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Abstract
This article presents the application of a recent neural network topology known as the deep echo state network to the

prediction and modeling of strongly nonlinear systems typical of the process industry. The article analyzes the results by

introducing a comparison with one of the most common and efficient topologies, the long short-term memories, in order to

highlight the strengths and weaknesses of a reservoir computing approach compared to one currently considered as a

standard of recurrent neural network. As benchmark application, two specific processes common in the integrated steel-

works are selected, with the purpose of forecasting the future energy exchanges and transformations. The procedures of

training, validation and test are based on data analysis, outlier detection and reconciliation and variable selection starting

from real field industrial data. The analysis of results shows the effectiveness of deep echo state networks and their strong

forecasting capabilities with respect to standard recurrent methodologies both in terms of training procedures and accuracy.

Keywords Deep echo state networks � Long short-term memories � Recurrent neural networks � Industrial application �
Blast furnace gas management � Forecasting

1 Introduction

In the last decade, process industry and, in general, all the

energy-intensive sectors, are facing increasingly complex

economic challenges, due to the variability of the raw

materials market, the enormous variability of the demand

for goods and services (let us just consider what is hap-

pening in the ongoing period characterized by the COVID-

19 pandemic) and the daily fluctuation of the energy

market, in terms of cost and availability of electricity and

fuels. Beyond the technical and economic difficulties,

another aspect that was once marginal is now fortunately

becoming more and more important, the sustainability of

production and consumption of energy and goods. The

industrial world has always been quite aware of the

undeniable environmental impact of some specific pro-

cesses, but the sensitivity toward those issues has emerged

in the last decades, with the consequent search for new

solutions that allow improving or renewing the nature of

production process itself.

In this context, processes and related supervision and

control systems are operated in a discontinuous way, trying

to guarantee a constant quality of goods and services while

operating in high-efficiency level in terms of energy con-

sumptions. This huge variability leads processes and sys-

tems to exert in ever increasing nonlinear operating point,

with a resulted difficulty in supervising and controlling

behaviors, which were rarely faced in the past by process

operator. The complexity of the new challenges puts a

strain on current control systems due to several different

issues. First, some systems may only be partially auto-

mated due to the restrictions dictated by specific applica-

tion regulations. Secondly, the control of industrial systems

is based on information and communications technology

(ICT) systems and computing platforms, such as pro-

grammable logic controllers (PLCs) and industrial com-

puters, characterized by computing performance that
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cannot always guarantee the implementation of particularly

complex algorithms. The slow evolution of industrial sys-

tems is dictated, on the one hand, by the fact that these

platforms are designed to guarantee the absolute safety and

operation of the plants, also from the point of view of

cybersecurity.

In the recent paradigm of Industry 4.0, artificial intelli-

gence (AI) can take on the role of a lubricant to release or

renew some consolidated mechanisms of the process

industry engineering [1], in order not only to revive

research in the field of the intelligent automation and

supervision, but also to open a more constructive discus-

sion for the study and implementation of approaches aimed

at improving the socioeconomic and environmental sus-

tainability of production processes.

In the last 5–10 years, in the industrial field, AI and

especially machine learning (ML) have received an ever-

increasing consensus and trust of the operators [2], given

the plethora of works in both the academic and civil/in-

dustrial fields. This consensus is the result of numerous

synergistic efforts by the academic and industrial worlds to

make research and technology transfer more efficient. The

results of these efforts show an increasingly accelerated

advancement of the digitalization of civil and industrial

contexts [3], thanks to the so-called data-driven method-

ologies, which are demonstrating, through their effective-

ness, the importance of updating ICT systems also through

more extensive sensorization of the plants and the relative

collection and transmission of data. In the academic field,

the direct relationship between the quantity, the quality in

terms of variance of information and the effectiveness of

the above techniques in terms of accuracy of predictions

and system modeling is well known. This specific issue in

the process industry is particularly delicate not only for

economic reasons, but mostly due to technical difficulties.

Just think about the challenge of measuring several state

variables that are difficult to access due to hazardous

environments, such as in the case of blast furnaces for the

production of pig iron, in which temperatures exceed

1600 �C. Furthermore, in some processes, the materials

and energy flow are not always easily measurable and,

therefore, it may be difficult to bring into play particularly

significant exogenous variables for increasing the predic-

tion/modeling accuracy in time regression task.

