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The route and method of immunization, as well as the cellular localization of the antigen, 
can influence the generation of an immune response. In general, intramuscular 
immunization results in Th1 responses, whereas intradermal delivery of DNA by gene 
gun immunization often results in more Th2 responses. Here we investigate how altering 
the cellular localization of the tumor antigen CEA (carcinoembryonic antigen) affects the 
quality and amplitude of DNA vaccine-induced antibody responses in mice following 
intradermal delivery of DNA by a needle-free jet injection device (Biojector). CEA was 
expressed either in a membrane-bound form (wild-type CEA) or in two truncated forms 
(CEA6 and CEA66) with cytoplasmic localization, where CEA66 was fused to a 
promiscuous T-helper epitope from tetanus toxin. Repeated intradermal immunization of 
BALB/c mice with DNA encoding wild-type CEA produced high antibody titers of a mixed 
IgG1/IgG2a ratio. In contrast, utilizing the DNA construct that resulted in intracellular 
targeting of CEA led to a reduced capacity to induce CEA-specific antibodies, but instead 
induced a Th1-biased immune response.  
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INTRODUCTION 

The route and method of DNA delivery can impact the outcome of vaccination with gene-based 
constructs. By targeting the same antigen to different tissues by intramuscular injection or biolistic (gene 
gun) intradermal immunization, the resulting immune response can be of either a predominantly Th1 or a 
Th2 type[1], favoring either the cellular or humoral arm of the immune system. In addition to the route 
and method of delivery, the nature of the induced immune response is also influenced by the localization 
of the expressed antigen. Several investigations into how cellular localization of the antigen affects the 
generation of an immune response after regular intramuscular[2,3,4,5,6,7,8] or intradermal gene gun[9] 
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immunization have been reported. A study on intramuscular injection of different forms of the model 
antigen ovalbumin (OVA) showed that secreted OVA induced higher antibody levels than a membrane-
bound or cytoplasmic form of the antigen. While immunization with a gene encoding a secreted form of 
OVA led to a Th2-biased immune response, immunization with genes encoding membrane-bound and 
cytoplasmic OVA resulted in a Th1-type response[2]. Similarly, intradermal gene gun immunization of 
cytoplasmic OVA resulted in a Th1-type response, while the secreted or membrane bound forms of OVA 
induced a mixed response[9]. 

While gene gun immunization is carried out by propelling DNA-coated gold particles directly into the 
cells of the skin, the needle-free jet injection device, Biojector, delivers DNA as a solution by creating an 
ultrafine stream of high-pressure fluid that penetrates the skin, and is distributed in the dermis or 
intramuscularly depending on the amount of pressure used. Although the location of administration is the 
same, the actual delivery or uptake of DNA into the expressing cells might be entirely different. 
Therefore, it is possible that the influence of the localization of the expressed antigen on immune 
stimulation could differ between the two methods. 

For cancer vaccination, the generation of a robust Th1-type immune response is usually considered 
preferable. Th1 cells produce proinflammatory cytokines like IFNγ and TNFα, which support the 
stimulation of tumor-specific CD8+ T cells with cytotoxic capacity. Moreover, the Th1 milieu shifts the 
balance of the humoral immune response towards production of antibodies of IgG1 and IgG3 subclasses 
in humans[10] and IgG2a in mice[11,12], which are important for humoral effector functions, such as 
complement lysis and antibody-dependent cellular cytotoxicity (ADCC)[13]. Therefore, knowledge about 
how antigen characteristics, immunization method, and the route of delivery influences the generation of 
an antitumor response is of importance. 

We have previously had good experience using the Biojector for intradermal delivery of HIV DNA 
vaccines in both mice and humans[14,15,16], and plan on employing this device for cancer vaccination of 
human subjects in the future. Here we investigate how cellular antigen localization affects the quality and 
amplitude of CEA DNA vaccine-induced antibody responses following intradermal Biojector 
immunization.  

