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Abstract

Visual stimuli evoke activity in visual cortical neuronal populations. Neuronal activity can be

selectively modulated by particular visual stimulus parameters, such as the direction of a

moving bar of light, resulting in well-defined trial averaged tuning properties. However, given

any single stimulus parameter, a large number of neurons in visual cortex remain unmodu-

lated, and the role of this untuned population is not well understood. Here, we use two-pho-

ton calcium imaging to record, in an unbiased manner, from large populations of layer 2/3

excitatory neurons in mouse primary visual cortex to describe co-varying activity on single

trials in neuronal populations consisting of both tuned and untuned neurons. Specifically, we

summarize pairwise covariability with an asymmetric partial correlation coefficient, allowing

us to analyze the resultant population correlation structure, or functional network, with graph

theory. Using the graph neighbors of a neuron, we find that the local population, including

both tuned and untuned neurons, are able to predict individual neuron activity on a moment

to moment basis, while also recapitulating tuning properties of tuned neurons. Variance

explained in total population activity scales with the number of neurons imaged, demonstrat-

ing larger sample sizes are required to fully capture local network interactions. We also find

that a specific functional triplet motif in the graph results in the best predictions, suggesting a

signature of informative correlations in these populations. In summary, we show that unbi-

ased sampling of the local population can explain single trial response variability as well as

trial-averaged tuning properties in V1, and the ability to predict responses is tied to the

occurrence of a functional triplet motif.

Author summary

V1 populations have historically been characterized by single cell response properties and

pairwise co-variability. Many cells, however, do not show obvious dependencies to a given

stimulus or behavioral task, and have consequently gone unanalyzed. We densely record

from large V1 populations to measure how trial-to-trial response variability relates to
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these previously understudied neurons. We find that individual neurons, regardless of

response properties, are inextricably dependent on the population in which they are

embedded. Specifically, patterns of correlations between groups of neurons, allow us to

predict moment to moment activity in individual neurons. Only by studying large, local,

populations simultaneously were we able to find an emergent property of this informa-

tion. These results imply that understanding how the visual system operates with substan-

tial trial-to-trial variability will necessitate a network perspective that accounts for both

visual stimuli and activity in the local population.

Introduction

In the visual system, decades of research have probed stimulus parameters that evoke

responses in single neurons and these responses have been generally trial-averaged [1]. These

response properties have revealed principles of functional organization in primary visual cor-

tex (V1), such as orientation columns [2], and canonical computations, such as divisive nor-

malization [3]. However, responses are variable across trials [4], making the relationship

between perceptual stability and neuronal single-trial stimulus representations unclear [5].

The fluctuations of response strength are not independent across neurons, and this shared var-

iability impacts population level representations of visual stimuli [6,7]. Neurons are highly

interconnected and connection likelihood is biased toward spatially proximal neurons [8], sug-

gesting that trial-to-trial response variability may be in part the manifestation of the state of

the surrounding neuronal population [9,10]. Pairwise interactions within a population can

shape information representation [11,12,13] and can be regulated by top-down influences

[14]. Therefore, comprehensive descriptions of stimulus representations in primary sensory

cortex require a network perspective. Here, we used two-photon imaging to record from large

populations of L2/3 excitatory neurons in mouse V1 to study effects of local population activity

on trial-to-trial variability.

Understanding the sources and consequences of response variability is necessary to extend

theories of sensory computation from the average case to single trials. Perception and behavior

take place in real time, after all, so variable responses must be taken into account to understand

stimulus representations in cortex. Shared variability in neural responses is commonly quanti-

fied by the set of pairwise correlations between neurons, and the structure of these correlations

can have constructive or destructive effects on stimulus encoding in populations of neurons

[15,16], highlighting the importance of its characterization. Moreover, complex patterns of

population activity in retina can be captured by taking into account only neuron firing rates

and pairwise correlations [17]. Covariability can also be shaped by cognitive properties such as

attention in order to improve perceptual acuity [14]. Whether trial-to-trial variability is har-

nessed to improve the fidelity of sensory representations, or accounted for when decoding

from noisy signals, the properties of response variability have a large impact on neural

function.

Research on the correlation structure of population activity is still incomplete, however,

and can be meaningfully expanded by incorporating a more comprehensive sampling of the

network [18]. V1 populations consist of neurons whose activity is not modulated by, or is

untuned to, a given stimulus. It is still an open question how this subpopulation contributes to

neuron correlations. Two-photon imaging results in a relatively unbiased sampling of spatially

proximal neurons including both tuned and untuned subpopulations. Neurons unrelated to a

behavioral task can help predict activity in neighboring neurons in hippocampal CA1 [9]. In
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V1, it has been shown that untuned neurons can help to decode the orientation of drifting

gratings [19]. We investigate how co-fluctuations in the activity within tuned and untuned

neurons interacts with responses to drifting grating stimuli.

We characterize population activity and correlations between tuned and untuned subpopu-

lations in order to understand the relationship between single-cell response properties and

recurrent network dynamics. Traditional noise correlation analyses study covariability inde-

pendent from stimulus-driven activity [20]. However, untuned neurons have no stimulus

modulation, so we use an analogous partial-correlation based method that additionally

accounts for population-wide covariability. Fluctuations common across a local population

are an important determinant of single-trial responses in mouse V1 [21,22]. Capturing this

additional variable allows us to study the correlations in the entire unbiased sampling of the

population. Additionally, the partial correlation matrices are asymmetric and relatively sparse,

and can thus be represented as a weighted, directed graph. Graph theory analysis is used to

summarize structure in complex networks and can resolve emergent properties resulting from

pairwise relationships. Connectivity patterns, or motifs, in graphs can be characterized within

small groups of neurons [23] or across an entire population [24,25]. Motifs have proved to be

impactful for understanding complex biological processes including transcription networks

[26] and spike propagation [23]. More generally, motifs patterns impact information represen-

tation in complex systems [27,28] and have increasingly been a subject of interest among neu-

roscientific disciplines.

