parvin, S.; Fahd, K.; Venkatraman, S. Vehicular Alarm System Using mHealth Data and Lightweight Security
Algorithms. Technologies 2019, 7, 25. [CrossRef]

http://doi.org/10.3390/e23020135
http://www.ncbi.nlm.nih.gov/pubmed/33494447
http://doi.org/10.1109/TSMCA.2011.2164242
http://doi.org/10.1109/TITS.2013.2275192
http://doi.org/10.3390/jcm10132989
http://doi.org/10.3390/machines8030047
http://doi.org/10.3390/sym9110267
http://doi.org/10.3390/s17030609
http://www.ncbi.nlm.nih.gov/pubmed/28304330
http://doi.org/10.3390/s141017915
http://doi.org/10.3390/s21165285
http://doi.org/10.3390/app9245340
http://doi.org/10.3390/s20092442
http://www.ncbi.nlm.nih.gov/pubmed/32344815
http://doi.org/10.3390/technologies7010025


Sensors 2021, 21, 8272 28 of 29

16. Dröge, J.; Müller, R.; Scutaru, C.; Braun, M.; Groneberg, D.A. Mobile Measurements of Particulate Matter in a Car Cabin: Local
Variations, Contrasting Data from Mobile versus Stationary Measurements and the Effect of an Opened versus a Closed Window.
Int. J. Environ. Res. Public Health 2018, 15, 2642. [CrossRef]

17. Preethichandra, D.M.G.; Piyathilaka, L.; Izhar, U. Experimental Study on Cabin Carbon Dioxide Concentration in Light Passenger
Vehicles. Eng. Proc. 2020, 2, 88. [CrossRef]

18. Sun, S.; Yang, W.; Wang, W. Power-Saving Design of Radio Frequency Identification Sensor Networks in Bus Seatbelt Monitoring
Systems. Sensors 2020, 20, 5882. [CrossRef]

19. Leone, A.; Caroppo, A.; Manni, A.; Siciliano, P. Vision-Based Road Rage Detection Framework in Automotive Safety Applications.
Sensors 2021, 21, 2942. [CrossRef]

20. Yang, L.; Lu, M.; Lin, J.; Li, C.; Zhang, C.; Lai, Z.; Wu, T. Long-Term Monitoring of Extremely Low Frequency Magnetic Fields in
Electric Vehicles. Int. J. Environ. Res. Public Health 2019, 16, 3765. [CrossRef] [PubMed]

21. Welch, K.C.; Harnett, C.; Lee, Y.-C. A Review on Measuring Affect with Practical Sensors to Monitor Driver Behavior. Safety 2019,
5, 72. [CrossRef]

22. Lee, K.; Lee, J.; Ha, C.; Han, M.; Ko, H. Video-Based Contactless Heart-Rate Detection and Counting via Joint Blind Source
Separation with Adaptive Noise Canceller. Appl. Sci. 2019, 9, 4349. [CrossRef]

23. Castro, I.D.; Mercuri, M.; Patel, A.; Puers, R.; Van Hoof, C.; Torfs, T. Physiological Driver Monitoring Using Capacitively Coupled
and Radar Sensors. Appl. Sci. 2019, 9, 3994. [CrossRef]

24. Gao, X.; Luo, H.; Wang, Q.; Zhao, F.; Ye, L.; Zhang, Y. A Human Activity Recognition Algorithm Based on Stacking Denoising
Autoencoder and LightGBM. Sensors 2019, 19, 947. [CrossRef]

25. Choi, M.; Jeong, J.J.; Kim, S.H.; Kim, S.W. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using
Adjacent Non-Intrusive ECG Sensors. Sensors 2016, 16, 715. [CrossRef] [PubMed]

26. Chen, S.; Wang, Z.; Chen, W. Driver Drowsiness Estimation Based on Factorized Bilinear Feature Fusion and a Long-Short-Term
Recurrent Convolutional Network. Information 2021, 12, 3. [CrossRef]

27. Aarts, M.P.J.; Hartmeyer, S.L.; Morsink, K.; Kort, H.S.M.; De Kort, Y.A.W. Can Special Light Glasses Reduce Sleepiness and
Improve Sleep of Nightshift Workers? A Placebo-Controlled Explorative Field Study. Clocks Sleep 2020, 2, 225–245. [CrossRef]
[PubMed]