MATERIALS AND METHODS 

Plasmids and Antibodies  

The three CEA-containing plasmid constructs — p91023(B), pKCEA6, and pKCEA66 — were 
previously described[17]. Briefly, p91023(B) contains the full-length, wild-type CEA sequence driven by 
the adenovirus major late promoter and with an SV40 poly A tail[18]. The pKCEA6 encodes a truncated 
form of wtCEA in which the N- and C-terminal signal sequences were removed[17], and the remaining 
part of the CEA gene was inserted into the pKCMV vector. This vector holds a CMV promoter, a HPV16 
poly(A) signal, and an Escherichia coli origin of replication and encodes kanamycin resistance. In 
pKCEA66, the truncated gene was fused to the promiscuous helper T-cell epitope QYIKANSKFIGITEL 
(representing amino acids 830−844 of tetanus toxoid)[17]. Mouse monoclonal antibodies directed against 
human CEA used were clone II-7 (DakoCytomation Norden AB, Stockholm, Sweden), Col-1 (BD 
Pharmingen, Franklin Lakes, NJ), 1C11 (Abcam, Cambridge, U.K.). The rabbit antihuman CEA ab15987 
was from Abcam Ltd (Cambridge, U.K.). TRITC-labeled goat antimouse IgG and FITC-labeled swine 
antirabbit IgG were obtained from DakoCytomation (Stockholm, Sweden). HRP-conjugated rabbit 
antimouse IgG and HRP-conjugated goat antimouse were from DakoCytomation (Stockholm, Sweden). 
The HRP-conjugated goat antihuman antibody was purchased from Bio-Rad Laboratories, (Richmond, 
CA) and the HRP-conjugated rabbit antigoat antibody was from DakoCytomation (Stockholm, Sweden). 
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Cell Lines 

HeLa and HEK293 cells were propagated in Dulbecco’s modified Eagles medium (DMEM) 
supplemented with 10% heat inactivated fetal calf serum (Sigma), 100 IU/ml of penicillin, 100 μg/ml 
streptomycin, and 2 mM L-glutamine (Sigma-Aldrich Sweden AB, Stockholm, Sweden). 

Western Blot Analysis of CEA Expression 

HeLa or HEK293 cells were transiently transfected using Lipofectamine 2000 (Invitrogen AB, 
Stockholm, Sweden) according to the manufacturer’s recommendation. After 48 h, transfected cells were 
detached by trypsinization. After washing in PBS, the cells were lysed in Laemmli buffer (Bio-Rad, 
Hercules, CA). Gel electrophoresis and immunoblotting were performed using the Readygel 
Electrophoresis System (Bio-Rad, Hercules, CA).  

Immunofluorescence 

Cells growing on glass cover slips were transiently transfected with CEA using Lipofectamine 2000. The 
cells were fixed in ice-cold acetone/methanol (80:20) for 10 min at +4°C. After fixation, the cover slips 
were kept at room temperature for 30 min, washed two times with PBS, and incubated with CEA-specific 
antibodies (mixture of mouse monoclonals clone II-7 1:10, Col-1 1:15, and 1C11 1:15 or rabbit anti-CEA 
IgG 1:200) in PBS for 30 min at room temperature. After washing to remove unbound antibody, specific 
staining was visualized by incubation with TRITC-labeled goat antimouse IgG or FITC-labeled swine 
antirabbit antibodies. Following additional washing in PBS and water, slides were mounted in 
PBS/glycerol (1:9) and kept in the dark at +4°C until analysis. Surface staining for CEA was performed 
on non-permeabilized HeLa cells using the Col-1 monoclonal (1:10 dilution). After staining the cells were 
fixed in 4% paraformaldehyde.  

