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The anti-tumor activities of some members of the chemokine family are often overcome

by the functions of many chemokines that are strongly and causatively linked

with increased tumor progression. Being key leukocyte attractants, chemokines promote

the presence of inflammatory pro-tumor myeloid cells and immune-suppressive cells in

tumors and metastases. In parallel, chemokines elevate additional pro-cancerous

processes that depend on cell motility: endothelial cell migration (angiogenesis),

recruitment of mesenchymal stem cells (MSCs) and site-specific metastasis.

However, the array of chemokine activities in cancer expands beyond such “typical”

migration-related processes and includes chemokine-induced/mediated atypical

functions that do not activate directly motility processes; these non-conventional

chemokine functions provide the tumor cells with new sets of detrimental tools. Within

this scope, this review article addresses the roles of chemokines and their receptors

at atypical levels that are exerted on the cancer cell themselves: promoting tumor cell

proliferation and survival; controlling tumor cell senescence; enriching tumors with cancer

stem cells; inducing metastasis-related functions such as epithelial-to-mesenchymal

transition (EMT) and elevated expression of matrix metalloproteinases (MMPs); and

promoting resistance to chemotherapy and to endocrine therapy. The review also

describes atypical effects of chemokines at the tumor microenvironment: their

ability to up-regulate/stabilize the expression of inhibitory immune checkpoints and

to reduce the efficacy of their blockade; to induce bone remodeling and elevate

osteoclastogenesis/bone resorption; and to mediate tumor-stromal interactions that

promote cancer progression. To illustrate this expanding array of atypical chemokine

activities at the cancer setting, the review focuses on major metastasis-promoting

inflammatory chemokines—including CXCL8 (IL-8), CCL2 (MCP-1), and CCL5

(RANTES)—and their receptors. In addition, non-conventional activities of CXCL12

which is a key regulator of tumor progression, and its CXCR4 receptor are described,

alongside with the other CXCL12-binding receptor CXCR7 (RDC1). CXCR7, a member

of the subgroup of atypical chemokine receptors (ACKRs) known also as ACKR3,

opens the gate for discussion of atypical activities of additional ACKRs in cancer:

ACKR1 (DARC, Duffy), ACKR2 (D6), and ACKR4 (CCRL1). The mechanisms involved in

chemokine activities and the signals delivered by their receptors are described, and the

clinical implications of these findings are discussed.
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INTRODUCTION

Leukocyte trafficking is the hallmark of immune integrity,
directing the appropriate positioning of lymphocytes and
myeloid cells in tissues during acquired immunity, inflammation,
and immune homeostasis. These processes are controlled by
a very large array of chemotactic molecules—chemokines and
others—that act in an orchestrated manner to achieve accuracy,
fine-tuning, and precise turn-on/turn-off signals in regulating
leukocyte influxes (1–3).

In addition, chemotactic cues that are largely mediated by

chemokines and their receptors are strongly involved in the
dynamic processes of tumor development and progression. In

line with their key roles in regulating leukocyte trafficking
under physiological conditions, chemokines and their G protein-

coupled receptors (GPCRs) are central players in dictating
the types and amounts of leukocytes that are recruited to
tumors and metastases (4–7). For example, at relatively early
stages of the malignancy process, chemokines can induce the
infiltration of lymphocytes that have the potential to raise anti-
tumor activities. This is illustrated by Th1 cells, cytotoxic T
cells (CTLs) and natural killer cells (NK). However, gradually,
the leukocyte contexture at the tumor site is changed in
chemokine-driven manner toward an immune-suppressive and
pro-inflammatory type, where chronic inflammation turns into
a deleterious force that was termed “The Seventh Hallmark of
Cancer.” Here, the cellular infiltrates can include inflammatory
macrophages that are typically regarded as M1 macrophages, as
well as M2 macrophages that constitute an important essence
of tumor-associated macrophages (TAMs); they can also include
neutrophils that are sub-divided to N1 and N2 types and
myeloid-derived suppressor cells (MDSCs) of the monocytic
(M-MDSCs) or granulocytic (G-MDSCs) subsets. In parallel,
T regulatory cells (Tregs) can put their marks on the process,
usually contributing to immune suppression (but in other cases
they can also be beneficial by inhibiting chronic inflammation)
(4–12).