From the graph neighbors of a given neuron, we can accurately predict activity on single tri-

als using a simple, linear model. The local population contains information sufficient to pre-

dict trial-to-trial variability and recapitulates average tuning properties. Furthermore, neurons

that are well-modeled by the activity of their neighbors have specific signatures of functional

connection motifs. Across the entire graph, the most predictive motifs are also the most preva-

lent, suggesting that this structure is responsible for the overall quality of reconstruction

observed. The triplet motif that facilitates predictions of neural activity may have a broad

impact on information representation in graphs. Notably, total variance explained in a field of

view scales with the number of neurons imaged, suggesting larger sample sizes are required to

fully capture local network interactions.

Results

Response properties of V1 populations

To study interactions and response variability in local, cortical populations (<800μm diameter

imaging plane), we imaged L2/3 excitatory neurons (72–347 neurons; 25–33 Hz; n = 8 animals;

23 distinct fields of view; Fig 1A) in mouse V1 during presentation of drifting gratings (Fig 1B

and 1C). Square-wave gratings at 12 directions were presented in pseudo-random order for

5 seconds each, interleaved with 3 seconds of mean-luminance matched grey screen. We

designed grating stimuli with slightly longer durations than many studies [16,29,30] for two

reasons: first, to allow for the slow decay of the calcium indicator to fall to baseline in order to

remove any confounds from the previous grating, and second, to study the sustained response

in the population, rather than a transient response to stimulus onset [31]. Mice were awake

and allowed to freely run on a linear treadmill. The majority of neurons showed significantly

increased activity to one or more gratings over grey screen (3023/4535). Of the responsive sub-

population, most neurons were significantly tuned to orientation or direction (2073/3023;

540/3023 respectively). Neuron tuning was measured by fitting an asymmetric circular Gauss-

ian tuning curve to the trial-averaged mean fluorescence in each grating direction (Fig 1D).

These numbers of tuned and untuned neurons are in line with other population studies of
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awake, mouse V1 [16,30]. In subsequent analyses, we pooled all visually responsive neurons

without significant direction or orientation tuning into a class of ‘untuned’ neurons, differenti-

ating two distinct subpopulations in V1 by their responsivity to drifting gratings.

Responses are highly variable across trials

Single trial responses to gratings showed a high degree of variability, even in strongly tuned

neurons, manifesting as occasional strong responses to null-directions and weak or absent

responses to preferred directions (Figs 1C and 2A). Tuning curves described average response

strength of tuned neurons well (0.70+/-0.20 R2). Responses across single trials in tuned neu-

rons, however, were not well-described by their tuning curves. The mean fluorescence for each

direction only explained a small fraction of the total trial-to-trial variance which we calculated

by subtracting mean fluorescence in each direction from fluorescence in each trial (Fig 2B).

This finding matches earlier results in awake, mouse V1 [30]. We computed the distribution of

response strength (mean fluorescence across a grey or grating presentation) within single tri-

als, z-scoring to account for neurons with different activity levels. Single trial response distri-

butions were skewed, with most responses weaker than the mean (Fig 2C). Tuned neurons

showed slightly stronger responses during gratings, as compared to untuned neurons which

had nearly identical response distributions in grey and grating trials. Tuned response distribu-

tions were strongly overlapping, however, consistent with the hypothesis that individual neu-

ron activity is not solely driven by tuning properties.

Fig 1. Categorizing response properties in V1 populations. (A) Left, anecdotal cranial window, V1 retinotopy mapped by intrinsic signal overlaid (colormap shows

visual field azimuth, lateral to medial). Right, two-photon field of view L2/3 population from grey region on left. (B) One block of stimulus presentation (top; grey

interleaved gratings) with simultaneous imaging data showing neuron normalized fluorescence over time (middle). Bouts of running (bottom) and gratings show

coordinated increased activity across neurons. (C) Five example neurons’ activity, black traces represent one trial, organized by grating direction. Grey period preceding

gratings are kept together, with discontinuities at end of gratings. Top two neurons show increased activity to specific directions, others are untuned with substantial

trial-to-trial variability. (D) Trial-averaged activity reveals classic tuning properties in a subpopulation of neurons. Tuned neurons fit with asymmetric circular Gaussian

tuning curve (blue), untuned neurons show no increased activity relative to grey periods (grey bar mean+/-std average response).

https://doi.org/10.1371/journal.pcbi.1006153.g001
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To further describe population activity, we computed the time-varying activity during the

presentation of a grating and its preceding and following grey presentations. For each trial, we

removed neurons that were silent (defined as no fluorescence change 2�S.D. above baseline)

and computed the time-varying z-scored fluorescence across neurons (Fig 3A). Despite the

long duration of stimulus presentations, adaptation effects were minimal in these L2/3 neu-

rons, as tuned neurons showed sustained activity throughout the 5 second stimulus presenta-

tion. Untuned neurons have weak modulation to the onset and offset of the stimulus and are

equally active during the grey period. However, these effects are small in comparison to vari-

ability across trials, as indicated by strong overlap between the activity of the two subpopula-

tions. In the awake animal, running speed is known to strongly influence spike rates [32], and

we similarly observe that periods of high population activity are very likely to occur during

periods of running (Fig 3B, anecdotally in 1B). However, mice did not preferentially run dur-

ing grating or grey presentations (probability of running 9.7+/-7.7% during gratings; 10.0

+/-7.4% during greys; p = 0.278 paired t-test). While we used changes in fluorescence for all

other analysis, we expanded our comparison of both subpopulations by estimating spike rates

using a spike-inference from calcium fluorescence algorithm [33]. We found that untuned

neurons exhibited an identical firing rate distribution to tuned neurons (Fig 3C). Therefore,

differences between subpopulation dynamics cannot be explained by differences in firing-

rates.