CEA Quantification in Growth Medium 

Growth medium from HeLa cell cultures, transiently transfected with the different CEA constructs, was 
collected 72 h post-transfection, centrifuged to remove potential residual cellular debris, and stored at  
–20°C for subsequent quantification of soluble CEA content. Culture supernatants from transfected cells 
were concentrated using Centricon centrifugal filter devices Ultracel YM-50 (Millipore, Billerica, MA) 
with a molecular cut-off of 50 kDa, according to the manufacturer’s recommendation. 

The CEA protein content in growth medium from transfected cells was quantified by a CEA 
inhibition ELISA as described previously[17]. Briefly, rCEA-coated plates were blocked with 5% milk in 
PBS for 2 h at 37°C. Concentrated growth medium from transfected cells and recombinant CEA protein 
was serially diluted in 2.5% milk in PBS and incubated for 1 h at 37°C with monkey antihuman CEA sera 
at a final dilution of 1/6000. Growth medium from the CEA expressing human tumor cell line LS174T 
was used as a positive control. Plates were washed with ELISA buffer (0.05% Tween20, 0.15 M NaCl in 
dH2O) and samples preincubated with monkey sera were added to the plates. After 2-h incubation at 
37°C, plates were washed and goat antihuman HRP conjugated IgG diluted 1/3000 in 1.25% milk in PBS 
was added. Two hours later, the plates were developed by addition of O-phenylene diamine buffer. The 
reaction was stopped by addition of 2.5 M H2SO4, and the absorbance was measured at 490–650 nm. The 
amount of CEA protein present in growth medium was calculated from a titration curve obtained by serial 
dilution of rCEA. Expression of the transgenes was verified by Western blot analysis of transfected cell 
lysates.  
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Immunizations 

BALB/c mice (eight in each group) were given three monthly intradermal immunizations of 200-μg 
plasmid DNA (wtCEA, CEA6, CEA66, or a pKCMV control plasmid) by Biojector 2000 (Bioject 
Medical Technology Inc., Tualatin, OR).  

CEA ELISA 

Plates were coated with 0.1 μg per well of rCEA (Protein Science, Meriden, USA) diluted in 0.05 M 
Na2CO3 (pH 9,6) and incubated at room temperature over night. After washing in ELISA buffer (0.05% 
Tween20, 0.15 M NaCl in dH2O), the plates were blocked in 5% milk in PBS for 2 h. Sera from 
immunized mice diluted in 2.5% milk in PBS were added to the plates, and following incubation over 
night at 37°C, excess sera was removed by washing in ELISA buffer. After a 2-h incubation with a goat 
antimouse HRP conjugate diluted 1:4000 in 1.25% milk to detect CEA-specific antibodies, the plates 
were washed with ELISA buffer and developed by addition of O-phenylene diamine buffer (Sigma) 
activated with H2O2. After 10 min, the reaction was stopped by addition of 2.5 M H2SO4 and the optical 
density was read at 490 and 650 nm. A monoclonal mouse anti-CEA Ab (1C11) (AbCam, Cambridge, 
U.K.) diluted 1/100 was used as a positive control. For IgG1/IgG2a subclass determination, CEA-specific 
antibodies were detected using goat antimouse IgG1 or IgG2a antibodies at 1:5000 concentration (DAKO 
Sweden AB, Stockholm, Sweden) followed by an HRP-conjugated rabbit antigoat antibody diluted 
1:4000. 

RESULTS 

Expression of the CEA Plasmid Constructs in Human Cells 

Mammalian expression of the CEA DNA vaccine constructs was analyzed by Western blot on transiently 
transfected HEK293 (Fig. 1) or HeLa (data not shown) cells. All three proteins (wtCEA, CEA6, CEA66) 
were readily detected at 48 h post-transfection (Fig. 1). Wild-type CEA has a molecular weight of about 
180–200 kDa, and a band of the corresponding size was detected in total cell lysates from p91023(B)-
transfected cells (Fig. 1) matching the size of CEA detected in a lysate of LS174T cells, a cell line 
expressing endogenous CEA (Fig. 1). Cells transfected with the wild-type construct also gave rise to a 
band of around 150 kDa, matching that of an early, not yet fully glycosylated, form of CEA[19]. In 
contrast, detection of CEA in samples from cells expressing the truncated CEA proteins CEA6 and 
CEA66 (lacking signal peptides) revealed a band of about 80 kDa, corresponding to the reported size of 
nonglycosylated CEA (78 kDa)[20]. 