With time, it was realized that other processes that depend
on chemokine-induced cell motility can also take place in the
tumor context. Well-known are the functions of chemokines in
regulating themigration of endothelial cells and their progenitors
during angiogenesis; these processes are typically induced by
ELR+ CXC chemokines, by CXCL12 and by some of the
CC chemokines, but can alternatively be inhibited by non-
ELR CXC chemokines. Chemokines also regulate the migration
of mesenchymal stem cells (MSCs) to tumor sites, where
they can express a variety of pro-cancerous activities and
differentiate to tumor-promoting cancer-associated fibroblasts
(CAFs). Moreover, chemokines expressed in metastatic sites
are key players in attracting to these organs tumor cells
that express the corresponding receptors. This venue has
been predominantly demonstrated by the CXCL12-CXCR4
axis but also by other chemokine-chemokine receptor pairs,
mostly of the homeostatic sub-family. All of these aspects of
chemokine activities in cancer have been broadly reviewed,
and representative summarizing articles covering these different
aspects are provided (4, 5, 7, 13–26).

At this point in time, research on chemokine activities in
cancer—that are not directly mediated by cell migration, e.g., in
response to chemotactic gradients—is rapidly growing, providing
insights to atypical activities of different members of the family
in many cancer types. In this review, we describe such non-
conventional chemokine activities in cancer, exerted directly on
the tumor cells and at the tumor microenvironment (TME). As
will be described below, chemokines can promote cancer cell
proliferation and survival, reduce their apoptosis and control
their senescence; chemokines can also enrich the sub-population
of cancer stem cells (CSCs) in tumors, facilitate tumor cell
spreading by promoting epithelial-to-mesenchymal transition
(EMT) and the release of matrix metalloproteinases (MMPs) in
the cancer cells, and increase tumor cell resistance to therapy.
In parallel, atypical chemokine-mediated effects can promote
interactions between cancer cells and their microenvironment
in a way that can also contribute to tumor progression:
chemokine activities reduce the efficacy of immune checkpoint
blockades (ICBs), induce bone remodeling processes that support
the metastatic cascade and enhance the tumor-promoting
interactions of cancer cells with stromal cells, such as MSCs
and CAFs.

To exemplify the atypical activities of chemokines in cancer,
we focus in this review on the effects of inflammatory
chemokines that play causative tumor-promoting roles in many
malignancies, and whose migration-related functions in cancer
have been comprehensively described in many review articles
[representative review articles are given as references (4, 5, 7,
13–26)]. In this context, emphasis is put mainly on ELR+
CXC chemokines that act through CXCR1/CXCR2 (e.g., CXCL1,
CXCL5, CXCL8), CCL2 that signals mainly via the CCR2
receptor and CCL5 with its CCR5 receptor. In parallel, the
review also addresses CXCL12—that can exert inflammatory and
homeostatic activities—and its CXCR4 receptor, due to their
major involvement at all stages of tumor progression. The major
findings described herein are summarized in Table 1.

In the context of CXCL12 activities in cancer, the review
also addresses the roles of CXCR7 which is the other CXCL12
receptor; here, we describe the functions of CXCR7 alone or in
the context of CXCR4, in regulating non-conventional cancer-
related effects. Although these two receptors can cooperate in
mediating tumor-promoting effects, anti-tumor effects of CXCR7
were reported as well, possibly resulting from its being an
atypical chemokine receptor (ACKR). Like CXCR7—known also
as ACKR3—other ACKRs do not transmit intracellular signals
through heterotrimeric G proteins, and regulate many aspects
of tumor progression (2, 4, 27). Thus, to broaden the scope of
atypical activities of chemokine receptors in cancer, a section of
the review is dedicated to atypical roles of additional members
of the ACKRs sub-group in malignancy: ACKR1, ACKR2, and
ACKR4. A summary of the key findings that are described below
on ACKRs in cancer is provided in Table 2.

