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Circular RNAs (circRNAs) are non-coding RNAs with covalent closed-loop structures and
are widely distributed in eukaryotes, conserved and stable as well as tissue-specific.
Malignant solid tumors pose a serious health risk to children and are one of the leading
causes of pediatric mortality. Studies have shown that circRNAs play an important
regulatory role in the development of childhood malignant solid tumors, hence are
potential biomarkers and therapeutic targets for tumors. This paper reviews the
biological characteristics and functions of circRNAs as well as the research progress
related to childhood malignant solid tumors.
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INTRODUCTION

Although rare, childhood malignancies are now the second leading cause of pediatric death (Ollauri-
Ibanez and Astigarraga, 2021; Quamine et al., 2021). Furthermore, the incidence of childhood
malignancies is increasing worldwide, with less than 40% of children receiving an appropriate
diagnosis and treatment (Oyefiade et al., 2021; Sze, 2021). The symptoms of childhood malignancies
are often similar to those of other common, benign diseases, so early and accurate diagnosis is
difficult, with an untimely diagnosis an important cause of delayed treatment and mortality (Van
Paemel et al., 2020; Jain et al., 2021; Lucas et al., 2021). Although significant progress has been made
in the treatment of childhood malignancies in recent years, tumor treatment based on surgery and
radiotherapy can only kill tumor cells, not effectively control the recurrence and metastasis of some
childhood tumors (Weiser et al., 2019; Casey and Cheung, 2020; Cimini et al., 2020; Fair et al., 2020;
Greenbaum et al., 2020). Therefore, exploring early diagnostic markers of pediatric tumors to find
possible therapeutic targets is important to improve the early diagnosis, treatment, and prognosis of
pediatric malignant solid tumors.

Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) formed by the 3 and 5′ ends
of mRNAs, which are mainly generated from introns or exons by reverse splicing or lassoing introns
(Ebbesen et al., 2017; Huang and Zhu, 2021). Previously, circRNAs were considered as error products
in post-transcriptional processing with no important regulatory role in biological processes. However,
with the development of sequencing technology, researchers have found that circRNAs are widely
distributed in eukaryotic cells and can be stably expressed, playing an important role in the regulation
of gene expression in human cells (Qu et al., 2017; Han et al., 2021). An increasing number of studies
have shown that circRNAs have important physiopathological functions and are involved in the
regulation of cell proliferation, differentiation, and apoptosis, as well as in the development of various
diseases including tumors (Altesha et al., 2019; Li Y. et al., 2020; Wu et al., 2020; Xu et al., 2020;
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Choudhary et al., 2021; Tian et al., 2021; Zhang et al., 2021). For
example, circPRKAR1B regulates FZD4 expression by binding
miR-361-3p, promoting the proliferation and migration of
osteosarcoma cells as well as tumor susceptibility to
chemotherapy resistance (Feng Z.-h. et al., 2021). Circ_0004296
downregulates ETS1 expression by promoting retention of EIF4A3
in the nucleus and inhibiting the nuclear export of ETS1 mRNA,
which in turn keeps PCa from malignant growth and metastasis
(Mao S. et al., 2021). CircGSK3B directly binds to EZH2 and
inhibits the binding of EZH2 and H3K27me3 to the RORA
promoter, leading to elevated RORA expression and inhibiting
tumor progression by suppressing the growth, invasion, and
metastasis of gastric cancer cells (Ma X. et al., 2021).

Recently, circRNAs have been found to have important
biological roles in childhood malignant solid tumors, hence the
potential to become tumor markers and therapeutic targets. This
paper reviews the formation and biological functions of circRNAs,
as well as the research on circRNAs in childhood malignant solid
tumors to provide new perspectives for the clinical diagnosis and
treatment of childhood malignant solid tumors.

OVERVIEW AND BIOLOGICAL
PROPERTIES OF CIRCULAR RNA

CircRNAs are formed by splicing of precursor mRNAs (pre-
mRNAs) and are mostly endogenous. They have no 3′ tail or 5′

cap end and are covalently closed loops (Qu et al., 2015; Meng
et al., 2017) formed by lasso-driven cyclization, direct reverse
splicing, or exon skipping, or they can be cyclized by intron
pairing (Wang et al., 2021e; Xiao et al., 2021). In addition,
circRNAs can also be formed by RNA binding proteins
(RBPs)-mediated cyclization joining the downstream 5′ end
donor site to the upstream 3′ end acceptor site to form a
single-stranded covalent closed-loop that joins the remaining
sequence after removal of the intron (Ali et al., 2021; Wang
et al., 2021d). Thus, the formation of circRNAs requires the mini-
intron at the splice site and the short-chain reverse repeat.
Depending on the formation mechanism, circRNAs are
classified into three main types, exonic circRNAs (EcircRNAs),
intronic circRNAs (ciRNAs), and exon-intron circRNAs
(EIciRNAs) (Lyu and Huang, 2017; Meng et al., 2017), of
which, EcircRNAs are the most abundant and located in the
cytoplasm of eukaryotes (Figure 1).