28. Daza, I.G.; Bergasa, L.M.; Bronte, S.; Yebes, J.J.; Almazán, J.; Arroyo, R. Fusion of Optimized Indicators from Advanced Driver
Assistance Systems (ADAS) for Driver Drowsiness Detection. Sensors 2014, 14, 1106–1131. [CrossRef]

29. Sinha, A.; Vu, V.; Chand, S.; Wijayaratna, K.; Dixit, V. A Crash Injury Model Involving Autonomous Vehicle: Investigating of
Crash and Disengagement Reports. Sustainability 2021, 13, 7938. [CrossRef]

30. Karimshoushtari, M.; Novara, C.; Tango, F. How Imitation Learning and Human Factors Can Be Combined in a Model Predictive
Control Algorithm for Adaptive Motion Planning and Control. Sensors 2021, 21, 4012. [CrossRef] [PubMed]

31. Wen, X.; Fu, L.; Fu, T.; Keung, J.; Zhong, M. Driver Behavior Classification at Stop-Controlled Intersections Using Video-Based
Trajectory Data. Sustainability 2021, 13, 1404. [CrossRef]

32. Ahangar, M.N.; Ahmed, Q.Z.; Khan, F.A.; Hafeez, M. A Survey of Autonomous Vehicles: Enabling Communication Technologies
and Challenges. Sensors 2021, 21, 706. [CrossRef] [PubMed]

33. Bylykbashi, K.; Qafzezi, E.; Ampririt, P.; Ikeda, M.; Matsuo, K.; Barolli, L. Performance Evaluation of an Integrated Fuzzy-Based
Driving-Support System for Real-Time Risk Management in VANETs. Sensors 2020, 20, 6537. [CrossRef]

34. Cao, S.; Tang, P.; Sun, X. Driver Take-Over Reaction in Autonomous Vehicles with Rotatable Seats. Safety 2020, 6, 34. [CrossRef]
35. Wang, C.; Sun, Q.; Li, Z.; Zhang, H. Human-Like Lane Change Decision Model for Autonomous Vehicles that Considers the Risk

Perception of Drivers in Mixed Traffic. Sensors 2020, 20, 2259. [CrossRef] [PubMed]
36. Sini, J.; Marceddu, A.C.; Violante, M. Automatic Emotion Recognition for the Calibration of Autonomous Driving Functions.

Electronics 2020, 9, 518. [CrossRef]
37. Abe, R.; Kita, Y.; Fukuda, D. An Experimental Approach to Understanding the Impacts of Monitoring Methods on Use Intentions

for Autonomous Vehicle Services: Survey Evidence from Japan. Sustainability 2020, 12, 2157. [CrossRef]
38. Mahmood, A.; Zhang, W.E.; Sheng, Q.Z. Software-Defined Heterogeneous Vehicular Networking: The Architectural Design and

Open Challenges. Futur. Internet 2019, 11, 70. [CrossRef]
39. Li, S.; Zhang, J.; Wang, S.; Li, P.; Liao, Y. Ethical and Legal Dilemma of Autonomous Vehicles: Study on Driving Decision-Making

Model under the Emergency Situations of Red Light-Running Behaviors. Electronics 2018, 7, 264. [CrossRef]
40. Parente, F.R.; Santonico, M.; Zompanti, A.; Benassai, M.; Ferri, G.; D’Amico, A.; Pennazza, G. An Electronic System for the

Contactless Reading of ECG Signals. Sensors 2017, 17, 2474. [CrossRef] [PubMed]
41. Burke, M.J.; Gleeson, D.T. A micropower dry-electrode ECG preamplifier. IEEE Trans. Biomed. Eng. 2000, 47, 155–162. [CrossRef]

[PubMed]
42. Chi, Y.M.; Jung, T.-P.; Cauwenberghs, G. Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review. IEEE Rev.