In context of prediction and modeling of industrial

processes is therefore important to select an adequate

methodology to overcome the abovementioned issues. The

most widespread methodology for modeling nonlinear time

dynamics in the context of AI is undoubtedly the one based

on the recurrent neural networks (RNN). RNNs parameters

are identified through learning techniques that, in general,

are based on backpropagation supervised methods. Several

algorithms for training RNN architectures are proposed in

the literature, such as backpropagation through time [4] and

approaches based on the use of extended Kalman filter

techniques [5]. The effectiveness of the algorithms depends

mainly on the experience in the selection of the appropriate

hyperparameters, the network architecture and the quality

of the data, which are exploited for the training. Gradient

descent-based algorithms are considered the standard

solution for training RNNs, despite suffering from

numerous problems such as exploding and vanishing gra-

dients phenomena [6]. Some solutions to this problem have

been proposed in the literature, such as methodologies

based on numerical regularization techniques introduced

by Pascanu et al. [7] and on appropriate heuristics for

selection of the hyperparameters of the training algorithm

[8]. In general, depending on the specific problem, the

identification of a sufficiently stable and reliable model

based on RNN techniques can be very complex. Despite

RNNs are considered universal approximators, their

application in time-critical applications is often impracti-

cal. The recent paradigm of reservoir computing (RC)

offers valid solution for the problem and can be seen,

among the different ML-based methodologies, as an

enabler for an effective technology transfer. Reservoir

computing has been introduced by Maass et al. [9] by

introducing a RNN architecture called liquid-state

machine.

In the context of industrial process modeling and fore-

casting, several RC methodologies have been presented in

the literature, among which echo state network (ESN) are

increasingly exploited and appreciated. An interesting

related application has been presented by Wang [10] in

which ESN and sparse AdaBoost forecast the electricity

consumption in industrial areas. Bianchi et al. exploited

ESN in combination with principal component analysis

decomposition to forecast the short-term electric load in the

power grid [11]. More recently, Zhang et al. [12] applied

ESNs in combination with Jordan neural networks and least

squares support vector machines in order to forecast short-

term electric load and electricity price. In the context of

process industry, Matino et al. presented a work related to

the forecasting of blast furnace gas through ESN tech-

niques [13], and Dettori et al. highlighted the effectiveness

of AI methodologies for modeling energy transformation

equipment in the industry [14]. Colla et al. extended the

concepts by presenting the application of outlier detection

and advanced variable selection to RC methodologies in

industry [15]. Pan exploited ESNs in control application,

within model predictive control structure with successfully

results [16]. The ESN paradigm, extended to implement

deep learning (DL) [17], has been successfully exploited in

different domains. For instance, deep ESNs (DESN) have

been recently applied by Kim and King [18] for time series

prediction. For the same kind of application, Hu et al. [19]
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proposed an ensemble Bayesian DESN network model,

whose flexible architecture allows overcoming some limi-

tations of shallow ESNs related to their fixed architectures

and difficulties in automatically determining the values of

their hyperparameters.

This paper discusses the application of DL for fore-

casting of the energetic content and chemical characteris-

tics of some process off-gases (POGs), which are produced

and partially reused, in the integrated steelmaking route.

Such forecasting models are components of a wider system

aimed at optimizing the distribution of such gases among

their consumers over a time horizon of 2 h by getting

maximum value from their usage and avoiding wastes. In

particular, this work proposes a comparison between deep

echo state networks (DESN) and long short-term memories

(LSTM) for modeling and forecasting the complex non-

linear behavior of the blast furnace (BF) process and of

some related auxiliary units (i.e., hot blast stoves) as far as

off-gas production and consumption are concerned. The

novelties presented in this work are related to the appli-

cation of DL methodologies and in particular DESN, for

forecasting the energy contents of processes that are

common in the steel industries, namely processes charac-

terized by state variables that cannot be easily measured

and poor available exogenous information.

The paper is organized as follows: Sect. 2 provides some

theoretical background on DESNs and LSTMs; Sect. 3

presents the considered industrial application; Sect. 4

provides details of the developed models and exploited

industrial datasets; Sect. 5 focuses on the obtained

numerical results, while Sect. 6 provides some concluding

remarks and hints for future work.