CircRNAs are diverse with more than 25,000 circRNAs
detected in human fibroblasts by high-throughput sequencing,
and in some cases, circRNA expression even exceeds that of their
corresponding linear mRNAs by more than 10-fold (Shen et al.,
2021; van Zonneveld et al., 2021). In contrast to mRNAs,
circRNAs exist in a covalent closed-loop structure with no cap
and tail structure. This unique structure makes circRNAs highly
stable and resistant to hydrolysis by RNA exonucleases (Li H. M.
et al., 2019), as well as consistently and stably expressed in cells
(Wu et al., 2020; Shen et al., 2021). CircRNAs sequences are

FIGURE 1 | CircRNAs are a covalently closed loops formed by splicing of precursor mRNA (pre-mRNAs). There are three forms of circRNAs:lasso-driven
cyclization, intron pairing cyclization and RNA binding proteins (RBPs) mediated cyclization. CircRNAs are classified into three main types, exonic circRNAs, intronic
circRNAs, and exon-intron circRNAs. (A) CircRNAs can regulate the expression of related genes in cells; (B) CircRNAs as miRNA sponge can adsorb related miRNAs;
(C) The functions of circRNA in interacting with proteins; (D) Several circRNAs have also been reported to encode proteins; (E) CircRNAs in exosomes or
microvesicles can be used as specific biomarkers; (F) CircRNAs can be degraded via m6A-mediated decay.
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evolutionarily conserved not only in mammals but also in the
more evolutionarily distant Drosophila (Zhao B. et al., 2021; Mao
X. et al., 2021). In addition, the expression of the same circRNA
can vary greatly over time or in different tissues, as well as in
diseased and non-diseased tissues (He A. T. et al., 2021; Verduci
et al., 2021). Therefore, circRNAs have the potential to become
good diagnostic markers for diseases and therapeutic targets.

Biological Functions of circRNA
CircRNAs are involved in a variety of biological processes by
acting as competing endogenous RNAs (ceRNAs), binding RBPs,
regulating parental gene expression, and translating proteins or
polypeptides.

ACTS AS A COMPETITIVE
ENDOGENOUS RNA

CircRNA contains a miRNA response element (MER), which can
act as ceRNA to affect gene expression by competitively binding
miRNA sites and inhibiting the regulatory effect of miRNA on
downstream genes (Cheng et al., 2019; Hong et al., 2020; Luo
et al., 2020; Su and Lv, 2020; Wang et al., 2021c). For example,
Circ-CD44 is highly expressed in triple-negative breast cancer
(TNBC), and high expression of circ-CD44 predicts poor patient
prognosis. Circ-CD44 promotes KRAS expression through
adsorption of miR-502-5p, thereby promoting TNBC
proliferation, migration, and invasion. Circ-SNX6 acts as a
molecular “sponge” to attenuate the inhibitory effect of miR-
1184 on its target gene GPCPD1, thereby increasing intracellular
lysophosphatidic acid levels, ultimately promoting resistance to
sunitinib in renal cell carcinoma cells (Huang et al., 2021).

Binding RNA Binding Protein (RBP)
CircRNAs can bind directly to RBPs to form RNA-protein
complexes to regulate RBPs and further affect the expression
and biology of downstream proteins (Huang et al., 2020; Feng
J. et al., 2021; Chen J. et al., 2021; Xu et al., 2021). Muscleblind-like
(MBL) binds to exon 2 of its parental gene and induces cyclization
to form circMbl, which also binds to MBL to reduce MBL
abundance, thereby reducing circMbl production (Ashwal-
Fluss et al., 2014). Circ-hHBB3 binds HuR and degrades HuR,
whereas Circ-TNPO3 competitively binds IGF2BP3 and inhibits
the proliferation andmetastasis of gastric cancer by regulating the
MYC-SNAIL axis, which leads to malignant progression of GC
(Yu et al., 2021). Circ-ACTN4 binds YBX1 and stimulates FZD7
transcription, which in turn promotes intrahepatic
cholangiocarcinoma (ICC) proliferation and metastasis, leading
to malignant tumor growth and metastasis (Chen et al., 2021c).

Regulation of Parental Gene Expression
Some circRNAs also regulate the transcription of parental genes.
Although most circRNAs are located in the cytoplasm, some
circRNAs such as ElciRNA are in the nucleus of eukaryotic cells
and play an important role at the transcriptional level
(Humphreys et al., 2019; Ma N. et al., 2021; Greene et al.,
2021). ElciRNA in the nucleus can interact with the U1 small

nuclear ribonucleoprotein particle (snRNP) to contribute to the
transcription of its parental genes (Song et al., 2016; Nan et al.,
2019)and with the RNA-RNA of U1snRNA to enhance the cis
expression of parental genes (Humphreys et al., 2019; Chu et al.,
2021). In addition, a fraction of ElciRNAs accumulates in regions
outside the nuclear transcription site, suggesting that this fraction
may regulate transcription by acting in a trans manner (Ma
J. et al., 2021). Introns derived from the Tulp4 gene can be
cyclized to form circTulp4, which can interact with U1 snRNP
and RNA polymerase II to regulate the transcription of its
parental gene, Tulp4, thus participate in the development of
Alzheimer’s disease (AD) (Ma N. et al., 2021). In summary,
circRNAs can regulate parental gene expression through
transcriptional regulation, splicing regulation, ceRNA, mRNA
trap, translational regulation, and post-translational regulation
pathways to regulate parental gene expression (Shao T. et al.,
2021).