Biomed. Eng. 2010, 3, 106–119. [CrossRef] [PubMed]
43. Walter, M.; Eilebrecht, B.; Wartzek, T.; Leonhardt, S. The smart car seat: Personalized monitoring of vital signs in automotive

applications. Pers. Ubiquitous Comput. 2011, 15, 707–715. [CrossRef]
44. Available online: https://courses.cs.washington.edu/courses/cse466/13au/pdfs/lectures/ECG%20filtering.pdf (accessed on

7 December 2021).

http://doi.org/10.3390/ijerph15122642
http://doi.org/10.3390/ecsa-7-08266
http://doi.org/10.3390/s20205882
http://doi.org/10.3390/s21092942
http://doi.org/10.3390/ijerph16193765
http://www.ncbi.nlm.nih.gov/pubmed/31591344
http://doi.org/10.3390/safety5040072
http://doi.org/10.3390/app9204349
http://doi.org/10.3390/app9193994
http://doi.org/10.3390/s19040947
http://doi.org/10.3390/s16050715
http://www.ncbi.nlm.nih.gov/pubmed/27196910
http://doi.org/10.3390/info12010003
http://doi.org/10.3390/clockssleep2020018
http://www.ncbi.nlm.nih.gov/pubmed/33089202
http://doi.org/10.3390/s140101106
http://doi.org/10.3390/su13147938
http://doi.org/10.3390/s21124012
http://www.ncbi.nlm.nih.gov/pubmed/34200758
http://doi.org/10.3390/su13031404
http://doi.org/10.3390/s21030706
http://www.ncbi.nlm.nih.gov/pubmed/33494191
http://doi.org/10.3390/s20226537
http://doi.org/10.3390/safety6030034
http://doi.org/10.3390/s20082259
http://www.ncbi.nlm.nih.gov/pubmed/32316210
http://doi.org/10.3390/electronics9030518
http://doi.org/10.3390/su12062157
http://doi.org/10.3390/fi11030070
http://doi.org/10.3390/electronics7100264
http://doi.org/10.3390/s17112474
http://www.ncbi.nlm.nih.gov/pubmed/29143768
http://doi.org/10.1109/10.821734
http://www.ncbi.nlm.nih.gov/pubmed/10721622
http://doi.org/10.1109/RBME.2010.2084078
http://www.ncbi.nlm.nih.gov/pubmed/22275204
http://doi.org/10.1007/s00779-010-0350-4
https://courses.cs.washington.edu/courses/cse466/13au/pdfs/lectures/ECG%20filtering.pdf


Sensors 2021, 21, 8272 29 of 29

45. Available online: http://www-classes.usc.edu/engr/bme/620/LectureECGNoise.pdf (accessed on 7 December 2021).
46. Rahman, M.Z.U.; Shaik, R.A.; Reddy, D.V.R.K. Noise Cancellation in ECG Signals using Computationally Simplified Adaptive

Filtering Techniques: Application to Bio-telemetry. An Int. J. SPIJ 2009, 3, 1–12.
47. Addison, P.S. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and

Finance, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002.
48. Addison, P.S. Wavelet transforms and the ECG: A review. Physiol. Meas. 2005, 26, R155–R199. [CrossRef] [PubMed]
49. Merry, R.J.E. Wavelet Theory and Applications: A literature Study; DCT 2005.053; Technische Universität Eindhoven: Eindhoven, The

Netherlands, 2005.
50. Stojanovic, R.; Knezevic, S.; Karadaglic, D.; Devedzic, G. Optimization and implementation of the wavelet based algorithms for

embedded biomedical signal processing. Comput. Sci. Inf. Syst. 2013, 10, 503–523. [CrossRef]
51. Cohen, L. Time-Frequency Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1995.
52. Available online: http://en.wikipedia.org/wiki/Daubechies_wavelet (accessed on 7 December 2021).
53. Minea, M.; Dumitrescu, C.; Moise, I. Non-Intrusive Driver Condition Monitoring in Highly Automated Vehicles with Medical

Information Support for Emergency Calling. In Proceedings of the 2019 42nd International Conference on Telecommunications
and Signal Processing (TSP), Budapest, Hungary, 1–3 July 2019; IEEE: Piscataway, NJ, USA, 2019. ISBN 978-1-7281-1864-2.
[CrossRef]

54. Infrared Array Sensor “Grid-EYE”. Application Notes Disponibil pe. Available online: https://www.robot-electronics.co.uk/
files/grideyeappnote.pdf (accessed on 7 December 2021).