Removal of the CEA Signal Peptides Alters Protein Localization and Prevents 
Secretion of CEA from Human Cells 

In order to understand fully how the cellular localization of the antigen affects immunization outcome 
following intradermal Biojector administration of the vaccine, we studied localization of the different CEA 
protein products in detail. Anticipating that removal of the N-terminal signal sequence of CEA would 
prohibit cotranslational translocation of the CEA protein into the endoplasmic reticulum, thereby prevent 
transport of the truncated CEA proteins to the cell surface, we performed immunofluorescent staining of 
CEA-expressing HeLa cells to analyze the effects of signal sequence deletion on the cellular distribution of 
CEA. As shown in Fig. 2, wild-type CEA, which is attached to the plasma membrane by a GPI-
anchor[21,22], accumulated  
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FIGURE 1. Expression of the CEA constructs. HEK 293 cells were transiently 
transfected with the different CEA constructs. At 48 h post-transfection, the cells 
were harvested and samples analyzed by western blot. CEA-specific bands were 
detected by chemiluminescence using a mouse antihuman CEA (DAKO clone 
II-7), as primary antibody. 

around the edges of the cells, a clear sign of membrane localization. In contrast, the truncated CEA 
proteins CEA6 and CEA66 were distributed throughout the cytoplasm and showed no signs of increased 
staining at the cell boundaries. Interestingly, cells expressing the CEA6 construct often displayed 
perinuclear aggregation of CEA protein (Fig. 2B), a phenomenon that was not as common in cells 
expressing the CEA66 construct containing the Tet-epitope. Since the normal site of expression of wild-
type CEA is on the outside of the plasma membrane[18,21,22], we also performed immunofluorescent 
staining of nonpermeabilized cells to verify and more accurately distinguish between plasma membrane 
localization of the wild-type protein and the intracellular staining pattern of the truncated constructs. As 
shown in Fig. 3, no CEA protein could be detected on the surface of cells expressing either CEA6 or 
CEA66 constructs, as assessed by fluorescence microscopy. However, cells expressing the wild-type form 
of CEA displayed a homogenous expression of CEA covering the entire cell surface. 

CEA is shed from the surface of both normal and cancerous cells of the colon via a nonproteolytic 
mechanism mediated by a phospholipase[22,23,24]. Since the production of soluble CEA protein 
products could have an effect on what type of immune responses are induced by the modified CEA 
vaccine constructs, we investigated whether the truncated forms of CEA also could be secreted from the 
expressing cell. As shown in Fig. 4, culture supernatant from HeLa cells transfected with wtCEA or the 
LS174T cell line expressing endogenous CEA contained similar amounts of soluble CEA. In contrast, 
cells expressing the truncated CEA6 or CEA66 constructs did not secrete detectable levels of CEA (Fig. 
4), arguing that the truncated CEA protein products indeed are retained inside the cell. 

Cytoplasmic Antigen Localization Following Intradermal Biojector Immunization 
Results in Reduced Antibody Responses in BALB/c Mice, but Shifts Antibody 
Responses Towards a Th1 Profile 