2 The problem of forecasting Blast Furnace
Gas production and consumption

The steelworks are energy-intensive industries, which are

always committed to improve their energy and resource

efficiency. In particular, within the integrated steelmaking

route, which produces steel from virgin primary raw

material (mainly iron ore and carbon), about 25% of the

production costs are related to energy [24]. Achieving

optimal exploitation of available energy sources is there-

fore of utmost importance and can lead to considerable cost

savings, by thus contributing to keep sector competitive-

ness on the global market. POGs are a particular by-pro-

duct of integrated steelworks. They are produced in some

main production steps of the route: the coke ovens (a pre-

processing stage for fossil Carbon), the blast furnace (BF),

which is fed with carbon coke and sintered iron ore to

produce pig iron, and the basic oxygen furnace, where pig

iron is converted into steel through a decarburization and

chemistry refinement process. POGs are rich in CO and H2

and thus have a significant net calorific value (NCV).

Therefore, they are generally recovered and exploited as

internal energy sources, fed to power plants to produce

electricity or exploited to produce steam. However, POGs

are not continuously generated: In some cases, their pro-

duction is concentrated in limited time intervals and their

features are not always constant, especially in terms of

NCV. This fact poses not negligible problems for their

optimal exploitation. Moreover, also POGs consumption

can be discontinuous, as it is partly related to the produc-

tion scheduling and it is subjected to a series of constraints

linked to the complexity of the gas, steam and electricity

distribution networks, which characterize each steelwork.

In other words, in a given time interval many consumer

processes can compete in POGs exploitation, although they

are not always directly linked to all the POGs producers,

which are active in the same interval. POGs can also be

stored into gasholders, which, however, show limited

capacities and dynamics and, thus, might not be capable of

fully satisfy consumers demands and/or to store all the

volume of gas produced by one single process. POGs over-

production occurs when gasholders are full and is over-

come by flaring the excess gas through the torches, but this

represents a waste of a useful energy source and implies

also CO2 emissions. On the other hand, POGs under-pro-

duction leads to the need of exploiting natural gas to meet

the unsatisfied energy demands, with a consequent costs

increase.

The problem of optimal management and distribution of

POGs in integrated steelmaking sites has already been

faced in the literature, due to its importance in reducing

costs and emissions. The problem to find the most suit-

able POGs distribution on a plant-wide basis is formulated

as a single or multiple objective optimization problem and

frequently solved via mixed integer linear programming

(MILP)-based approaches, such as in the exemplar works

of Kong et al. [25]. A further example is given by the work

of Porzio et al. [26], who developed a decision support tool

based on the application of flowsheeting models and multi-

objective optimization approaches in order to find the

optimal distribution of POGs. The same authors also

extended the same tool also to the analysis of possible gas

network modifications, which can further improve such

distribution [27]. However, this tool exploits static models

and does not consider the dynamics of POGs production

and demand; therefore, the associated approach cannot be

used for online POGs dynamic optimization. On the other

hand, the possibility to forecast POGs production and

consumption at least on a relatively short time horizon

(e.g., a few hours) facilitate timely reaction of the system

and support optimization over the whole time horizon.
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In particular, as far BF gas (BFG) is concerned, some

ML-based forecasting models can be found in the litera-

ture. For instance, Zhang et al. applied backpropagation

neural networks [28], while Yang et al. applied improved

least squares support vector machine and multiple linear

regression [29, 30]. However, none of these models fore-

cast the energetic value of BFG in terms of NCV, which is

a fundamental information, as the distribution of this gas is

not only based on the available volume flow, but also on

the conveyed energy compared to the needs and require-

ments of the different potential gas consuming processes

and utilities.

The present work faces the problem of forecasting the

amount and characteristics of the produced BFG on a

future time horizon of 2 h by using a restricted number of

process measurements and future knowledge of the process

scheduling. Together with the prediction of the BFG pro-

duction, the forecasting of BFG and coke oven gas (COG)

consumption in the hot blast stoves (also named Cowpers)

is also provided. In the BF process (which is schematically

depicted in Fig. 1), air is firstly preheated and then blown

inside the BF itself. Such preheating exploits combustion

of BFG and other byproduct gasses typically available in

some integrated steelworks, such as COG. Knowing in

advance the BFG and COG consumptions of the Cowpers

is a fundamental information in order to know which

portions of these two POGs will be available for other

consumers.

To sum up, the objective of the models is to predict the

production of POGs, in particular their energy content in

terms of NCV and volume flow, as well as their con-

sumption in the Cowpers.

For the model design, real data provided by industrial

partners were available and. in particular, a dataset related

to a period of 30 days with a sampling time of 1 min,

which is considered sufficient to describe the main

dynamics of the process and a wide range of operative

conditions. The available processes data refer to various

accessible process measures, useful for the plants control

and supervision. The measurement of the BF processes

state variables is complex and often not feasible, due to the

high temperatures involved. For these specific processes, it

is difficult to identify significant variables to describe the

process itself. For these reasons, starting from a large initial

set of variables, the first selection step was manually car-

ried out, through the analysis of the processes themselves

and the experience of the operators and plant managers.