Correlation structure during drifting grating and grey screen trials

Untuned neurons are a large proportion of total neurons, exhibit similar spike rates to tuned

neurons, and are likely to contribute to correlation structure in the population. To begin

describing how dynamics are affected by stimuli in populations containing tuned and untuned

neurons, we first analyzed pairwise correlations during grating and grey presentations. For

each pair of neurons, we computed the correlation coefficient between the mean fluorescence

(averaged over time) in either grating or grey trials. We did not remove signal-dependent

responses, nor did we shuffle responses to eliminate simultaneous cofluctuations, therefore,

these correlations are a combination of signal and noise correlations. Overall, within-subpopu-

lation correlations are weak (0.014+/-0.027 tuned; 0.033+/-0.047 untuned), and beween-sub-

population activity is slightly anti-correlated (-0.019+/-0.017). Comparing mean pairwise

correlations across all pairs according to their subpopulation, only within-subpopulation

correlations are affected by grating stimuli, while between-subpopulation correlations are

unchanged between stimulus and grey conditions (Fig 4A). Tuned neurons show a strong

decrease in mean correlations during gratings, as seen in macaques [34]. Conversely, untuned

neurons are more strongly correlated during gratings, and yet correlations between tuned and

untuned neurons do not change in magnitude between stimulus and grey conditions. Untuned

neuron activity is not directly modulated by the stimulus, so changes within this subpopulation

most likely reflect changes in activity from the tuned subpopulation propagating through local

synaptic connectivity. However, this occurs without a change in mean correlation between

tuned and untuned neurons, bringing to question the mechanism involved. The pairwise

Fig 2. Single trial response variability. (A) Single trial responses of representative tuned neuron. Mean tuning curve

in polar coordinates shown in center (rings = 100% dF/F0). Each heatmap positioned by grating direction shows

normalized time-varying activity for each trial. (B) Trial-averaged tuning responses do not explain trial-to-trial

variability. Tuning average (blue curve in A) is subtracted from mean fluorescence in each trial to compute variance

explained across trials. (C) Averaging across time, neurons show highly variable responses during grating and grey

trials with a right-skewed distribution due to strong activity in a few trials. Tuned neurons show larger increase in

response during gratings than untuned neurons.

https://doi.org/10.1371/journal.pcbi.1006153.g002
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Fig 3. Population response properties. (A) Mean time-varying fluorescence of active neurons, pooled across datasets,

during grating stimulus and preceding, following grey periods in tuned, untuned subpopulations (median+/-quartiles

across pooled neurons). The 3-second grey period is shown before and after the grating response. Grating onset, offset

shown in solid, dotted lines respectively. (B) Total population fluorescence split into equal quantiles to compute

probability of running (speed>0.1cm/s). Plot shows mean+/-std across datasets (n = 23). (C) Inferred firing rate

distributions computed across all imaging frames from spike trains inferred from fluorescence.

https://doi.org/10.1371/journal.pcbi.1006153.g003
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correlations in tuned neurons during the stimulus are a function of their preferred grating

directions, as expected for signal correlations (Fig 4B). Similarly tuned neurons show strong

correlations, while orthogonally tuned neurons show negative correlations. This structure is

not present during activity in grey periods, however. This is surprising, because if local con-

nectivity underlies correlations in the grey condition, one should expect the structure seen

during gratings to remain in part because similarly tuned neurons are more likely to be con-

nected [35].

Measuring trial-to-trial covariability

Overall correlations in populations including untuned neurons begins to reveal properties of

local population activity, but in order to study the sources and structure of trial-to-trial shared

variability, researchers attempt to remove the stimulus-dependent portion of responses leaving

only variability, or ‘noise’ [20]. Correlated fluctuations between the remaining responses are

therefore often called ‘noise correlations.’ However traditional noise correlation analysis was

not appropriate in this case for the following three reasons: 1) the untuned neuronal subpopu-

lation has no stimulus-dependent response; 2) in tuned neurons stimulus-driven response

explains only a small portion of overall variability in tuned neurons (Fig 2B), making tradi-

tional noise-correlation analysis unsatisfactory for these neurons as well; 3) finally, V1 popula-

tions in mice, cat, and macaque are characterized by global cofluctuations common to every

neuron [22,42,43] such as covariance driven by running (Figs 1B and 3B). Therefore in order

to study pairwise noise correlations within and between subpopulations we used partial-corre-

lation analysis that allowed us to account for stimulus-driven responses and population-wide

co-fluctuations in both tuned and untuned neurons.

Visual stimuli were presented in 5-minute blocks. Each block of visual stimuli contained

three repetitions of each direction in pseudo-random order and corresponding luminance

matched grey periods. While the order of grating stimuli were pseudo random in each block the

order was maintained between blocks. For each pair of neurons, the average activity across all

remaining blocks, other than the block considered at that time, represented the stimulus-

Fig 4. Correlations during grating and grey stimuli. (A) Mean activity correlation between stimulus conditions, within and

between subpopulations (mean+/-std in black; individual datasets in grey). Significance determined with Tukey-Kramer corrected

one-way ANOVA at alpha = 0.01 (tuned-tuned p = 0.004; tuned-untuned p = 0.999; untuned-untuned p = 0.001) (B) Correlations

within grating and grey trials for tuned neurons (mean+/-variance pooling neurons with given difference in tuning over datasets).

https://doi.org/10.1371/journal.pcbi.1006153.g004

Triplet motifs underlie predictions of single-trial responses

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006153 May 4, 2018 8 / 23

https://doi.org/10.1371/journal.pcbi.1006153.g004
https://doi.org/10.1371/journal.pcbi.1006153


dependent responses capturing tuning properties, when present. Additionally, we accounted for

the mean within-block population-wide activity of all remaining neurons. Consequently, we

were able to compute a partial correlation coefficient in each block between the activity of every

pair of neurons, controlling for stimulus responses and population co-activity (Fig 5A). The

mean partial-correlation across blocks is taken as the final correlation strength and entered as

an edge weight into the functional connectivity matrix. We also added directionality to the par-

tial-correlation by examining the mean cross-correlogram across blocks for the neuron pair. If

the peak value occurs at lag 0 (i.e. within the same imaging frame), the edge was bidirectional,

otherwise the edge was in the direction of positive lag. Lags greater than 500ms were thrown

out and correlations set to zero. This resulted in a functional network described by a directed

weight matrix. Though we interpret these partial-correlations as equivalent to noise correla-

tions, the correlation matrices are different from traditional noise correlations in two important

ways. First, many pairs of neuron correlations are exactly zero (51.7+/-7.2%), and second, non-

zero correlations are asymmetric (Fig 5B). This allows us to analyze these matrices from a

graph-theoretic perspective representing the functional partial correlations as a weighted,

directed graph. Graph representations of pairwise edges allow us to analyze population-wide

statistical features of the correlation structure. Overall, partial-correlation strengths, synony-

mous with edge weights, were long-tailed, centered slightly above zero (Fig 5C), similar to

noise-correlations observed elsewhere [36]. As expected, tuned edge weights were similar to