Translation of Proteins or Peptides
Most circRNAs generated by reverse splicing are found mainly in
the cytoplasm, and translation of linear mRNAs usually requires
the structure of a 5′ end cap and a 3′ end poly(A) tail to remain
stable. CircRNAs are not normally considered to have a
translational function (Marquez-Molins et al., 2021; Yan and
Bu, 2021) but they can initiate translation in the cell if they have
an internal ribosome entry site (IRES) (He L. et al., 2021; Wang
et al., 2021b; Sinha et al., 2021). This approach provides more
polypeptide sequences and increases the polypeptide yield
because the ribosome does not need to bind to RNA template
repeats (Li P. et al., 2021). The cyclic RNA hsa-circ-0000437 can
encode a functional peptide called CORO1C-47aa, and
overexpression of CORO1C-47aa inhibits endothelial cell
proliferation, migration, and differentiation by competing with
the transcription factor TACC3 to bind ARNT and inhibit VEGF,
which in turn leads to malignant progression of endometrial
cancer (Li F. et al., 2021). Circ-RNA circ-FBXW7 encodes the
FBXW7-185aa protein that inhibits the proliferation and
migratory capacity of TNBC cells by increasing the abundance
of FBXW7 and inducing c-Myc degradation (Ye et al., 2019).
Circ-FNDC3B encodes a novel protein circFNDC3B-218aa and
circFNDC3B-218aa significantly inhibits the proliferation,
invasion, and migration of CC by suppressing the expression
of Snail and promoting the expression of FBP1 (Pan et al., 2020).
The translation of circRNAs and their regulatory role in tumor
tissues are likely to provide new ideas for the study of circRNAs.

M6A Methylation Modification Affects the
Translation Ability and Nuclear Localization
of circRNAs
M6Amethylationmodification is the most commonmodification
method in eukaryotic RNA, and it mainly affects mRNA splicing,
nucleation and translation. Recent studies show that modification
of m6A can affect the nuclear localization of circRNA, and
circRNA can also bind to the corresponding regulatory protein
of m6A to affect its stability. Internal ribosome entry site (IRES)
can promote the initiation of circRNA translation, and circRNA
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TABLE 1 | Functional characterization of circular RNAs in pediatric malignant soild tumor.

Circular RNAs Expression Role Function role miRNAs Related genes References

Hepatoblastoma

hsa_circ_0000594 Upregulated Oncogene Promote cell proliferation, invasion, and suppress cell
apoptosis

miR-217 SIRT1 Song et al.
(2019)

circ-STAT3 Upregulated Oncogene Promote cell growth, migration and stem-cell
characteristics

miR-29a/b/
c-3p

GLI2 Liu et al. (2020)

circ-HMGCS1 Upregulated Oncogene Promote cell proliferation and inhibit cell apoptosis miR-503-5p IGF-PI3K-Akt Zhen et al.
(2019)

Neuroblastoma

circ-CUX1 Upregulated Oncogene Promote aerobic glycolysis, growth, and aggressiveness - EWSR1/MAZ Li et al. (2019a)
hsa_circ_0132,817 Upregulated Oncogene Promote cell proliferation, migration, invasion and

glycolysis
miR-432-5p NOL4L Fang et al.

(2021)
circ-DGKB Upregulated Oncogene Promote the proliferation, migration, invasion, and

tumorigenesis
miR-873 GLI1 Yang et al.

(2020)
circ-CUX1 Upregulated Oncogene Promote tumor progression and glycolysis miR-338-3p PHF20 Wang et al.

(2021f)
circ-KIF2A Upregulated Oncogene Promote cell proliferation, migration, invasion and

glycolysis
miR-129-5p PLK4 Yang et al.

(2021)
Circ-CUX1 Upregulated Oncogene Promote cell proliferation, migration, invasion and

glycolysis
miR-16-5p DMRT2 Zhang et al.

(2020)

Wilms tumors

hsa_circ_0093740 Upregulated Oncogene Promote the growth, migration and metastasis miR-
136/145

DNMT3A Cao et al. (2021)

circ-CDYL Upregulated Oncogene Promote cell proliferation, migration, and invasion miR-145-5p TJP1 Zhou et al.
(2021b)

Rhabdomyosarcoma

circ-ZNF609 Upregulated Oncogene Promote cell cycle - p-AKT and
pRb/Rb

Rossi et al.
(2019)

circVAMP3 Upregulated Oncogene Promote cell cycle progression - AKT-related
pathways

Rossi et al.
(2021)

Lymphoma

circ-LAMP1 Upregulated Oncogene Promote cell proliferation and inhibit cell apoptosis miR-615-5p DDR2 Deng et al.
(2019)

circ-APC Downregulated Tumor
suppressor

Inhibit cell proliferation and tumor growth miR-888 APC and Wnt/β-
catenin

Hu et al. (2019)

circ-CDYL Upregulated Oncogene Promote cell proliferation miR-129-5p NOTCH1 Mei et al. (2019)
miR-3163 FMR1
miR-
4662a-5p