The following data pre-processing allowed identifying

unreliable data through outliers detection techniques

[31, 32], and the final inputs set of each model were

selected by exploiting a variable selection methodology

based on genetic algorithms [33, 34].

The result of the data selection algorithms shows that

the main significant variables are the scheduling of the

respective process for 2 h ahead, the Boolean information

related to the activation of the process itself. The final list

of measurement points that characterize the processes and

the task objective of this work is presented in Table 1,

which provides an overview of the inputs and target vari-

ables and related units of measurement (UoM).

3 Theoretical background

In this section, the main characteristics of the neural net-

work architectures used in this work are introduced, with

particular attention to DESNs and LSTMs. LSTMs have

been exploited as a valid benchmark for the comparison of

the DESNs performances, through a RNN topology with

rather effective characteristics in the prediction of short-

and long-term nonlinear dynamics, typical of industrial

processes.

3.1 Deep Echo-State network architecture

Among RNNs, ESN topology emerges as a highly efficient

tool for reconstructing complex nonlinear dynamics,

through the reservoir concept, a particular hidden layer that

generates a rich set of dynamics when excited by an

exogenous input. This set of dynamics is then composed of

a readout layer to generate the input of the network. More

in detail, the reservoir acts as a nonlinear filter that enriches

the frequency content of the exogenous information to

improve regression tasks on a target. As the standard

RNNs, this particular architecture is a universal approxi-

mator [20] in the case of fading memory input/output

system, allowing to reconstruct nonlinear maps with high

accuracy. In the last years, the DL paradigm has been

exploited also for this particular topology, with the resulted

DESN developed by Gallicchio et al. [17, 21] that allows

simplifying DL RNN training through algorithms not basedFig. 1 Blast furnace and Cowpers processes
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on backpropagation routines. The DESN architecture,

which is depicted in Fig. 2, is composed of N reservoirs ri
connected in series and a readout that combines the

reservoirs dynamics to compute the output of the network.

From a mathematical point of view, the state of DESN x

is calculated combining the state of each reservoir layer xi
at each time k. In particular, the first reservoir r1 is excited

by the exogenous input vector u kð Þ, the state at the pre-

vious step k � 1 and a noise. The following layers are

excited by the updated state of the previous reservoir layer

xi�1 kð Þ and their state at the previous step k � 1. In general,

all the layers of the reservoir can be additionally excited

also by a feedback of the network output of the previous

instant, as shown in Fig. 2 (in green). For simplicity of

discussion, in this work the feedback of the output on the

state is not taken into account and is set to zero.

More in detail, the dynamics of the first and following

layers are calculated through the update function described

by the following equations:

x1 kð Þ ¼ f cinW in1u kð Þ þWr1x1 k � 1ð Þ þ m1 kð Þð Þ ð1Þ
xi kð Þ ¼ f cisW inixi�1 kð Þ þWrixi k � 1ð Þ þ mi kð Þð Þ ð2Þ

x kð Þ ¼ xT1 kð Þ � � � xTN kð Þ
� �T ð3Þ

where i is the i-th reservoir layer, f is the activation

function of the reservoir neurons (typically a tanh func-

tion), cin and cis are, respectively, the input scaling and

inter-scaling factors, W in1 and W ini the input matrices of

the first and i-th reservoir layer characterized by dimen-

sions n1 � nin and ni � ni�1, ni is the number of neurons of

the i-th reservoir, Wri is the i-th reservoir matrix, y is the

output of the network, and mi is a small amplitude white

noise. The output of the readout is calculated as:

y kð Þ ¼ f o Wox kð Þð Þ ð4Þ

where f o is the activation function of the readout neurons

that in time series regression task is typically the identical

function,Wo a no � nT matrix and nT is the total number of

reservoir neurons.

As mentioned before, the training algorithm of ESN

topology is one of the main effective aspects that charac-

terize this architecture in terms of performance and com-

putational burden, allowing to calculate only the readout

weights, unlike the case of standard RNNs. More in detail,

the training procedure consists of two sequential phases:

the network initializations and the readout training.