Fig 5. Partial correlation matrices representing trial-by-trial covariability. (A) Edge weight estimated by mean

partial correlation. Fluorescence traces of a neuron pair (i, j) within one movie, and three variables accounted for in

partial correlation: remaining-movie average activity of i, j and within-movie average activity of remaining population

(top). Edge direction set by offset of peak (tmax) in neuron i, j correlogram (mean across movies). (B) Partial-correlation

matrix sorted by subpopulation showing dense within- and between-population correlations. Neuron pair entry from

(A) in white. (C) Kernel-density estimate distribution of all edge weights (mean+/-std across datasets). Inset shows

right-tail of the strongest edges. (D) Tuned edge weights match overall stimulus correlations, despite accounting for

stimulus response, and slightly weaker between-subpopulation edge weights (mean+/-sem over datasets).

https://doi.org/10.1371/journal.pcbi.1006153.g005
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signal correlations [36,37], with similarly tuned neurons having larger edge weights on average

(Fig 5D).

Graph structure of partial-correlations

We next analyzed the partial-correlations within and between tuned and untuned subpopula-

tions. The graphs exhibit dense correlations with varying strengths among subpopulations (Fig

6A). To analyze biases in edge strengths, we thresholded the matrices at increasing values, setting

all edges below each threshold to zero. Among all edges, within-tuned connections are more

likely, while within-untuned and between-subpopulations are less common (Fig 6B; within-

tuned 54.2+/-8.6%, within-untuned 44.1+/-6.0% between 43.9+/-6.2%). Between-subpopulation

connections remain the least likely at higher thresholds, but among the strongest edges, within-

untuned connections are the most likely. We then recomputed partial-correlation matrices,

exclusively using frames during the grey condition or during grating condition to see how corre-

lation strengths were affected, despite controlling for mean stimulus-dependent activity. The

two resulting matrices did not have significantly different edge strength (stimulus 0.12+/-.02;

grey 0.12+/-.03; p = 0.75 one-way ANOVA). However, probability of connection was higher

within grey frames (grating 45.3+/-6.5%; grey 58.0+/-8.2%; p = 5.8�10^-7 one-way ANOVA),

indicating a higher degree of interconnectivity in the population in the absence of stimuli. When

analyzing magnitude of edge strength differences between grey and grating matrices, we found

Fig 6. Directed graph structure of partial-correlation matrices. (A) Example graph representation of matrix in (5B), nodes colored by subpopulation, edges colored

by connection type as in (B-F), edge thickness represents absolute-value correlation strength. Blue nodes and edges indicate tuned neurons and their interconnections,

orange untuned neurons and edges and grey indicate edges between tuned and untuned neurons. (B) Probability of connection by connection type for matrices with

edges weaker than an increasing threshold set to zero. (C) Difference in edge strength between matrices using exclusively grating or grey frames. (D) Connection

probability as a function of distance between neurons. (E) Mean lag of edges over neuron distance (F) Probability of a bidirectional edge at increasing thresholds,

normalized by bidirectional probability assuming independence of edges. Plots in (B-F) show mean+/-sem across datasets.

https://doi.org/10.1371/journal.pcbi.1006153.g006
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that all connection types changed similarly with a mean near zero (Fig 6C; within-tuned -0.011

+/-0.097; within-untuned -0.005+/-0.103; between -0.008+/-0.093).

Since population dynamics are partly constrained by synaptic connectivity [38], we evalu-

ated whether there was a spatial component to the weight matrices. Edge probability fell

monotonically with distance between neurons, similar to traditional noise correlations [36]

and synaptic connections [8,39]. Notably, the decay in connection probability is slower within

tuned neurons compared to within untuned neurons (Fig 6D). Between-population decay lies

in the middle. If the spatial structure of untuned correlations is exclusively driven by local con-

nectivity, then bottom-up sensory drive is the most likely source for the longer range of func-

tional correlations among tuned neurons. Furthermore, the mean lag (delay of the cross-

correlogram peak used to determine edge directionality) is greater over longer distances and

accumulated evenly across subpopulation connection type (Fig 6E). Assuming a linear change

in lag over space, these data suggest the speed of functional correlations in this preparation is

roughly 25 mm/s. Despite allowing for directional edges, nearly half of all edges were bidirec-

tional (42.5+/-16.8%). As a function of edge strength, bidirectional edges are more prominent

within-subpopulations, and are strongly biased toward the strongest weights (Fig 6F). Thresh-

olding at increasing edge strengths sparsifies the matrices, so we normalized the bidirectional

edge counts by the probability of bidirectional edges assuming connections are placed ran-

domly. Among all edges, bidirectional edges occur less often than random. The strongest

edges, however, are roughly 5 times more likely to be bidirectional than random. Overall,

zero-lag connections are less frequent between tuned and untuned neurons, suggesting a

transmission or propagation of information, rather than simultaneous representation of the

same information between subpopulations.

Modeling trial-to-trial variability from local population activity

Because trial-averaged tuning poorly captures trial-to-trial responses we asked whether infor-

mation in the local population could better explain V1 trial-to-trial response variability. Pair-

wise correlations have been shown to capture a significant portion of the complexity in

population activity [17]. We tested whether the activity of a neuron could be modeled from the

activity of its neighbors that had a non-zero correlation. Since correlation coefficients capture

the linear relationship between neuron coactivity, we used a simple linear combination of the

input neuron activity with partial-correlation coefficients (edge strengths) as weights. This

model gave a time-varying prediction of the fluorescence of a given neuron, which was then

rescaled by an offset and a gain to account for different numbers of input neurons (Fig 7A). In

many cases, this model resulted in highly accurate predictions of activity. Mean squared error

of the reconstruction was small, and often near optimal compared to weights estimated by

regression (Fig 7B). Tuned neurons were slightly better-modeled on average than untuned

neurons (tuned MSE 0.014 median, 0.037 inter-quartile range; untuned MSE 0.017 median,

0.046 inter-quartile range), possibly because of the additional stimulus-dependent information

captured by other tuned inputs. The ratio of MSE to mean-squared fluorescence from the true

trace, subtracted from one, gives the percent variance explained of the model for each neuron.