Of the different malignant diseases, breast cancer has been
the subject of intensive research that has addressed the way
chemokines affect disease progression. Thus, we hereby use
breast malignancy to exemplify the non-conventional effects
of the above chemokines in the cancer setting. The different
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TABLE 1 | Atypical chemokine functions in cancer, mediated by axes of chemokines and classical chemokine receptors.

Axis ATYPICAL tumor-related activities induced via CLASSICAL chemokine receptors* Effect

CXCR1/CXCR2

CXCL1

CXCL5

CXCL8

• Increases tumor cell proliferation, viability and anchorage independent cell growth

• Reduces cancer cell apoptosis

• Down-regulates tumor senescence; Increases senescence, which is accompanied by elevated pro-metastatic

potential

• Enriches the CSC sub-population

• Elevates EMT properties and tumor cell invasion

• Increases MMP production by cancer cells

• Promotes chemoresistance and endocrine resistance of tumor cells

• Elevates the expression of inhibitory immune checkpoints (PD-L1) by cancer cells and immune cells

• Reduces the efficacy of immunotherapy

• Promotes osteoclastogenesis and bone damage

• Drives forward pro-cancerous tumor-stroma interactions

Pro-cancerous

CCR2

CCL2

• Increases breast tumor proliferation and survival

• Reduces cancer cell apoptosis

• Elevates tumor cell invasion (including via CCL2 that is released by senescent tumor cells)

• Enriches the CSC sub-population

• Elevates EMT properties and tumor cell invasion

• Promotes endocrine resistance of tumor cells

• Reduces the efficacy of immunotherapy

• Promotes osteoclast differentiation and bone resorption

• Drives forward pro-cancerous tumor-stroma interactions

Pro-cancerous

CCR5

CCL5

• Increases tumor cell proliferation (particularly in the context of hormonal stimulation)

• Elevates tumor cell invasion (including via CCL5 that is released by senescent fibroblasts)

• Enriches the CSC sub-population

• Elevates EMT properties and tumor cell invasion

• Elevates the expression of inhibitory immune checkpoints (PD-L1) by cancer cells

• Reduces the efficacy of immunotherapy

• Drives forward pro-cancerous tumor-stroma interactions

• Inhibits tumor cell proliferation

• Promotes the efficacy of ICBs (via recruitment of T effector cells)

Mostly

pro-cancerous

CXCR4

CXCL12

• Increases tumor cell proliferation

• Induces EGFR transactivation in cancer cells

• Elevates collective invasion and elevates survival of non-senescent cells (via CXCL12 released by senescent

tumor cells)

• Enriches the CSC sub-population

• Elevates EMT properties and tumor cell invasion

• Increases MMP production by cancer cells

• Promotes endocrine resistance of tumor cells

• Elevates the expression of inhibitory immune checkpoints (PD-L1) by cancer cells

• Reduces the efficacy of immunotherapy

• Promotes (together with TGFβ) fibroblast transition to CAFs and drives forward pro-cancerous

tumor-stroma interactions

Pro-cancerous

The Table summarizes the effects of axes established between chemokines and their classical receptors (that signal via heterotrimeric G proteins) on atypical cancer-related activities

(that are not directly mediated by cell motility). *Most of these findings were obtained in breast cancer studies, as described in the text. CAFs, Cancer-associated fibroblasts; CSC,

Cancer stem cells; EGFR, Epithelial growth factor receptor; EMT, Epithelial-to-mesenchymal transition; ICBs, Immune checkpoint blockades; MMPs, Matrix metalloproteinases; TGF,

Transforming growth factor. The dashed line separates the pro-malignancy activities of CCL5, which mostly dominate its effects in cancer (above the line), from its anti-malignancy roles

(below the line).