55. Chan, V.; Underwood, S. A Single-Chip Pulsoximeter Design Using the MSP430, SLAA274–November. 2005. Available online:
http://focus.ti.com/lit/an/slaa274/slaa274.pdf (accessed on 7 December 2021).

56. Kästle, S.; Noller, F.; Falk, S.; Bukta, A.; Mayer, E.; Miller, D. A New Family of Sensors for Pulse Oximetry. Hewlett-Packard J. 1997,
48, 39–47.

57. Zhu, M.; Chen, J.; Li, H.; Liang, F.; Han, L.; Zhang, Z. Vehicle driver drowsiness detection method using wearable EEG based on
convolutional neurral network. Neural Comput. Appl. 2021, 33, 13965–13980. [CrossRef]

58. Vecchiato, G. Hybrid Systems to Boost EEG-Based Real-Time Action Decoding in Car Driving Scenarios. Front. Neuroergonomics
2021, 2, 35. [CrossRef]

59. Schneiders, E.; Kristensen, M.B.; Svangren, M.K.; Skov, M.B. Temporal Impact on Cognitive Distraction Detection for Car Drivers
using EEG. In Proceedings of the OzCHI’20: 32nd Australian Conference on Human–Computer Interaction, Sydney, NSW,
Australia, 2–4 December 2020; pp. 594–601. [CrossRef]

60. Elsherif, A.; Karaman, A.; Ahmed, O.; Nagdy, O.; Shouman, R.; Noumier, R.; Hamed, A.; Eldawlatly, H.; Eldawlatly, S. Monitoring
and Predicting Driving Performance Using EEG Activity. In Proceedings of the 2020 15th International Conference on Computer
Engineering and Systems (ICCES), Cairo, Egypt, 15–16 December 2020; IEEE: Piscataway, NJ, USA, 2020. ISBN 978-0-7381-0559-8.
[CrossRef]

61. Ma, Y.; Chen, B.; Li, R.; Wang, C.; Wang, J.; She, Q.; Luo, Z.; Zhang, Y. Driving Fatigue Detection from EEG Using a Modified
PCANet Method. Comput. Intell. Neurosci. 2019, 2019, 4721863. [CrossRef] [PubMed]

http://www-classes.usc.edu/engr/bme/620/LectureECGNoise.pdf
http://doi.org/10.1088/0967-3334/26/5/R01
http://www.ncbi.nlm.nih.gov/pubmed/16088052
http://doi.org/10.2298/CSIS120517013S
http://en.wikipedia.org/wiki/Daubechies_wavelet
http://doi.org/10.1109/TSP.2019.8769094
https://www.robot-electronics.co.uk/files/grideyeappnote.pdf
https://www.robot-electronics.co.uk/files/grideyeappnote.pdf
http://focus.ti.com/lit/an/slaa274/slaa274.pdf
http://doi.org/10.1007/s00521-021-06038-y
http://doi.org/10.3389/fnrgo.2021.784827
http://doi.org/10.1145/3441000.3441013
http://doi.org/10.1109/ICCES51560.2020.9334574
http://doi.org/10.1155/2019/4721863
http://www.ncbi.nlm.nih.gov/pubmed/31396270

	Introduction 
	Literature Survey. Related Work 
	Materials and Methods 
	Driver State Monitoring—Proposed Structure of the Onboard System 
	Non-Intrusive Acquisition of Driver State Health Information 
	Method for Determining Heart Rate (ECG) without Physical Contact with the Subject 
	Filtering of Technical Interference from the EKG Signal 
	Wavelet Transforms (WT) ECG Processing 

	EEG Analysis to Determine Drivers’ Drowsiness and Cognitive State 
	O2 Saturation Monitoring 
	Algorithm for Cooperative Driving and Enhanced e-Call Support 

	Results 
	IoT System for Data Acquisition 
	The Results Obtained for the Processing of ECG Signals 
	EEG Analysis to Detect Drowsiness and Cognition State 
	EEG Analysis Using the Welch-Type Power Spectral Density Method for Drowsiness 
	EEG Analysis for Cognitive State Using the Modified RBF Network 

	Simultaneous Multiple-Point Measurement of Temperature Based on a MEMS Technology Sensor 
	Solution for Viewing and Centralizing Online Data Received from IoT Devices 

	Discussion and Conclusions 
	References