The optimal reconstructions from regression explained 77.2+/-15.2% of the variance in activity

across all neurons (n = 4531). Using partial-correlation coefficients as weights performed near

this upper-bound, at 65.8+/-17.1%. We tested the robustness of the partial-correlation based

predictions modeling 5 minutes of fluorescence change, corresponding to one block, using a

functional network built using 45 min, corresponding to the nine other blocks, of non-over-

lapping recordings to recompute the weights. We note that one block, i.e. five minutes of stim-

ulus epochs, corresponded to three stimuli at each of the 12 directions and interleaved grey
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periods. We then tested our predictions on the left-out 5 minute dataset (repeated to leave out

each dataset once). On this cross-validation procedure, the average performance on the left

out epoch reached 55.4+/-18.9% variance explained.

We selectively removed either tuned or untuned input neurons to evaluate the relative contri-

butions to model predictions. The accuracy of prediction decreased more when removing

within-subpopulation inputs as compared to removing between-subpopulation inputs, but the

decrease is small and distributions across neurons strongly overlap (Fig 7C). Within-subpopula-

tion inputs are more frequent, however, so removing a larger fraction of inputs should be

expected to have a larger impact on our ability to model neuronal fluorescence. On a single neu-

ron basis, correlations between tuned and untuned neurons both contribute to predicting time-

varying activity. We next asked whether our model based on local population activity could also

predict trial-averaged tuning properties. For tuned neurons, we used the modeled fluorescence

traces to recompute the mean fluorescence in each grating direction. The average responses in

direction space were added together to obtain a mean tuning vector. The modeled fluorescence

had very similar tuning properties to the data, as measured by the cosine similarity between

model and data tuning vectors (Fig 7D). The modeled activity was constructed from a neuron’s

input edges; we also asked if a neuron’s outgoing edges were related to tuning properties, which

may indicate neurons that are good at decoding the stimulus (strong tuning) were also good at

decoding activity in its neighboring neurons (strong outgoing edges). However, there was nearly

zero correlation between the tuning strength of tuned neurons and its mean outgoing connection

strength (r = 0.04, p = 0.02). Local population activity therefore contains information to capture

Fig 7. Modeling time-varying fluorescence from partial-correlation graphs. (A) Illustration showing linear combination of incoming-edge neighbors

fluorescence traces and rescaling to predict a given neuron’s activity. (Bi) Reconstruction quality across tuned and untuned neurons, quantified by mean-

squared error (MSE) of reconstruction, compared to MSE using optimal weights (marginals in grey; arrows show neuron from (A)) (Bii) zoom in on

neurons with best reconstruction. (C) Increase in MSE when selectively removing within- or between-subpopulation connections (boxplots show

median, quartiles, with whiskers extending to most extreme value within 1.5�inter-quartile range outside quartiles). (D) Similarity of mean tuning vector

between tuned neuron and reconstructed average activity.

https://doi.org/10.1371/journal.pcbi.1006153.g007
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trial-to-trial variability as well as trial-average stimulus response properties, but a neuron’s depen-

dence on the stimulus does not affect its local population correlations.

Pairwise and motif contributions to model performance

To investigate how individual neurons inputs contribute to reconstruction of activity, we selec-

tively removed input neurons based on their edge strength and measured the increase in

reconstruction error (MSE), normalized by total mean squared fluorescence in the neuron. As

expected, the strongest edges contribute the most to activity reconstruction with the strongest

25% of weights containing over half of the reconstruction capability, whereas removing half of

the weakest edges had no discernible effect (Fig 8A). Interestingly, randomly removing edges

does not linearly reduce prediction performance. This suggests a level of redundancy in the

predictive information of input neuron activity. Accounting for the cumulative weight re-

moved, we still found worse performance when removing the strongest edges first, and remov-

ing half of the total weight using only the weakest edges has minimal effect on reconstruction

error (Fig 8B). Normalizing for the total weight removed reveals a nearly-linear increase in

reconstruction error when removing the strongest weights, suggesting that these neurons may

hold independent information from the remaining input pool.

To address the possibility of synergistic or redundant information between input neurons,

we analyzed connections between triplets of neurons termed ‘motifs’ in graph theory literature.

Triplet connection motifs are built up from pairwise connectivity and collectively represent

higher-order connectivity patterns that cannot be captured by individual edges, and can have

strong implications for computation and information propagation within graphs [27]. We

looked at the clustering of triplet motifs for each type of triangle that can be formed with

directed edges (Fig 8C) [40]. Clustering is a measure of how many motifs are present among a

neuron’s neighbors given its input and output connections. In comparison to Erdos-Reyni

graphs, which have uniform, low levels of clustering across motifs, cycles of edges in the data

are less clustered on average, with all other motifs showing elevated clustering. The middle-

man motif shows the strongest clustering. Similar results have been found in activity generated

by simulated and ex vivo neural networks, although fan-in clustering was higher than middle-

man [23]. To address the possibility that triplet motifs are responsible for explaining more of

the neuronal response than pairwise edges alone, we analyzed the relationship between motif

clustering in single neurons and the variance explained by the predicted activity. Because the

magnitude of clustering is different across motifs, we first z-scored clustering coefficients, then

computed the mean across neurons with different levels of variance explained. Neurons with

the best reconstruction showed higher clustering of middle-man motifs and lower cycle clus-

tering, relative to other neurons in the population (Fig 8D). Total clustering, as well as fan-in

and fan-out, had weak, positive correlation with variance explained. Together, these relation-

ships map directly onto the overall prevalence of the graph motifs, suggesting that the graph

structure has an important function in representing population information.