published studies on chemokine roles in breast cancer addressed
so far primarily two subtypes of disease: (1) The highly
aggressive triple-negative (TNBC) subtype in which the tumors
are negative for the expression of hormone receptors and lack
HER2 amplification; these tumors commonly develop resistance
to chemotherapy; (2) The luminal-A subtype in which the tumors
express estrogen/progesterone receptors (but not amplified
HER2) and are hormone-responsive; this disease subtype is
treated by endocrine therapies and is considered as having the
best prognosis out of all breast cancer subtypes (28, 29). Of note,
some of the aspects are relatively newly investigated, thus not
much information is available in breast cancer; in these cases the

scope is expanded to other cancer types as well. Together, the
findings presented in this review address the multifaceted impact
that chemokines may have in cancer, through functions that are
beyond the typical motility-mediated levels described so far.

ATYPICAL CHEMOKINE ACTIVITIES
EXERTED ON CANCER CELLS

Tumor Cell Growth, Survival and
Senescence
One of the first indications that chemokines can regulate tumor
progression by acting directly on the tumor cells came from
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TABLE 2 | Tumor-related activities, mediated by atypical chemokine receptors.

Receptor Tumor-related activities induced via ATYPICAL chemokine receptors* Effect/s

ACKR1

(DARC, Duffy)

• Inhibits tumor cell proliferation and increases tumor cell senescence

• Interferes with CXCR2-induced STAT3 activation in cancer cells

• Reduces MMP production by tumor cells

• Leads to reduced microvessel density

• Single nucleotide polymorphisms affect angiogenesis, tumorigenesis and lung metastasis

Anti-cancerous

ACKR2

(D6, CCBP2)

• Inhibits tumor cell proliferation

• Reduces cancer cell invasion

• Reduces the infiltration/activities of tumor-supporting leukocytes (in parallel to lower chemokine levels)

• Restricts angiogenesis

• Elevates EMT properties and tumor cell migration

• Prevents anti-tumor activities of NK cells and neutrophils

Anti-cancerous;

At times

pro-cancerous

ACKR3

(CXCR7)

• Increases tumor cell proliferation, and reduces trail-mediated apoptosis

• Induces EGFR activation

• Enriches the CSC sub-population

• Increases ERα stability and confers insensitivity to endocrine therapy

• Leads to increased endothelial cell migration (angiogenesis)

• Inhibits cell proliferation, possibly through CXCL12 sequestration

• Antagonizes the ability of CXCR4-expressing tumor cells to degrade matrix

Mostly

pro-cancerous;

Anti-cancerous

under certain

settings

ACKR4

(CCRL1, CCX-CKR)

• Inhibits tumor cell proliferation

• Reduces EMT properties and tumor cell migration

• Sequesters CC chemokines in tumor xenografts

• Increases resistance to anoikis

• Elevates EMT in tumor cells and modifies tumor cell adhesion (cell-to-cell and to ECM)

Mostly

anti-cancerous

The Table summarizes the effects of atypical chemokine receptors (ACKRs) in breast cancer as well as in other malignancies; the findings refer to non-conventional functions (not motility-

related) and to other ACKR activities as well. ECM, Extracellular matrix; EGFR, Epithelial growth factor receptor; EMT, Epithelial-to-mesenchymal transition; ER, estrogen receptor; MMPs,

Matrix metalloproteinases. For each of the ACKR (ACKR2, ACKR3, ACKR4), the dashed line separates the functions that dominate its effects in cancer (above the line) from its opposing

roles (below the line).

early studies in melanoma, where ELR+ CXC chemokines were
found to up-regulate tumor cell proliferation. By inhibiting
the expression or activities of the chemokines, the different
investigations indicated that CXCL1 (MGSA) and CXCL8 up-
regulated the proliferation of different melanoma cells (30–33).