ABCB1

miR-101-3p TWIST1
miR-186-5p VEGFA

circ-CFL1 Upregulated Oncogene Promote cell proliferation, migration and tumor growth miR-107 HMGB1 Chen et al.
(2020)

circ-OTUD7A Upregulated Oncogene Promote cell proliferation, metastasis, inhibit cell cycle
arrest and apoptosis

miR-431-5p FOXP1 Liu et al. (2021b)

circ-NSUN2 Upregulated Oncogene Promote cell proliferation and invasion - HMGA1/Wnt
signaling

Wang et al.
(2021a)

Medulloblastoma

circ-SKA3 Upregulated Oncogene Promote cell proliferation, migration, invasion and induced
apoptosis and cell cycle arrest

miR-326 ID3 Zhao et al.
(2021b)

circ-SKA3 and
circ-DTL

Upregulated Oncogene Promote cell proliferation, migration, and invasion - SKA3 and DTL Lv et al. (2018)

circ-SKA3 Upregulated Oncogene Promote cell proliferation, migration, invasion tumor
growth and inhibit cell apoptosis

miR-383-5p FOXM1 Wang et al.
(2020)

Adrenocortical Carcinoma

circ-CCAC1 Upregulated Oncogene Promote cell proliferation, migration, and invasion miR-
514a-5p

C22orf46 Li et al. (2020a)
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with single or multiple sites of m6 Amodification can also initiate
translation through IRES, which indicates that the presence of m6
Amodification may affect the process of circRNA translation (He
and He, 2021). CircZNF609 contains an open reading frame,
which can translate a segment of mRNA sequence into amino
acids, and regulate the translation process by recognizing m6A
methylation modification proteins such as YTHD (Legnini et al.,
2017). CircNSUN2 can interact with the m6A reading protein
YTHDC1 to promote its own export from the nucleus to the
cytoplasm in an m6A-dependent manner, and promote nuclear
localization. Besides, circNSUN2 can interact with IGF2BP2 and
high mobility group protein A2 (HMGA2) combined to form
RNA-protein ternary complex circNSUN2/IGF2BP2/HMGA2 in
the cytoplasm, enhancing the stability of HMGA2 (Li B. et al.,
2021).

ROLES AND SIGNIFICANCE OF CIRCRNAS
IN PEDIATRIC MALIGNANT SOLID
TUMORS
Many circRNAs are aberrantly expressed in pediatric malignant
solid tumors and regulate tumor development.(Table 1).The
stability and tissue specificity of circRNAs suggest that they
are potential novel biomarkers for the diagnosis and
therapeutic targets of pediatric malignant solid tumors.

Hepatoblastoma
Hepatoblastoma (HB) is an embryonal malignancy originating in
the liver and is the most common malignant solid tumor of the
liver in childhood (Kalish et al., 2017; Munoz et al., 2019; Hager
and Sergi, 2021). The incidence of HB has been on the rise in
recent years, with a yearly increase of about 4%, and its growth
rate far exceeds that of other childhood malignancies, making it
one of the major malignancies endangering pediatric health
(Calvisi and Solinas, 2020; Prochownik, 2021). Surgery and
chemotherapy are the main clinical treatments for HB, with a
3-year survival rate of 72.73% and a 5-year survival rate of 50.0%
(Lake et al., 2019; Yang et al., 2019). Currently, the pathogenesis
of HB is not clear and may be associated with multiple adverse
factors such as genetic factors, immune response, low birth
weight, and chromosomal abnormalities (Cristobal et al., 2019;
Chen H. et al., 2021).

Circ-STAT3 (hsa_circ_0043800) is upregulated in HB tissues
and cells, and inhibition of circ-STAT3 significantly inhibits
HB cell growth, migration, and stemness. Circ-STAT3 can act
as ceRNA by binding miR-29a/b/c-3p to upregulate Gli2 and
STAT3, while Gli2 can activate the transcription of circ_0043800.
In vivo experiments showed that circ_0043800 promoted HB
tumor growth by upregulating Gli2 and STAT3 (Liu et al., 2020).
Circ-HMGCS1 expression was significantly increased in HB
tissues, and HB patients with high expression of circ-
HMGCS1 had reduced overall survival. In vitro experiments
confirmed that knockdown of circ-HMGCS1 inhibited HB cell
proliferation and induced apoptosis. Mechanistic studies revealed
that circ-HMGCS1 regulates IGF2 and IGF1R expression by
binding to miR-503-5p and affects the downstream PI3K-Akt

signaling pathway to regulate HB cell proliferation and glutamine
catabolism (Zhen et al., 2019). Hsa_circ_0000594 expression
levels were significantly upregulated in HB tissues and
correlated significantly with HB subtypes. Inhibition of
hsa_circ_0000594 significantly suppressed the malignant
phenotype of HB and bioinformatics analysis indicated that
hsa_circ_0000594 may regulate SIRT1 expression by binding
miR-217 (Song et al., 2019).