Because the motif with the highest mean clustering was also most indicative of model perfor-

mance, we hypothesized that the partial-correlation structure might underlie our ability to predict

neuron activity from its local population. Interestingly, across fields of view, the total variance

explained in the population increased with number of neurons imaged (Fig 8E; r = 0.58). To com-

pute population variance explained, we took the sum of all squared prediction errors (residuals)

across neurons in a field of view, divided by the sum of the squared population fluorescence activ-

ity, and subtracted from one. This improvement of variance explained across the population with

more recorded neurons suggests that, in addition to motifs, total neurons sampled in the popula-

tion determines our ability to measure a neurons’ single trial dependence on its local population.
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Moreover, the linear trend had no discernible plateau, so representing the local population may

require recording from more than 300 neurons simultaneously.

Discussion

Summary and correspondence with previous findings

We sought to describe the interrelationships within local populations of V1 neurons, including

tuned and untuned neurons, as they relate to single-trial responses to grating stimuli. We used

Fig 8. Pairwise and triplet motif contribution to model performance. (A) Increase in mean-squared error (MSE) by number of edges

removed, normalized by neuron total MSE (mean+/-variance across all neurons). (B) Increase in MSE by cumulative weight removed

(mean+/-variance). (C) Clustering of triplet motifs in graphs (illustrated in left column) for each type of directed triplet motif. Box-plots as

in Fig 7. Mean clustering was normalized by sparsity-matched Erdos-Reyni graphs. (D) Mean clustering coefficient, z-scored by mean/std

for each motif type in (C), at different levels of model prediction showing neurons with best reconstruction had highest middle-man

clustering. (E) Total population variance explained for each dataset (colored by mouse identity) shows better performance with more

neurons imaged (linear trend in grey).

https://doi.org/10.1371/journal.pcbi.1006153.g008
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two-photon imaging to record from L2/3 excitatory populations constitutively expressing cal-

cium indicator GCaMP6s. Neurons with similar response properties showed stronger co-vari-

ability on average, but across the entire population there was a broad distribution of

correlations driven, presumably, by a confluence of sensory drive and activity in the local pop-

ulation. The functional correlations in the recorded populations were sufficient to predict

activity in individual neurons, far surpassing predictions from tuning characteristics alone.

The dependence on local population activity reinforces theories of layer 2/3 acting under

strong modulation with sparse activity and weaker dependence on sensory drive than layer 4

[41]. We summarized the structure of correlations as directed, sparse matrices in order to ana-

lyze population dynamics from a graph theoretic perspective. We demonstrate that a simple

population model capable of predicting single-trial neural responses is also able to accurately

predict trial-averaged tuning responses, a key feature of V1 function. We found that the preva-

lence a specific triplet connectivity motif, built up from pairwise correlations, corresponded

with our ability to predict activity on single-trials. This result could not have been observed

from only studying pairwise correlations and motivates the continued use of graph theory to

study neural population dynamics.

The single-neuron response properties in our data replicate imaging and electrophysiological

results in awake recordings of V1 including proportion of tuned neurons [29,30,36], and vari-

ance explained by the mean tuning curve [30]. Both tuned and untuned neurons have low firing

rates on average, though estimation of firing rates from calcium imaging is not always straight-

forward. We note that single neuron properties, including firing rate and trial-to-trial variance,

can change substantially between animal models and in different states of anesthesia [42,43].

Population structure of pairwise correlations

We found that the magnitude of signal correlations between tuned and untuned subpopula-

tions do not change between grey and grating stimulus conditions, while within subpopulation

correlations do change. Perhaps ubiquitous changes would be more expected, or exclusive

changes among neurons modulated by the stimulus. Within subpopulation correlations

change in opposite directions, however, and could serve as a mechanism to balance changes

between the subpopulations.

We found that the spatial organization of the network is a strong determinant of correlation

structure with correlations decaying over distance, consistent with paired patch clamp record-

ings [8] and the correlation structure of activity in isolated preparations [44]. Correlation matri-

ces were computed as an asymmetric partial correlation coefficient, accounting for stimulus

and population effects, to allow the incorporation of untuned neurons into traditional noise

correlation analyses. While this approach differs from standard noise correlation estimates, the

magnitude of correlations and dependence on tuning similarity replicate previous results mea-

suring noise correlations [36]. For this reason, we interpret the partial correlations as measuring

trial-to-trial covariability, and as being broadly equivalent to noise correlations. Tuned neurons,

which combine feedforward sensory inputs with recurrent inputs, show a slower spatial decay

of correlational values than untuned neurons, the latter of which presumably are driven more

exclusively by recurrent, local inputs. These data show than subdividing the population by their

response to grating stimuli can differentiate rates of spatial decay within the network.

Noise correlations are hypothesized to be driven in part by shared synaptic input [45]. Spa-

tial dependencies of feedforward and recurrent connectivity can qualitatively change the spik-

ing activity in network models [46]. The relatively small diameter of the fields of view imaged

here (<1mm vs 10mm) does not allow us to differentiate between the two modes of activity

predicted by these models. These data suggest, however, that functional recurrent correlations
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have less spatial extent than feed-forward functional correlations. To our knowledge, analo-

gous synaptic connectivity estimates do not exist for mouse V1.

In addition to spatial structure of correlations, we found an increase in mean temporal delay

of correlations over distance. This delay spans roughly 20–50 ms in our field of view and is

therefore likely to reflect timescales of functional correlations rather than monosynaptic trans-

mission delays. We have previously found that functional correlations are indicative of synaptic

connections, in some cases, when considering synaptic integration rather than synaptic delays

[23]. The implied speed of this delay accumulation is much faster than propagating LFP waves

observed in macaque M1 [47] after normalizing for total cortical surface area [48]. The propaga-

tion of beta-oscillations and temporal delays of functional correlations likely have different

underlying mechanisms, which may explain the different speeds.

Prediction of single-trial responses from pairwise correlations

We were able to extract a substantial amount of predictive information from the local popula-

tion using a simple, linear model. Other approaches have successfully predicted single-trial

responses from ongoing population activity at a larger spatial scale, averaging over many

neurons in a population [49]. In contrast, we use a large, unbiased sampling of the local popu-

lation with single cell resolution to predict variability on single trials. Alternative models incor-

porating known neuronal nonlinearities [50], or more sophisticated or biologically-relevant

predictive models [51], may have improved performance. Consequently, the increase in total

variance explained with population size may show different trends with alternative models.