The objective of the first phase is to initialize the

reservoir in order to allow it to generate, during the sim-

ulation phase, sufficiently rich and stable dynamics; feature

that is called contractivity, thanks to which, neurons

gradually forget their previous activation. In the case of

shallow ESNs (i.e., made up of a single hidden layer of the

reservoir), this property has been extensively studied and

baptized echo state property (ESP), through works such as

that of Yildiz and Jaeger [22]. ESP has been then extended

to the case of the DESN in the work of Gallicchio et al.

[21]. These works define necessary, sufficient conditions

and empirical guidelines for the design of a reservoir

characterized of stability. More in detail, in the initializa-

tion phase, the reservoir matrices Wr i are randomly ini-

tialized with a sparse cW ri , with elements defined in the

range [-1, 1]. The sparsity of the matrices, defines the

percentage number of internal connections of the reservoir

neurons, which is typically set below 5%.

Table 1 Description of measurement points in the final dataset

Variables Description UoM

Scheduling of BFG process Boolean variable aimed at describing the status of the BF process. On (1), Off (0) –

Scheduling of Cowpers Boolean variable aimed at describing the status of the Cowpers. Heating Phase (1), Wind Phase (0) –

O2 content in cold wind Volume percentage of oxygen in the cold wind input to the BF before heating %

Cold wind flow Volume flowrate of cold wind input to the BF before heating m3/h

Hot wind pressure Pressure of hot wind in input to the BF bar

BFG production Volume of produced BF gas m3/h

CO content Volume percentage of carbon monoxide in BF gas %

H2 content Volume percentage of hydrogen in BF gas %

BFG consumption in the Cowpers Consumption of BFG in Cowpers m3/h

COG consumption in the Cowpers Consumption of COG in Cowpers m3/h

Fig. 2 Architecture of a DESN
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In order to design a contractive reservoir, the matrices

cW ri are normalized with respect to their spectral radius

q cW ri

� �
and scaled in order to obtain the desired spectral

radius �
q i

:

Wr i ¼ ~qi
cW ri

q cW ri

� � ð5Þ

In the case of DESNs, in order to guarantee the ESP, a

necessary condition states that the maximum spectral

radius between all layers in the reserve must be less than

one [21]. This condition can be considered as a guideline to

design a contractive reservoir and in general contractivity

must be empirically verified. The spectral radius is an

important hyperparameter that allows tuning the frequency

content of the dynamics generated in the reservoir. In

general, there is some parallelism between the stability

limit of linear discrete state space systems and the ESP

property for ESNs. In particular, in the case of linear state-

space systems, the systems are stable if the poles of the

transfer function are inside the circumference with a unit

radius. A stage of the initialization concerns the parameters

and the weights related to the input of each reservoir layer.

Even in the case of input matrices, elements are randomly

initialized with values in the range [-1, 1]. These matrices

are also scaled by additional coefficients cin and cis, called

input scaling and inter-scaling factors. A last important

hyperparameter that must be initialized is related to the

amplitude of the noise vi, whose level can be set with a

single value for all the reservoir layers. These factors allow

balancing the level of exogenous excitation of each reser-

voir layer, in such a way as to amplify this contribution or

not.

As mentioned before, the training phase consists only in

the calibration of the readout weights. All the parameters

Fig. 3 LSTM cell architecture and network example

Fig. 4 Input/output architecture of the models
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set during the initialization phase are not affected by

training routines. In particular, the readout can be trained

by minimizing the regression error through non-iterative

algorithms that outperform iterative backpropagation rou-

tines. A common solution for training the readout is the

Tikhonov regularization least square algorithm, which

allows calculating weights by minimizing the mean square

error on the training dataset:

Wo ¼ �YXT XXT þ kI
� ��1 ð6Þ

where �
Y and X are the sequences of target time series and

the state collection matrix the reservoir calculated through

Eqs. (1) and (2). k is the regularization coefficient of the

Tikhonov algorithm, which allows solving ill-posed matrix

inversion.

3.2 Long-Short-term memories

The long short-term memory (LSTM) introduced by

Hochreiter and Schmidhuber [23] has been an important

innovation in the RNN field, results of the research on the

issues related to the vanishing and exploding gradients that

negatively affect the effectiveness of standard RNN

architectures. The core of LSTMs are the cells, composed

of 4 main subblocks, the forget gate, the input gate, the cell

state and the output gate. Briefly, the forget gate modulates

the information relative to the last step and acts directly on

the memory capacity; the input gate modulates the infor-

mation related to the input that will be stored in the cell; the

cell gate is in charge of composing the memory of the

LSTM; the output gate calculates the output of the cell. A

set of cells (depicted in Fig. 3) can be connected in series

to compose a complex network.