Along these lines, CXCL1 as well as CXCL8 have been found
to promote the proliferation of breast cancer cells. These two
chemokines share high affinity binding to CXCR2, but differ in
their ability to activate the CXCR1 receptor; accordingly, in some
of the studies inhibitors of both receptors or only of CXCR2
(e.g., repertaxin and SB225002, respectively) were used in order
to determine the involvement of these two receptors in mediating
such chemokine activities. In parallel, other inhibitory measures
were used in order to down-regulate the chemokine/s or their
receptors, and the opposite approach of over-expression was also
used to determine the roles of these chemokine axes in breast
cancer progression. Together, these publications indicated that
ELR+ CXC chemokines—derived from autocrine or paracrine
sources—induced signaling through CXCR1/CXCR2, leading
to increased tumor cell proliferation, viability and anchorage
independent cell growth; the chemokines also reduced the levels
of tumor cell apoptosis, and inhibition of these chemokine
pathways caused cell cycle arrest. In some of the studies, the
chemokines were not potent in regulating such growth-related
parameters when they acted alone but they have intensified the
impacts of other regulators of cell growth, such as IL-6 and
chemotherapy (34–40).

In essence, similar growth-stimulating regulatory modes were
also reported for the inflammatory CC chemokines CCL2 and
CCL5. Here, interesting connections were found between CCL2-
CCR2 and estrogen responsiveness and activities: CCL2 activated
estrogen receptor α (ERα) through PI3K/Akt/mTOR signaling
to elevate breast tumor cell division (41); another facet of
CCL2-estrogen interactions was revealed when stimulation of
luminal-A breast tumor cells by estrogen has led via twist
activation to elevated production of CCL2, then giving rise to
increased proliferation of the cancer cells (42). Another study
found that CCL2 binding to CCR2 has led through MEK
and ERK activation to increased cancer cell survival, partly
through activation of the Rho pathway (43). In parallel, CCL2
has elevated the levels of PCNA+ cancer cells and has also
shifted the cell cycle from G2-M to G1-S in association with
SRC and PKC activation in TNBC cells (44). The effects of
the CCL2-CCR2 axis were noted not only on breast tumor
cells of different subtypes (e.g., TNBC and luminal-A) but also
in mammary intra-ductal injection models that mimicked the
ductal carcinoma in situ (DCIS) stage of disease. In this system,
CCL2 provided by fibroblasts has activated CCR2 that was
expressed by transformed breast cells, leading to their increased
proliferation and reduced apoptosis. The opposite result was
obtained when CCR2 was down-regulated in the malignant
cells. These changes were noted in cells within DCIS lesions,
accompanied by reduced lesion size when CCR2 expression was
reduced (45).
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Parallel studies on CCL5 demonstrated its ability to induce
small increases in breast tumor cell proliferation; in one of the
research systems, such CCL5 activity was mediated by CCR5-
dependent mTOR activation (46–48). CCR5, a major CCL5
receptor, was targeted in several studies by maraviroc, leading to
controversial results in terms of tumor cell proliferation (48–51),
which possibly reflect the use of different model systems and/or
the ability of CCL5 to activate CCR1 and CCR3 in addition
to CCR5. Cooperativity between CCR5-related pathways and
other elements was revealed when maraviroc—that did not act
alone to prevent tumor cell survival—potentiated the effect of
IL-6-directed inhibition in reducing tumor cell proliferation. Of
interest is the fact that in contrast to these culture experiments,
maraviroc has led to significant inhibition of tumor metastasis
in animal studies (49, 51), possibly reflecting the ability of CCR5
to promote breast malignancy by additional pro-tumorigenic
properties, such as those that depend on cellular migration.