Neuroblastoma
Neuroblastoma (NB) originates from primitive sympathetic
ganglion cells (Fetahu and Taschner-Mandl, 2021) and is a
common extracranial solid tumor that occurs almost
exclusively in children. It is the third most common tumor in
children after leukemia and brain tumors (Zafar et al., 2021).
Thirty percent of NB tumors occur in the adrenal medulla, about
60% in the abdominal paravertebral ganglia, and the rest in the
sympathetic ganglia of the chest, head, neck, and pelvis (Rozen
and Shohet, 2021). Currently, many new targeted therapies and
immunotherapies have emerged in addition to conventional
radiotherapy for NB (Blavier et al., 2020; Bhoopathi et al.,
2021; Stainczyk and Westermann, 2021). NB is heterogeneous,
and approximately 85–90% of children with low- and
intermediate-risk NB can be cured, while the survival rate of
children with high-risk NB is less than 50% (Aravindan et al.,
2020; Quinn et al., 2021). Children with high-risk NB remain
refractory to cure after multiple intensive treatments, and more
than 50% of children relapse, with a 5-year survival rate of
approximately 40–50% (Brignole et al., 2021). Therefore, it is
important to investigate the molecular mechanisms underlying
the development of NB.

Circ-CUX1 binds to EWSR1 and promotes interaction with
MAZ, leading to transactivation of MAZ and transcriptional
alterations of CUX1 and other genes associated with tumor
progression. The use of inhibitory peptides that block circ-
CUX1-EWSR1 interaction or LV-sh-circ-CUX1 significantly
inhibited aerobic glycolysis, growth, and invasiveness of
NB cells, suggesting that the circ-CUX1/EWSR1/MAZ axis is a
therapeutic target for aerobic glycolysis and NB progression (Li
H. et al., 2019). CircRNA hsa_circ_0132817 expression was
significantly increased in NB tissues and cell lines, and
knockdown of hsa_circ_0132817 inhibited tumor growth in
vivo. Mechanistic studies suggest that hsa_circ_0132817 can
promote tumorigenesis in NB cells by upregulating NOL4L
and acting as a sponge for miR-432-5p (Fang et al., 2021).
Circ-DGKB (hsa_circ_0133,622) expression was upregulated in
NB tissues compared to normal dorsal root ganglia and negatively
correlated with survival in NB patients. Circ-DGKB
overexpression promoted NB cell proliferation, migration,
invasion, and tumorigenesis and reduced apoptosis, promoting
NB progression by targeting the miR-873/GLI1 axis in vitro and
in vivo (Yang et al., 2020). Circ-CUX1 and PHF20 are
upregulated in NB tissues and cells, while miR-338-3p
expression is significantly decreased. Mechanistic studies
revealed that circ-CUX1 promotes PHF20 expression, thus
NB cell progression and glycolysis by binding to miR-338-3p
(Wang Y. et al., 2021). Circ-KIF2A levels were increased in NB
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tissue samples and cell lines, and inhibition of circ-KIF2A
significantly inhibited NB cell proliferation, migration,
invasion, and glycolysis. Mechanistic analysis showed that circ-
KIF2A could positively regulate PLK4 expression through the
sponge miR-129-5p (Yang et al., 2021). Circ-CUX1 promotes
NB cell proliferation, migration, invasion, and glycolysis. MiR-
16-5p is a direct target of circ-CUX1 and miR-16-5p
overexpression-mediated effects in NB cells can be partially
alleviated by introducing circ-CUX1 overexpression plasmids.
Another study showed that circ-CUX1 accelerates the
proliferation, migration, invasion, and glycolysis of NB cells by
targeting the miR-16-5p/DMRT2 signaling cascade (Zhang et al.,
2020).

Wilms Tumors
Wilms tumor (WT) is the most common primary malignancy of
the kidney in children, accounting for 90% of all renal
malignancies (Hohenstein et al., 2015). The etiology of WT is
unclear and may be related to mutations in genes that regulate
normal embryonic development of the urogenital tract (Stock
et al., 2002; Fukuzawa and Reeve, 2007). Most patients have a
palpable abdominal mass as the first symptom, and some patients
may present with symptoms of hematuria, fever, urinary tract
infection, varicocele, and anemia (Zhang et al., 2014). Currently,
WT is treated with a multidisciplinary combination of surgical,
chemotherapy, radiotherapy, and targeted therapy, with an
overall cure rate of approximately 90% (Anvar et al., 2019;
Palmisani et al., 2021; Pelosi et al., 2021).

The expression of circ-CDYL is significantly downregulated in
WT tissues compared to adjacent non-tumor tissues and
upregulation of circ-CDYL inhibited cell proliferation, migration,
and invasion. Circ-CDYL acts as a miRNA sponge reducing the
expression ofmiR-145-5p and further upregulating TJP1 expression
(Zhou R. et al., 2021). Cao et al. found that hsa_circ_0093740
expression was significantly increased in WT and inhibition of
hsa_circ_0093740 significantly suppressed the proliferation and
migration of WT by high-throughput microarray sequencing.
Mechanistic studies revealed that the hsa_circ_0093740-miR-136/
145-DNMT3A axis plays an important regulatory role in WT
growth and metastasis (Cao et al., 2021).