To investigate how intracellular targeting of CEA would impact the induction of CEA-specific antibody 
responses after intradermal Biojector vaccination, BALB/c mice were immunized three times at a 4-week 
interval, using the different CEA constructs. At 14 days after the third immunization, serum from mice 
immunized with a construct encoding wild-type CEA contained extremely high titers of CEA-specific  
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FIGURE 2. Deletion of signal peptides alters the cellular localization of CEA. HeLa cells, transiently transfected with different CEA 
constructs, were fixed and permeabilized in acetone:methanol (80:20%), and stained with: (A) a mixture of mouse monoclonal 
antibodies (DAKO clone II-7 1:10, Col-1 1:15, and 1C11 1:15) and visualized with TRITC-labeled goat antimouse IgG; (B) rabbit 
antihuman CEA followed by a FITC-labeled swine antirabbit antibody.  

antibodies with an endpoint titer of 106 (Fig. 5). Immunization with CEA6 DNA still resulted in high 
CEA-specific antibody titers of 104 (Fig. 5), however, repeated intradermal administration of plasmid 
DNA encoding CEA66 (CEA6 fused to a tetanus T-helper epitope) did not raise the level of antigen-
specific antibodies above background (Fig. 5, data not shown). 

We also performed IgG2a/IgG1 subclass analysis of the induced CEA-specific antibody responses to 
estimate the induced T-helper profile. While we considered the antibody response to CEA66 to be too low 
for subclass analysis, repeated intradermal immunization with wild-type CEA led to a robust and 
balanced immune response, with an IgG2a/IgG1 ratio of approximately 1 (Fig. 6A,C). In contrast, the 
IgG2a/IgG1 ratio in CEA6-induced responses was around 2, indicating a shift towards a Th1 type of 
immune response (Fig. 6B,C). 
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FIGURE 3. Signal sequence deletion prevents CEA transport to the cell surface. HeLa cells were transfected with wt CEA p91023(B), 
pKCEA6, or pKCEA66, and stained with rabbit antihuman CEA 48 h post-transfection. Counterstaining with DAPI was performed to 
indicate cell nuclei. 

DISCUSSION 

To investigate how cellular antigen localization influences immune induction following intradermal 
needle-free jet injection, we have employed three CEA-encoding DNA constructs: wtCEA, CEA6, and 
CEA66. The constructs were compared with respect to the expression pattern and cellular localization of 
the protein products in mammalian cells, and investigated in relation to their capacity to induce CEA-
specific antibody responses in mice. 

All three constructs could be readily expressed in human HeLa (Fig. 4B) and HEK293 cells (Fig. 1). 
The detection signal from cells expressing the wild-type CEA was always stronger than that obtained with 
the constructs encoding the truncated CEA proteins. There can be several explanations for this. 
Differences in promoter strength between the adenovirus major late promoter controlling wtCEA 
expression from the p91023(B) plasmid and the CMV promoter controlling expression of the truncated 
CEA6 and CEA66 constructs from the pKCMV vector is a possible, however unlikely, explanation. A 
study comparing the activity of several promoters, including the CMV promoter and the adenovirus 2 
major late promoter, demonstrated that the CMV promoter was superior to all other promoters 
examined[25]. Another explanation could be that the antibody (clone II-7) used by us to detect CEA 
expression in western blot has a higher affinity for the glycosylated wild-type CEA than the 
nonglycosylated truncated forms of CEA. Indeed, analysis of the epitope specificity of this antibody 
suggested that antibody binding occurs to a conformation-dependent epitope involving carbohydrate 
structures[26], which presumably would be absent on the nonglycosylated truncated forms of CEA 
(CEA6, CEA66). A third explanation could be differences in subcellular localization and degradation of 
the CEA protein products. Intracellular proteins like CEA6 and CEA66 should be more accessible for 
proteasomal degradation than the wtCEA, an extracellular membrane protein, which could result in a 
lower net amount of whole protein in the cell during steady-state conditions[27].  
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FIGURE 4. Truncated CEA proteins are retained within the producing cell. 
(A) Concentrated culture supernatants from CEA-transfected HeLa cells were 
subjected to an CEA inhibition ELISA. The amount of soluble CEA in the 
culture medium was expressed as ng CEA per 1 million cells. The mean ± 
SEM of three experiments is shown in the figure. (B) A representative western 
blot showing CEA expression by transfected HeLa cells used in panel A. 