4 Structure of the models

In this work, the modeling strategy was developed by

designing a model for each target variable (the target

variables are globally 4), capable of predicting its future

evolution for a time window of 2 h ahead, so that each

model is particularly specialized in the single task. In a

preliminary design stage, several attempts were carried out

to develop one single model forecasting all the four vari-

ables or two models specialized on two couples of target

variables. However, the results in terms of forecasting

accuracy were not satisfactory. Moreover, having a higher

number of input and output variables, the models were

more complex and required a longer time for both training

and output calculation. On the other hand, the specializa-

tion of each model on a single target variable led to more

accurate and simpler model, that also show a higher

computational efficiency, which is a relevant aspect for the

model implementation within a complex system devoted to

optimal POGs management.

The forecasting approach is based on a one-shot multi-

step manner, so that the k-th output of each model predicts

the future k-th time step. More in detail, the first two

models forecast the BFG volume flow and its net calorific

value (NCV), the third and the fourth ones, respectively,

the consumption of BFG and COG burned in the Cowpers.

The variable routing for each model is described in

Fig. 4.

In particular, the first model (BFG Flow) has in input the

scheduling of the process, the current O2 content mea-

surements in the cold wind, the cold wind volume flow, the

pressure of the hot wind and the BFG volume flow. The

inputs of the second model (BFG NCV) are the same

measurements and in addiction the current BFG CO and H2

contents. The inputs of the third model (BFG consumption

in the Cowpers) are the Cowpers scheduling and the cur-

rent measurements of the cold wind flow and the BFG and

COG consumption. The inputs of the fourth model (COG

consumption in the Cowpers) are the same inputs of the

previous model and in addiction the future 2 h predictions

of BFG NCV. Therefore, this last model is in cascade to the

second one related to BFG NCV.

5 Numerical results

The performance of the DESN-based architecture for the

considered forecasting tasks has been evaluated in com-

parison with the ones provided by an LSTM-based archi-

tecture, which exploited as a benchmark. In this work, the

LSTM architecture is configured as a series of input layer,

a LSTM layer, LLSTM fully connected layers and a linear

readout.

The first step of the modeling work has consisted in the

definition of the optimal architecture for each task, through

the selection of the hyperparameters. In the case of DESN

hyperparameters optimization concerns the number of

layers LDESN and neurons of each reservoir NR (equal for

all the layers), the spectral radius q equal for each layer, the

input scaling factor cin and the inter-layer scaling factor cis
(equal for each layer). In the case of LSTM, the selection of

hyperparameters concerns the number of fully connected

layers in series LLSTM and the number of neurons of each

fully connected layer NLSTM.

The selection of the hyperparameters is, in general, a

complex topic quite debated by academia; in the case of

DESN is in particular an open topic for scientific research.

An interesting related work of Gallichio et al. presents

some guidelines and recommends some algorithms for

their optimization [35]. In this work the hyperparameters
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optimization exploits a random search technique [36]

during which the hyperparameters have been randomly

varied with a uniform distribution in the ranges specified

later. The search stops 1000 trials with the objective of

minimizing the mean value of the normalized root mean

square error (mNRMSE) of all the outputs of the model,

evaluated on the validation set. In this work, mNRMSE has

been selected as objective function, as it is particularly

robust with respect to the mean absolute percentage error

(MAPE) or other common metrics, thanks to the formula-

tion that considers the overall range amplitude of the tar-

gets. Furthermore, the MAPE is not a robust measure

where intermittent target values (too many values equal or

near to 0) are treated.

mNRMSE ¼ 100
1

ny

Xny

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ns

PNs

k¼1
�
y j

kð Þ � yj kð Þ
� �2

r

max yj
� �

�min yj
� �

0

BB@

1

CCA

ð7Þ

where ny is the number of outputs of the network, Ns the

number of samples, �y j
is the output of the network and yj is

the target.

For the DESN the hyperparameters are varied in the

ranges: number of layers LDESN = [2 12]; total number of

reservoir neurons NTOT ¼ [200 2000], with resulting

NR ¼ floor NTOT=LDESNð Þ, q ¼ [0.1 1]; cin= [0.01, 10];

cis ¼ [0.1 1]; in the case of LSTM: LLSTM = [1, 10],

NLSTM = [30, 300].

The LSTMs have been trained through the adaptive

moment estimation (ADAM) training method [37] in

MATLAB environment.