Rhabdomyosarcoma
Rhabdomyosarcoma (RMS) is a malignant tumor arising from
embryonic mesenchymal tissue, accounting for 15% of solid
tumors and 50% of soft tissue sarcomas in children (Arndt
et al., 2018; Skapek et al., 2019). The diversity of clinical
manifestations, the multiplicity of pathological changes, and
the different sites of onset make RMS one of the most
complex pediatric tumors (Ramadan et al., 2020; Zoroddu
et al., 2021). Surgical resection, chemotherapy, and
radiotherapy are the main treatments for RMS (van Erp et al.,
2018; Frankart et al., 2021). With the continuous improvement of
chemotherapy regimens, the survival rate of RMS patients has
increased to 70–80% (Pappo and Dirksen, 2018; Mohammad
et al., 2020). Despite aggressive treatment, the 5-year survival rate
for patients with metastatic RMS is still only 30% (Kashi et al.,
2015; Pal et al., 2019), therefore, there is a need to find new

diagnostic treatments and therapies for RMS to improve the
survival rate of RMS patients.

Rossi et al. found that circ-ZNF609 expression was
significantly upregulated in biopsies of embryonic RMS
(ERMS) and alveolar RMS (ARMS). Knockdown of circ-
ZNF609 in ERMS cell lines inhibited the cell cycle and led to
a strong reduction in p-Akt protein levels and altered pRb/Rb
ratios. In contrast, the knockdown of circ-ZNF609 had no
significant effect on ARMS-derived cells but the exact reason
for this is unclear (Rossi et al., 2019). Circ-VAMP3 expression is
significantly increased in ARMS cells, and knockdown of
circVAMP3 regulates the CCNB1/CDK1 complex, which
controls the G2/M checkpoint by promoting the expression of
CDKN1A and WEE1, thus the AKK1 and CDK1 complexes, as
well as downregulation of Akt and ERK1, thereby inhibiting the
cell cycle (Rossi et al., 2021).

Lymphoma
Lymphoma is a highly heterogeneous disease (Liu M. K. et al.,
2021) with increasing morbidity and mortality rates worldwide
and is currently treated mainly with conventional radiotherapy
(Leslie, 2021). Although the use of rituximab has led to significant
improvements in long-term survival in some lymphoma patients,
the treatment of relapsed refractory lymphoma remains a
challenge (Shao L. et al., 2021; Takiar and Phillips, 2021).

We examined the differentially expressed circRNAs in normal
infant thymus and T-cell lymphoblastic lymphoma (T-LBL) and
found that circ-LAMP1 was significantly increased in T-LBL.
Mechanistic studies revealed that circ-LAMP1 promotes cell
proliferation and inhibits apoptosis through the miR-615-5p/
DDR2 signaling axis, which in turn leads to malignant
progression of T-LBL (Deng et al., 2019). Circ-NSUN2 is
aberrantly highly expressed in malignant lymphoma tissues
and cell lines, and circ-NSUN2 inhibition reduces the
proliferation and invasion of lymphoma cells. Mechanistic
studies have demonstrated that circ-NSUN2 can promote
lymphoma progression by affecting Wnt pathways through
the regulation of HMGA1 (Wang et al., 2021a). The
expression of circ-APC (hsa_circ_0127621) is decreased in
diffuse large B-cell lymphoma (DLBCL) tissues, cell lines, and
plasma by microarray assays. Etopic expression of circ-APC
inhibited cell proliferation in vitro and tumor growth in vivo.
Mechanistic studies revealed that circ-APC acts as a sponge for
miR-888 in the cytoplasm to upregulate APC, whereas, in the
nucleus, circ-APC binds to the APC promoter and recruits the
DNA demethylase TET1, which transcriptionally upregulates
APC, thereby inhibiting the typical Wnt/β-catenin signaling
pathway by reducing the accumulation of β-catenin in the
nucleus and the catenin signaling pathway by reducing the
accumulation of β-catenin in the nucleus, retarding the
growth of DLBCL (Hu et al., 2019). In DLBCL, circ-CFL1
directly binds to miR-107 reducing the inhibitory effect on the
target gene HMGB1, which promotes enhanced cell migration
and proliferation as well as tumor growth (Chen et al., 2020).
Circ-OTUD7A is highly expressed in DLBCL, and knockdown of
circ-OTUD7A inhibits DLBCL cell proliferation and metastasis,
promoting cell cycle arrest and apoptosis. Mechanistic
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experiments showed that circ_OTUD7A uptakes miR-431-5p to
promote FOXP1 expression (Liu W. et al., 2021). Circ-NSUN2 is
aberrantly highly expressed in malignant lymphoma tissues and
cell lines, and circ-NSUN2 inhibition can reduce lymphoma
proliferation and invasion. Mechanistic results suggest that
circ-NSUN2, regulated by the transcription factor NRF1, can

promote lymphoma progression by stabilizing the HMGA1-
activated Wnt pathway (Wang et al., 2021a).

Medulloblastoma
Medulloblastoma (MB) is a highly malignant neuroepithelial
tumor of the central nervous system and is a common solid

TABLE 2 | The potential of circRNAs in the diagnosis and prognosis of pediatric malignant soild tumor.