The sequence of wild-type CEA contains both N- and C-terminal signal peptides. The N-terminal 
signal peptide ensures proper cotranslational translocation of the wild-type CEA polypeptide into the ER, 
where it is heavily glycosylated, and its subsequent transport to the plasma membrane[19]. During post-
translational processing of the protein, the C-terminal signal sequence is removed and replaced with a 
glycosylphosphatidylinositol (GPI) membrane anchor[21,28]. Indeed, intracellular immunofluorescent 
staining of cells expressing the wild-type CEA construct revealed a staining pattern typical of a 
membrane protein, with intensified staining around the edges of the cell, indicating accumulation of the 
CEA protein at the plasma membrane (Fig. 2), a finding that was confirmed by immunofluorescent 
staining of surface CEA on nonpermeabilized cells (Fig. 3). 

Our modifications of the CEA genes in the CEA6 and the CEA66 constructs, which include the 
removal of both signal peptides, should prevent the transfer of CEA polypeptides into the endoplasmic 
reticulum and result in the production of nonglycosylated protein products, which are retained in the 
cytoplasm. Cells expressing the truncated CEA proteins (CEA6, CEA66) displayed a more even 
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cytoplasmic staining pattern expected of an intracellular protein (Fig. 2), but did not express CEA at the 
plasma membrane (Fig. 3). In detail, CEA6-expressing cells (lacking both signal peptides) often exhibited 
perinuclear aggregation of CEA6 protein (Fig. 2B), perhaps as a consequence of defective intracellular 
transport. Intracellular staining for the CEA66 protein also revealed the appearance of cytoplasmic 
vacuoles from which CEA66 protein was excluded (Fig. 2), a phenomenon that may be associated with 
the function of the translocation domain of tetanus toxin, from which the epitope is derived[29]. 

 

 

FIGURE 5. Intracellular targeting of CEA results in reduced CEA-specific 
antibody responses after intradermal Biojector immunization. Serum was taken 2 
weeks after the third DNA immunization and subjected to a CEA ELISA. Bars 
show the mean endpoint titer of each group of immunized animals. * and *** 
indicate a statistically significant difference of p < 0.05 and p < 0.001, 
respectively. 

 
That the truncated CEA protein products indeed are retained within the producing cell was confirmed 

by performing a CEA inhibition ELISA on concentrated culture supernatants from cells expressing the 
different CEA constructs. Supernatant from HeLa cells expressing wild-type CEA contained similar 
levels of soluble CEA protein, as did supernatants from the LS174T cell line expressing endogenous CEA 
(Fig. 4). In contrast, no soluble CEA could be detected in supernatants from cells expressing the CEA6 or 
CEA66 constructs, demonstrating that truncated CEA proteins are retained within the expressing cell.  

The cellular localization of the CEA antigen did have an impact on the resulting immune responses. 
As expected, immunization with the wtCEA construct, resulting in production of both membrane-bound 
and soluble CEA, generated antibody titers of high magnitude (Fig. 5). This is in agreement with previous 
studies showing that secreted antigens are more efficient in inducing antibody response, both after 
intramuscular and intradermal gene gun immunizations[2,7,8,9]. On the other hand, intracellular targeting 
of CEA through deletion of the CEA signal sequences resulted in a decreased, but still potent, antibody 
response (Fig. 5). The decreased capacity of cytoplasmic CEA to stimulate a humoral response could be a 
result of increased intracellular degradation of the protein product, as suggested by the Western blot 
results (Fig. 1). This would reduce the availability of native protein for efficient antibody 
induction[30,31,32]. Interestingly, fusion of a promiscuous tetanus T-helper epitope to the truncated CEA 
construct (CEA66) did not result in increased antibody production, but rather had a negative impact on 
the induction of antibody responses to CEA (Fig. 5). It is possible that the addition of this epitope, 
stemming from a protein translocation domain, further prohibited release of whole CEA66 protein for B-
cell receptor recognition. However, the negligible antibody response observed after repeated 
immunization with CEA66 DNA could be readily boosted by immunization with recombinant CEA 
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protein, demonstrating the antibody priming capacity of CEA66 DNA. Previously, tetanus T-helper 
epitopes in DNA vaccines have mostly been used in combination with secreted or soluble antigens[33,34,35]. 