The dataset for each model is composed of the measures

of 1 month of operative point, with a sampling time of

1 min, with a total of 43,200 samples. This dataset has

been divided in two parts: The first 50% is used for the

optimization of hyperparameters and for the following

training of the optimal networks, the remaining 50% is

used for their test phase. In the hyperparameters selection

phase, the first 50% fraction of the overall dataset is divi-

ded into 60% training and 40% validation. The dataset

fractions used in the training, validation and test phases

were selected after a preliminary analysis of the data

referring to the associated plant operating conditions. The

selected percentages ensure that all the operating phases

and process dynamics are meaningfully included in all the

data subsets, by making the models robust and accurate

when simulating all process phases and dynamics.

The DESN optimal network is summarized in Table 2,

which presents the results on the test dataset, while the

comparison between the DESN and LSTM optimized

models is reported in Table 3, for the training and test

dataset.

An example of 2 h ahead prediction of BFG volume

flow production and related NCV, COG and BFG con-

sumption in the Cowpers is presented in Fig. 5, where the

target is depicted in blue, DESN forecasts in yellow and

LSTM ones in orange. These figures show an example of

one-shoot multistep prediction of the process behavior for a

specific instant of prediction, in which the trends are nor-

malized for confidentiality constraints.

Figure 6 shows the behavior of NRMSE as a function of

the prediction distance in the case of the fourth model

(prediction of COG consumption in Cowpers) and high-

lights the difference in performance between DESN and

Table 2 Optimal DESN

architectures and test results of

each model

Model LDESN NR q cin cis Test mNRMSE

BFG Flow

BFG NCV

Cowpers BFG cons

Cowpers COG cons

7

5

5

5

90

139

293

180

0.549

0.991

0.447

0.722

0.154

0.214

5.10

0.073

0.952

0.031

0.022

0.691

6.7

7.3

6.09

9.87

Table 3 Comparison between

DESN and LSTM architectures
Model Architecture Training mNRMSE Test mNRMSE

BFG Flow DESN 5.02 6.70

LSTM 7.95 10.92

BFG NCV DESN 5.93 7.31

LSTM 8.36 16.6

Cowpers BFG consumption DESN 4.60 6.09

LSTM 4.95 6.38

Cowpers COG consumption DESN 8.08 9.87

LSTM 11.6 13.4
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LSTM architectures and the oscillatory trend of the error as

a function of the prediction distance. The tests show very

interesting and encouraging results. In particular, the

models that forecasts the BFG production and its NCV are

characterized by errors around 7% that, considering the

nonlinearity of the problem and the issues related to the

measurement of the state of the process, are very low and

suitable for control and supervision applications, providing

useful information and support to process operators. The

results related to the prediction of BFG and COG con-

sumption in the Cowpers are also very satisfactory and also

these models can be considered suitable for applications

related to control and optimization strategies.

The results show also the difference in performance

between DESN and LSTM. In each proposed task, DESNs

outperform LSTMs. In more details, DESNs obtains a

performance improvement, respectively, of 4.22%, 9.29%,

0.29% and 3.53%, for each task.

A further study that has been carried out on DESN

architectures concerns the sensitivity of the test results to

the variation of some of the hyperparameters. The study

has been carried out by varying the number of total neurons

in the reservoir, the number of layers and the spectral

radius, the most important hyperparameters for the training

of the network and for which the NRMSE is more sensi-

tive. The other hyperparameters were left constant with

(a) (b)

(c) (d)

Fig. 5 Prediction example of BFG volume flow production (a), BFG NCV (b), BFG consumption in the Cowpers (c) and COG consumption in

the Cowpers (d)
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respect to the results shown in Table 2. In particular, Fig. 7

shows the results related to the sensitivity analysis on the

fourth model (which forecasts the COG consumption in the

Cowpers). On the left, the trend of the NRMSE as a

function of the number of layers and of the number of total

neurons in the network is depicted, while on the right the

trend of the NRMSE as a function of the spectral radius and

of the number of neurons is shown.

The sensitivity analysis shows several interesting

results. Firstly, as expected, the error decrease with

increasing numbers of neurons and slightly increases pro-

portionally with the number of layers. The dependence on

the radius q instead shows a slight convexity. NRMSE is

not very sensitive to the spectral radius for a high number

of neurons, while it is more sensitive for a low number of

neurons. This type of analysis, of course, is to be

considered specific for each task and can generally be

carried out according to the task to be addressed.