Study Sample
size

circRNAs Expression Source Expression
(p

value)

Diagnostic
value
AUC

Sample
size

Prognostic
value
OS (p
value)

References

Hepatoblastoma
Zhen et al (Normal:

Tumor)
circ-
HMGCS1

Up Tissues p < 0.001 0.8283 Tumor (n � 33) p � 0.0497 Zhen et al. (2019)

(37:37)
Neuroblastoma
Yang et al (Normal:

Tumor)
circ-DGKB Up Blood p < 0.05 0.7778 Tumor (n � 33) p � 0.0324 Yang et al. (2020)

(10:30)
Zhang et al (Normal:

Tumor)
circ-CUX1 Up Tissues p < 0.05 - Tumor (n � 50) p � 0.0120 Zhang et al. (2020)

(50:50)
Lymphoma
Mei et al (Normal:

Tumor)
circ-CDYL Up Tissues p < 0.001 0.856 Tumor (n � 18) p � 0.595 Mei et al. (2019)

(17:18)
Adrenocortical Carcinoma
Li et al (Normal:

Tumor)
circ-CCAC1 Up Tissues p < 0.01 - Tumor (n � 48) p � 0.006 Li et al. (2020a)

(48:48)

FIGURE 2 | The relationships of circRNAs with pediatric malignant solid tumors (A) Signal pathways related to cell proliferation and differentiation; (B) Signaling
pathways related to cell cycle regulation; (C) Signaling pathways related to apoptosis; (D) Signal pathways related to tumor cell invasion and metastasis; (E) Signaling
pathways related to intracellular oxidative metabolism.
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tumor in children (Li M. et al., 2021; Wen and Hadden, 2021),
particularly those under 10 years of age (Hammoud et al., 2020;
Danilenko et al., 2021). MB is difficult to treat because of its rapid
growth, incomplete surgical excision, and tendency to
disseminate with the cerebrospinal fluid (Caimano et al.,
2021). The current 5-year survival rate for MB treated with a
combination of surgery, radiotherapy, and chemotherapy is 65%.
With the improvement of treatment efficacy and prolongation of
survival, the toxicities associated with treatment have received
increasing attention (Audi et al., 2021), therefore, it is important
to search for potential diagnostic markers and therapeutic targets
for MB.

Circ-SKA3 expression is elevated in MB tissues and cells, and
inhibition of circ-SKA3 significantly inhibits MB cell
proliferation, migration, and invasion, inducing apoptosis
and cell cycle arrest and circ-SKA3 knockdown inhibits MB
growth in vivo. Mechanistic analysis suggests that circ-SKA3
directly targets miR-326 to increase ID3 expression (Zhao X.
et al., 2021). Differential expression profiles of circRNAs in four
normal cerebellum and 4 MB samples using a HiSeq sequencer
showed that thirty-three circRNAs were differentially expressed
in MB tissue, of which three were upregulated and thirty were
downregulated. Upregulated circ-SKA3 and circ-DTL
promoted proliferation, migration, and invasion in vitro by
regulating the expression of host genes as verified by in vitro
cellular assays, demonstrating that circ-SKA3 and circ-DTL are
critical in tumorigenesis and the development of MB (Lv et al.,
2018). CircSKA3 and FOXM1 expression levels in MB tissues
were significantly elevated, while miR-383-5p expression levels
were significantly decreased. CircSKA3 was shown to uptake
miR-383-5p and promote the expression of FOXM1. In vitro
cellular assays confirmed that circSKA3 silencing significantly
inhibited cell proliferation, migration, and invasion, promoting
MB cell apoptosis (Wang et al., 2020).

Adrenocortical Carcinoma
Adrenocortical adenocarcinoma (ACC) is a malignant endocrine
tumor (Georgantzoglou et al., 2021; Kiesewetter et al., 2021) that
typically occurs between 0–10 years and 40–50 years, with a
higher incidence in children and women (Domenech et al.,
2021). Approximately 60–70% of ACC patients exhibit clinical
symptoms due to hormonal excess but many patients still have
non-significant clinical symptoms (Fay et al., 2014). Common
endocrine symptoms include cortisolism, masculinization, or
gynecomastia (Ettaieb et al., 2020). The prognosis of ACC is
poor, and tumor grade, stage, and hypercortisolism are associated
with prognosis (Libe, 2015). Surgical resection is the treatment of
choice but postoperative tumor recurrence rates are high and
overall survival rates are low (Bedrose et al., 2020), therefore, it is
important to identify good early diagnostic markers and
therapeutic targets for ACC. Li et al. found that circ-CCAC1
was overexpressed in ACC tissue samples and cell lines and was
associated with a poor prognosis. Functional assays showed that
circ-CCAC1 enhances C22orf46 expression through uptake of
miR-514a-5p promoting ACC progression (Li W. et al., 2020)
(Table2).

CircRNAs as Biomarkers of Pediatric
Malignant Solid Tumors
Many circRNAs that are highly expressed in blood have relatively
low expression of their corresponding linear RNAs (Rahmati
et al., 2021; Xiao et al., 2021). The unique functions and properties
of circRNAs make them of great clinical potential in life sciences
and medicine (Gu et al., 2021; Yi et al., 2021). Recently, many
studies have explored the value of circRNAs for clinical
application in pediatric malignant solid tumors, suggesting
that some circRNAs have great clinical potential in early
tumor diagnosis, treatment, and prognosis. (Figure 2).