 

 

FIGURE 6. Cytoplasmic antigen localization tilts the antibody response to CEA towards a Th1 profile. Three 
weeks after the third immunization, serum was collected and pooled before analyzed for CEA-specific IgG1 
and IgG2a antibodies. The levels of CEA-specific antibodies of IgG1 and IgG2a subclasses from animals 
immunized with wtCEA (A) and CEA6 (B) were determined. The IgG2a/IgG1 subclass ratio at serum dilutions 
of 1:100 and 1:1000 are shown in panel C. One representative experiment out of two performed is shown in the 
figure. 

The main source of antigen for presentation on MHC class II molecules, which are recognized by CD4+ 
T-helper cells, derives from internalized extracellular proteins. Therefore, it is possible that conjugation of 
the Tet epitope to a nonsecreted antigen does not allow for optimal induction of T-cell help since the 
amount of exogenous antigen available for uptake by antigen-presenting cells will be limited. 
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The ultimate goal of cancer vaccination is the induction of cytotoxic T cells that can effectively target 
and lyse antigen-presenting tumor cells. Therefore, a tumor DNA vaccine should optimally lead to the 
induction of a Th1 type of immune response, which is generally considered to drive cellular immune 
responses[36]. A Th1-type immune response is associated with production of cytokines like IL-2 and 
IFNγ[36], but also affects what subclasses of antibodies are induced. In mice, a Th1 response results in a 
higher production of IgG2a over IgG1 antibodies, whereas a Th2 response favors IgG1 over 
IgG2a[11,12]. Here, repeated intradermal administration of wtCEA DNA induced a mixed Th1/Th2 
response (Fig. 6A,C). In contrast, immunization with CEA6 DNA, encoding a truncated form of CEA 
lacking both the N- and C-terminal signal peptides, resulted in an IgG2a/IgG1 antibody ratio of about 2, 
clearly shifting the immune response towards a desired Th1-type response (Fig. 6B,C). This shift towards 
a Th1 response resulting from intradermal immunization with an intracellular antigen could be explained 
by the reduced amount of soluble antigen in its native form, available for B-cell priming in the lymph 
node[2,37], according to the belief that antigen dose can influence the Th1/Th2 balance of an immune 
response[37]. This effect could be further augmented by the different glycosylation patterns of the CEA 
antigens since dendritic cells are more efficient in capturing and internalizing glycosylated antigens for 
presentation through the MHC class II pathway[38,39]. 

The Biojector has been used to deliver a wide range of genetically encoded antigens, e.g., HIV, 
rotavirus, herpes, and dengue, to both animals and human subjects, resulting in potent humoral as well as 
cellular immune responses[14,16,40,41,42]. However, according to our knowledge, this is the first study 
investigating how antigen localization might influence the induction of antibody responses after 
intradermal immunization with the Biojector. In conclusion, this study demonstrates that cellular 
localization of the DNA-encoded antigen affects both strength and quality of the humoral immune 
response resulting from intradermal Biojector immunization. Expression of the tumor antigen CEA as a 
membrane protein resulted in a mixed Th1/Th2 response with high antibody titers. Targeting of CEA to 
the cytoplasm reduced the antibody-stimulating capacity, but more importantly, led to an increased 
production of Th1-type antibody subclasses that are associated with humoral effector functions[13]. The 
results have important implications for design of DNA-encoded antigens intended for intradermal vaccine 
delivery by Biojector. 
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