Nevertheless, we chose this modeling approach to maintain ease of interpretation and utilize

the linear correlation coefficients estimated from the data in a straightforward manner. The

linear models had good performance, and allowed us to remove input neurons without labori-

ously re-training the models. This straightforward modeling approach may not capture all of

the information present in the local population, but its performance sets a lower bound on pre-

dictive information in the population. A small subset of neurons have high mean-squared

error of predictions, and we speculate that we have not sampled enough of the population to

predict these neurons given that total variance explained scales with population size. Neuron

activity was only predicted from the in-degree neurons, rather than the entire population,

reducing the number of parameters by 52+/-22% across neurons, though in either case,

parameters scale by order N. These results substantiate previous models showing that the col-

lection of pairwise relationships in large populations can explain complex activity patterns

[17]. The predictions of single-trial activity that are obtained from local activity are, on one

hand, a description of inter-neuronal dependencies in recurrent networks, and on the other

hand, are capable of recapitulating trial-averaged tuning properties, extending these depen-

dencies to stimulus encoding. We further explored this idea by identifying a specific motif of

pairwise correlations underlying accurate predictions of neuron activity on single-trials.

Functional consequences of triplet motifs

The middle-man motif underlying the most accurate predictions is a specific pattern of pair-

wise correlations and represents a higher order feature of covariability. Local populations have

been shown to contain such high-order correlations, but were not seen at larger spatial scales

[52,53]; further experimentation is necessary to test whether functional triplet motifs occur

across thousands of microns. The finding that middle-man motifs underlie the best predic-

tions of activity may be initially surprising from the connection pattern of the motif. Com-

pared to the fan-in motif, which has two input connections, the middle-man has one input

and one output connection, and acts to route connections from its input to its target. However,
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the motifs were quantified using the clustering coefficient, which normalizes motif count by the

total number of possible motifs (i.e. high fan-in clustering doesn’t correspond to high in-

degree). The functional significance of any given triangle motif clustering is unknown and is

likely dependent on the underlying system represented by the graph. In a neural network, mid-

dle-man clustering may indicate a hub-like property common in the brain [54], having a combi-

nation of convergent and divergent correlations. The cycle motif similarly has a combination of

convergence and divergence, yet its clustering has a negative effect on prediction accuracy. The

difference in the two motifs is the direction of connections between neighbors. In these net-

works, it may be that cycle clustering reflects recurrent, redundant correlations reducing our

ability to predict activity from the population. Conversely, the middle-man motif is isometric to

fan-in and fan-out motifs, and could allow for transfer of information between motifs, and in

turn increase predictive power. Finally, this result demonstrates that in addition to providing

insights into synaptic mechanisms underlying dynamics [23], network science can also provide

insights into predictions of single trial neural responses as we have demonstrated here.

V1 is the first stage in which visual information is encoded in densely recurrent cortical net-

works. Thus, in order to understand activity patterns in V1, one must take into account visual

drive as well as local network activity. We have provided a quantitative comparison of the rela-

tive influences of these two factors in awake, ambulating mice. Local network effects dominate

on single trials, highlighting the importance of investigating cortical computation from a pop-

ulation perspective in order to understand how information is encoded in single trials. Popula-

tions of neurons exhibit emergent properties beyond the sum of their individual neurons and

connections, and we use the analytic framework of graph theory to begin unraveling this emer-

gent structure.

Materials and methods

Animals and surgery

All procedures were performed in accordance and approved by the Institutional Animal Care

and Use Committee at the University of Chicago. Data was collected from C57BL/6J mice of

either sex (n = 4 female; 4 male) expressing transgene Tg(Thy1-GCaMP6s)GP4.12Dkim (Jack-

son Laboratory) between ages P84 –P191. After induction of anesthesia with isoflurane (induc-

tion at 4%, maintenance at 1–1.5%), a 3mm diameter cranial window was implanted above V1

by stereotaxic coordinates and cemented in place alongside a custom titanium headbar. Mice

recovered for at least 8 days before intrinsic signal imaging to identify V1 followed by two-

photon data collection.

Intrinsic signal V1 identification

Boundaries of V1 were identified by intrinsic signal imaging post-surgery [55] (Fig 1A, left]. Mice

were anesthetized with isoflurane and head-clamped under a CCD camera (Qimaging Retiga-

SRV). A vertical white-bar stimulus (100% contrast, 0.125Hz) was repeatedly presented on an LED

monitor (AOC G2460) approximately 20cm from the contralateral eye while capturing cortical

reflectance under 625nm illumination. The retinotopic mapping of V1 was then estimated at each

pixel from the phase of peak reflectance driven by increases in activity-dependent blood flow.

Data collection

Two-photon imaging was collected from awake, head-fixed mice on a linear treadmill. Run-

ning speed was measured with a rotary encoder attached to the treadmill axle. A L2/3 field of

view (roughly 800μm diameter) in V1 was identified with galvanometer-mirror raster
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scanning (Cambridge Technologies; 6215H). Once a suitable field of view was found, raster

scans (1Hz) were continuously acquired for roughly 10 minutes alongside visual stimulation.

Neurons (n = 72–347 per field of view) were then automatically identified using custom image

processing software for imaging during visual stimulation using Heuristically Optimal Path

Scanning [56] at 25–33 Hz). All imaging was performed at 910nm (Coherent; Chameleon

Ultra) with a 20X 1.1NA Olympus objective and GaAsP PMT (Hamamatsu; H10770A-40).

Field of view size was estimated by fitting circles to a single raster scan of 15μm fluorescent

microbeads and used for each dataset, though true field of view size may vary up to 8% across

datasets from realignment of laser beam path.

Visual presentation

Drifting grating stimuli were presented on an ASUS VG248QE, 20cm from the contralateral

eye at 60Hz; 60cd/m2. The mean luminance was measured and gamma correction was per-

formed and confirmed using a luminance meter. Square-wave gratings were shown at 80%

contrast, 2Hz, 0.04 cyc/deg at 12 evenly spaced directions. Gratings were presented for 5s,

interleaved with 3s mean-luminance grey screen. Three repetitions of each orientation were

presented in a pseudo-random order, resulting in a roughly 5min stimulus movie. The grating

order was preserved between movie presentations, and mice were shown 8–11 repetitions of

the movie (24–33 repetitions of each direction).