Zheng et al. analyzed the association between circ-HMGCS1
expression levels and clinical features of HB finding a significant
correlation between circ-HMGCS1 and AFP. The subject operating
characteristic (ROC) curve was applied to investigate the diagnostic
value of circ-HMGCS1 in distinguishing HB tissue from normative
tissue showing that circ-HMGCS1 had diagnostic value (Area
Under Curve (AUC) � 0.8283), with high expression of circ-
HMGCS1 predicting poor prognosis in HB patients by Kaplan-
Meier survival curve analysis (Zhen et al., 2019). The expression of
circ-DGKB in blood was found to be of clinical importance in the
diagnosis of NB by ROC analysis (AUC � 0.7778), with Kaplan-
Meier analysis showing that patients with high levels of circ-DGKB
expression had a lower survival rate (Yang et al., 2020). Zhang et al.
divided NB patients into high and low circ-CUX1 expression
groups according to the median value of circ-CUX1 expression
for survival analysis revealing that high expression of circ-CUX1 in
NB patients was associated with shorter survival times. In addition,
high expression of circ-CUX1 was associated with advanced TNM
stage, low differentiation grade, and positive lymph node
metastasis in NB patients (Zhang et al., 2020). Mei and others
reported that the plasma expression of circ-CDYL was significantly
different between MCL patients and healthy controls (AUC �
0.856), with no statistically significant difference between circ-
CDYL expression levels and prognosis of MCL patients (Mei et al.,
2019). Li et al. found that high expression of circ-CCAC1 predicted
poorer overall survival in ACC patients (Li W. et al., 2020).

CONCLUSION AND FUTURE
PERSPECTIVES

At present, there are few circRNAs studies in pediatric malignant
solid tumors with variable results. However, all studies have
shown that the expression of multiple circRNAs is
dysregulated in pediatric malignant solid tumors, and some of
the circRNAs target binding miRNAs that are involved in
tumorigenesis and progression. The current exploration of
tissue-specific circRNAs and studies of circRNAs-miRNAs-
mRNAs networks have revealed the association of circRNAs
with childhood malignant solid tumors. In addition, cellular
and animal experiments have confirmed that for certain
circRNAs that promote tumor growth, reducing their levels by
targeted knockdown or RNA interference can inhibit further
tumor growth and metastasis, suggesting that circRNAs are novel
therapeutic approaches and drug targets for malignant tumors.
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However, the main mechanism currently revolves around
circRNA as ceRNA to regulate the function of tumor cells.
Whether circRNA may affect the occurrence and progression
of childhood solid tumors through other mechanisms The
regulation is still unclear, and this needs to be further
explored. In addition, most of the discoveries of circRNAs
were not screened by next-generation sequencing technology,
but were studied by referring to other articles, which lacked
novelty. More importantly, only through high-throughput
sequencing technology, the establishment of circRNAs
expression profiles in childhood solid tumors is conducive to
in-depth exploration of possible mechanisms.

Currently, the detection of circRNAs in tumors is mainly
focused on tissue samples, which are more invasive and not
suitable for early clinical tumor diagnosis (Zhou Q. et al., 2021; Lu
et al., 2021; Shen et al., 2021) compared to other clinical samples
such as serum, urine, and body fluids. CircRNAs are potential
novel tumor biomarkers due to their high stability, conservatism,
prevalence, tissue, and disease specificity (Ali et al., 2021; Tian
et al., 2021; Vakhshiteh et al., 2021). Furthermore, the detection of
free circRNAs in tumor tissues and the circulation of pediatric
patients with malignant solid tumors is of great significance and
value in terms of diagnostic accuracy, clinical staging, differential
diagnosis, prognosis, and evaluation of treatment response. The
identification of tumor biomarkers with high specificity and
sensitivity among candidate circRNAs may improve the
diagnostic accuracy and specificity of malignant solid tumors
in children by combining them with other biomarkers or imaging
examinations. In addition, it may also reduce the need for
invasive procedures while helping to address the low organ
specificity of existing tumor markers. At present, there are few
studies on the clinical application of circRNAs in children with
malignant solid tumors, and the sample size of included articles is
also small, and there is a lack of multi-center studies. These are all
problems that need to be solved urgently.

Moreover, the application of circRNAs as biomarkers for the
diagnosis of malignant solid tumors in children is challenging.

Although circRNAs are a promising biomarker due to their high
organ-tissue specificity, current studies have not demonstrated
that the sensitivity of candidate circRNAs is superior to that of
known classical serum biomarkers. Compared to tissue biopsies,
liquid biopsies have the advantages of non-invasiveness and
reproducibility, however, circRNAs are low in body fluids,
clinical data from peripheral blood studies are limited, and
most circRNAs have not been shown to have excellent
prognostic or diagnostic significance in large samples. Further
studies should be conducted to evaluate the expression of
circRNAs in serum and disease-related body fluids and there
should be a consensus regarding sample handling, detection
methods, and threshold values to enable the development of
circRNAs as clinical diagnostic biomarkers. In addition, co-
detection of tumors may lead to higher sensitivity and
accuracy of diagnostic results.

In summary, although much is now known about the
formation of circRNAs and their biological role and clinical
application in childhood malignant solid tumors, the use of
circRNAs for the treatment of pediatric malignant solid
tumors requires further investigation. In addition, since many
reviews on circRNAs in osteosarcoma have been published,
osteosarcoma-related circRNAs were not included in the
present review.
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