Increased tumor cell proliferation and growth were also
found to be exerted by CXCL12 and its two receptors, CXCR4
and CXCR7/ACKR3, primarily in the context of hormonal
stimulation. Studies of luminal-A breast cancer cells, that by
definition are responsive to estrogen, demonstrated that the
hormone induced the expression of CXCL12 and of CXCR4 in
the tumor cells, leading to enhanced tumor cell growth, and
also gave rise to EGFR transactivation and then to increased
DNA synthesis (52–54). Along the same lines, following
EGF stimulation a CXCR7/ACKR3-mediated process of EGFR
activation was revealed (possibly through β-arrestin scaffold),
leading to increased tumor cell proliferation (55). Additional
research in this direction provided evidence to complex roles
for CXCR7/ACKR3 and for its interactions with CXCR4 in
regulating the proliferation and growth of breast tumor cells. On
one hand, it was found that the expression of CXCR7/ACKR3
by breast tumor cells has provided growth advantages to
luminal breast tumor cells (at times even when CXCR4 was not
active in this respect), and reduced trail-mediated apoptosis in
such cells (56, 57). Moreover, CXCR7/ACKR3-expressing cells
increased the proliferation of CXCR4-expressing tumor cells
(58), and silencing experiments of CXCR4 or CXCR7/ACKR3
demonstrated that each of the two receptors elevated tumor cell
growth and that the joint impact of both receptors together
was stronger than of each alone (59). However, another study
demonstrated different roles for CXCR4 and CXCR7/ACKR3
in regulating estrogen-dependent growth of luminal breast
tumor cells, where CXCR4 enhanced cancer cell growth and
CXCR7/ACKR3 over-expression inhibited cell proliferation,
possibly through CXCL12 sequestration (60).

A complementary subject that is related to tumor cell
survival concerns the roles of chemokines in regulating cellular
senescence; this process, in which cells cannot enter cell cycle
and their proliferation is halted in a permanent manner,
has major roles in controlling cancer progression (61, 62).
Senescent cells are metabolically active and secrete many
proteins, identified as senescence-associated secretory phenotype
(SASP), which includes many pro-inflammatory factors, of which
a predominant factor is CXCL8 (62–64).

Although chemokine-induced senescence of tumor cells may
limit tumor growth, it is possible that such growth-restraining

processes may be overcome by chemokine-induced pro-
malignancy activities such as tumor cell growth or invasion. The
dual roles of chemokines in the senescence context are nicely
exemplified by a study on human pituitary tumor-transforming
gene 1 (PTTG-1)-driven expression of CXCL1 and CXCL8 in
breast tumor cells. In this study, it was demonstrated that
activation of CXCR2 has induced senescence in luminal-A
breast tumor cells and limited tumor growth and metastasis;
but in parallel, the pro-metastatic potential of the cancer cells
was elevated when they were co-injected with PTTG-1-over-
expressingMCF-7 cells, by creating a metastasis-promoting TME
(65). Whereas, this study indicated that signaling via CXCR2
has increased the senescence of luminal-A breast tumor cells,
in another study opposite findings were found, demonstrating
that CXCR2 down-regulated senescence of breast tumor cells,
including of the luminal-A subtype (66). In this respect, it was
found also that fibroblast-derived SASP induced EMT in non-
aggressive breast tumor cells, with direct roles of CXCL8 + IL-6
in promoting tumor cell invasiveness (67). Similarly, CCL2 that
was released by senescent melanoma cells increased tumor cell
invasion (68) and CCL5 derived from age-senescent fibroblasts
elevated the proliferation of prostate epithelial cells (69). Along
these same lines, CXCL12 that was present in SASP of senescent
papillary thyroid carcinoma (PTC) cells played key roles in
inducing collective invasion of the cancer cells and in increasing
the survival of non-senescent PTC cells, in a CXCR4-dependent
manner (70).

Chemokines released by senescent cells can also impact the
type of leukocytes entering the tumor site, thus dictating the
effects of the immune contexture on tumor fate. For example,
CCL2 produced by oncogene-induced senescent hepatocytes had
the potential to induce the recruitment of immature myeloid
cells that could differentiate to macrophages, which cleared
senescent tumor cells; but when the cancer has been fully
established, immature myeloid cells that were recruited by CCL2-
mediated signals, inhibited the anti-tumor activities of NK
cells and led to increased tumor growth (71). The connection
between senescence, chemokines and NK cell activities was
also demonstrated in a mouse model of liver carcinoma, when
inducible p53 expression has increased tumor cell senescence via
induction of CCL2, leading to recruitment of NK cells expressing
anti-tumor functions (72).