The prediction accuracy is affected not only by the

hyperparameters values, but also by some exogenous

variables, which are either not available, due to intrinsic

lack of adequate monitoring systems, or not transferred in

real time and, thus, cannot be exploited in this kind of

models. For instance, the process knowledge suggests that

an accurate continuous and punctual qualitative and

quantitative characterization of the raw materials fed to the

BF would be really useful in improving the accuracy of

BFG models. However, so far no reliable monitoring sys-

tems are available in steelworks, which can provide this

kind of information. On the other hand, sometimes the

scheduling of plant operation is not fully respected, due to

unexpected events (e.g., not scheduled maintenance inter-

ventions slowing down the production) or to plant staff

Fig. 6 NRMSE trend for LSTM

and DESN in function of the

forecasting time lag in the case

of the model focused on the

prediction of COG consumption

in Cowpers

Fig. 7 Sensitivity analysis of DESN architecture, in the case of the model focused on the prediction of COG consumption in Cowpers, with

respect to: (a) number of layers and of total neurons in the network; (b) spectral radius and number of neurons
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decisions. However, such scheduling variations are often

not recorded in real time and can be only indirectly inferred

from some process variables with a relevant delay, that

negatively affect the prediction accuracy. In order to

decrease the effect of exogenous variable, improvements

are required on the sensing equipment, including devel-

opment and deployment of monitoring systems which are

beyond current state of the art as well as on the ICT sys-

tems, which allow fast recording of all scheduling modi-

fications. Furthermore, the implementation of predictive

maintenance practices could help avoiding unexpected

events, by thus eliminating the root causes of such

variations.

The developed models belong to a model library

included in a complex system dedicated to the management

of the gas and steam networks in integrated steelworks,

where the main POGs and steam producers and consumers

are modeled. The 2-h ahead forecasting of POGS con-

sumptions and demands are fed as inputs of an optimizer,

which is organized in two levels, such as schematically

depicted in Fig. 8.

The high-level optimizer implements a linear program-

ming formulation within a strategy based on the economic

model predictive control (MPC), which minimizes the

consumptions of natural gas (NG) and purchased electricity

and the disposal of excess POG through torches (and

emissions, as a consequence), by computing every 15 min

the reference set points for the low level. The low-level

optimizer distributes the different energy streams over a

prediction and control horizon of 2 h, with a control fre-

quency of 1 min, being a distributed controller, which

solves in real time a MILP formulation for each specific

network through several local economic hybrid MPCs.

The detailed description of this system is out of the

scope of the present paper, which is focused on one block

of the system that is highlighted in red in Fig. 4. However,

being both the high- and the low-level controllers based on

MPC, model accuracy is fundamental. Moreover, consid-

ering the time constraints and the not negligible number of

models and optimization actions to be computed in a single

time frame, the computational burden of each single model

needs to be affordable, despite the complexity of the pro-

cesses to model. Finally, the efforts required for the

Fig. 8 Overall scheme of the gas and steam network management system: the models treated in the present paper lie in the red block

Neural Computing and Applications (2022) 34:911–923 921

123



maintenance of the system, including the time required to

retune the models with new data, must be limited in order

to favor the system practical deployment in the industrial

field. The proposed DESN-based model is capable to pro-

vide good accuracy at an acceptable computational effort

for both computation and tuning and, therefore, represent

an ideal solution for the proposed system.

The tests of the system are ongoing, but the preliminary

results developed in a German steelworks are very

encouraging, showing a potential of drastic reduction of

both costs of purchase of NG and electricity (more than

20%) and flares of (more than 60%).

6 Conclusions

The paper proposes the application of a particular reservoir

computing approach based on DESN in order to model the

nonlinear dynamics typical of complex industrial pro-

cesses. In particular, the problem of forecasting the ener-

getic content of the off-gas produced by the BF, which

produces pig iron in integrated steelworks, as well as the

consumption of the same gas in the BF Cowpers, is faced.

Some DESN-based models have been developed, trained,

validated and tested by using real industrial data. The

hyperparameters of the DESN-based models are optimized

through a random search approach that aims to minimize

the validation error. The proposed DESN-based method-

ology is compared to an LSTM-based architecture in order

to assess the accuracy with respect to a well-consolidated

state-of-the-art approach. The results show a great advan-

tage in using DESNs to model the dynamic behavior of the

considered processes, with respect to the LSTM architec-

ture. The achieved results are satisfactory: The perfor-

mance of the trained models makes them suitable to an

effective integration within a control strategy for the

optimal distribution of POGs in the steelworks.

Future work will deal with the integration of the

developed models inside a complex decision support sys-

tem, allowing effective management of gas and steam

networks in integrated steelworks.
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