Data acquisition and pre-processing

Stimulus presentation was monitored with a photodiode (Thorlabs) and synchronized with

running speed and imaging frames at 2kHz. For each neuron, baseline fluorescence was esti-

mated from raw fluorescence by thresholding to eliminate spike-induced fluorescence tran-

sients and smoothed with a 4th-order, 81-point Savitzky-Golay filter. Fluorescence time-series

were then normalized to percent change from baseline (dF/F0) using this time-varying base-

line. Spike inference from fluorescence traces was performed using the OASIS algorithm [33]

implemented using software made freely available (github.com/j-friedrich/OASIS). Inference

outputs probability of spiking at each time point. As commonly done [57], probabilities were

thresholded to obtain a binary spike train.

Response properties and tuning classification

Neurons were classified as visually responsive if the mean response to any grating was signifi-

cantly greater than the mean response across all grey periods by Dunnett-corrected one-way

ANOVA (alpha = 0.01). In these analyses, each trial response is the mean fluorescence across

the entire grating presentation (5000ms), or the last half of the grey presentation (1500ms) to

allow for fluorescence from grating responses to decay. Responsive neurons were then tested

for statistically significant orientation- or direction-tuned responses according to the trial vec-

tors in orientation or direction spaces ([58] for more detailed methods]. For significantly

tuned responses, tuning curves were then fit with an asymmetric-circular Gaussian to signifi-

cantly tuned neurons. Tuning curve parameters (baseline, tuning width, peak amplitudes, and

preferred direction) were fit repeatedly using randomized initial conditions. The parameter set

that minimized mean-squared error was maintained.

Signal correlations

For each neuron, the mean responses in each trial (using the same time windows as for tuning

classification) for either stimulus or grey trials were used as response vectors. Typically, these
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response vectors had 360 elements (12 directions, 30 trials each). The correlation coefficient

between each pair of these vectors was used to compute a pairwise correlation matrix for the

grating and grey conditions. We did not shuffle responses, therefore these values measure the

combination of signal and noise correlations.

Partial correlation matrices

For each pair of neurons, pairwise-correlation was computed as the mean partial correlation

between their fluorescence across movies while accounting for three variables. This was com-

puted with a built-in MATLAB function (partialcorr.m). We computed these correlations on

time-varying traces of activity, rather than time-averaged trial activity as done in previous cor-

relation analysis. Controlling for a single variable can be computed with the following equa-

tion, where rx,y is the correlation coefficient between time-varying fluorescence traces x(t), y(t),
and rx,y|z denotes the partial correlation between x(t) and y(t), controlling for z(t):

rx;y_z ¼
rx;y � rx;zry;z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

x;z

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

y;z

q

Here, x(t) is the fluorescence trace of the ‘input’ neuron, y(t) is the fluorescence trace of the

‘output’ neuron, and z(t) represents the three control fluorescence traces. Controlling for more

than one variable can be achieved by successive iterations of this procedure. This was com-

puted for each movie, or 5-minute block of grating presentations that was repeated in each

experiment. The first two control variables are the mean response of the two neurons in all

other movies, accounting for the stimulus-driven responses. This is similar to normalizing by

the mean response as in traditional noise correlation estimates. The third control variable is

the within-movie mean fluorescence of all other neurons and was included to control for pop-

ulation-wide covariability, for example running speed effects. Furthermore, the cross-correlo-

gram between the two neurons’ fluorescence traces, averaged across movies, was used to

compute directionality of the correlation. The time-lag of the cross-correlogram global maxi-

mum determined the direction and lag of the edge. If the lag was zero, the correlation was bidi-

rectional. If the lag was greater than 500ms (roughly 14 imaging frames), no edge was

included.

Graph analysis

The partial-correlation matrix could equivalently be analyzed as a directed, weighted graph.

Open source software (Gephi) was used for visualization, with node layout determined by the

Yifan-Hu algorithm and tuned by hand. Edge weights less than 0.05 were set to zero for visual-

ization clarity. Erdos-Reyni (ER) null graphs were generated for each graph to match the mean

connection probability. The mean directed clustering coefficient across nodes was calculated

across 50 ER graphs and averaged for comparison with data. Clustering coefficients were com-

puted with binary matrices (nonzero weights set to one).

Modeling neuron fluorescence

To model neuron responses, we used a linear weighting of the fluorescence of every in-degree

using the weights in the partial-correlation matrix. At each time point, a weighted sum was cal-

culated, resulting in a time-varying predicted fluorescence trace. Because different numbers of

input neurons and varying calcium transient amplitudes, the modeled trace was then fit with a

linear offset and a gain to minimize mean-squared error with the true fluorescence trace.

These two parameters were not changed when input neurons were removed (7C, 8A, 8B). For
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tuned neurons, we also recomputed the trial-averaged tuning response of modeled activity.

The fluorescence over a grating presentation was averaged, then trials were averaged over

directions to obtain a mean direction-response. The sum of these vectors in direction space

gave the model-estimated tuning vector, and the cosine similarity with the data-derived tuning

vector was used to quantify the reconstruction of the tuning properties. Cosine similarity was

computed in direction or orientation space according to each neuron’s tuning properties. To

compute total population variance explained, modeled traces were subtracted from the data

traces to obtain residuals, and the ratio of total sum of squares across neurons were subtracted

from one as

1 �

P
i

P
tðXiðtÞ � ~X iðtÞÞ

2

P
i

P
tðXiðtÞÞ

2

where Xi(t) is the time-varying fluorescence trace of neuron i, and Xi(t) tilde is the predicted

trace.

Optimal weight estimation

Optimal weights for all incoming edges were computed for each neuron by LASSO regression as

min
b;b0

1

2N

XN

i¼1

ðyi � b0 � xT
i bÞ

2
þ l
Xp

j¼1

jbjj

 !

For weights β, and offset β0, with modeled neuron fluorescence as y and input neuron activ-

ity as x. Weight estimation and 5-fold cross validation to estimate MSE standard error was per-

formed with MATLAB R2016a implementation. The maximum regularization parameter (λ)

whose mean-squared error did not exceed the standard error of the minimum MSE was used

to find the set of optimal weights.
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