Cancer Stem Cells
Stemness is an essential trait of malignancy, whereby a
small proportion of cancer stem cells (CSCs; called also
tumor-initiating cells) can generate a heterogeneous tumor
cell population; the CSC sub-population is often increased
following treatment and therefore is considered fundamental in
development of therapy resistance (73, 74). In breast cancer,
CSCs are usually defined by the CD44+/CD24−/low phenotype,
and/or as being positive for the activity of the ALDH1 enzyme
which is recognized by elevated proportion of an ALDEFLOUR+
cell population; often, elevated extent/size of tumor spheroids
(mammospheres) is also considered a potential marker for
enrichment of CSCs (74, 75).

ELR+ CXC chemokines such as CXCL1 and CXCL8, as
well as their CXCR1/CXCR2 receptors, have been demonstrated
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to be significant factors in promoting CSC enrichment
in breast cancer. In line with findings demonstrating that
CXCL8 increased the ALDEFLOUR+ population and spheroid
formation in breast cancer cells (76), blockade of CXCR1, in
vitro or in vivo decreased the ALDEFLOUR+ population and
reduced tumor growth and metastasis; this CXCR1-mediated
effect on CSC viability depended on Akt activation (77). In
parallel, CXCL1 arriving from TAMs was found to promote
the CD44+/CD24− sub-population and formation of tumor
spheroids in human TNBC cells (78). From the mechanistic
aspect, the cross-talk between chemokine receptors and the Erb-
pathway may contribute to generation of CSCs in breast cancer.
This possibility is exemplified by the fact that CXCR1/2 inhibition
by the antagonist SCH563705 has given rise to inhibition of
spheroid formation in HER2+ breast tumor cells, and inhibition
of HER2-mediated signaling by lapatinib or siHER2 has led to
inhibition of CXCR1/2-dependent CSC-spheroid formation (79).

With respect to clinical relevance, a recent study indicated
that CXCL8 neutralizing antibodies abrogated the ability of
paclitaxel and gemcitabine to elevate CSC levels in breast
cancer (tumor spheroids and ALDH-expressing cells). Here, the
induction of CXCL8 by chemotherapy was mediated by HIF
signaling via ROS-dependent expression (80). Similar findings,
supporting the roles of CXCL8 and its receptors in generating
CSC when breast cancer cells are exposed to chemotherapy, were
found when neutralizing antibodies to CXCL8 or the CXCR1/2
inhibitor reparixin inhibited the generation of CD44+/CD24−

cells, ALDH-expressing cells and spheroid formation following
paclitaxel treatment. In this study, treatment of mice with
reparixin decreased the number of tumor-initiating cells, which
was originally increased in the tumor as a result of chemotherapy
administration (81). Another study indicated that when CXCR1
was inhibited and has led to reduced generation of spheroids and
their volume, paclitaxel has further augmented this effect (35).

The two inflammatory CC chemokines, CCL2 and CCL5
were also found to elevate the generation of CSCs. This was
evidenced by a CCL2-promoted formation of primary and
secondary tumor spheroids that contained more self-renewing
CSCs (82), and by the fact that stimulation of breast tumor
cells with CCL5 increased the CD44+/CD24− sub-population
(47). These CCL5-enriched CSCs expressed higher levels of the
corresponding receptor CCR5 and were able to invade more
than non-CSCs, ability that was abrogated by inhibition of
CCR5 (47). In another study, CCR5-expressing breast cancer
cells demonstrated higher potency in forming mammospheres
in vitro and in initiating tumor formation in vivo, than cells not
expressing the receptor (83).

Another important axis in this respect is CXCL12-CXCR4,
as demonstrated in the luminal-A subtype of breast cancer.
Overexpression of CXCL12 in breast cancer cells elevated the
proportion of CD44+/CD24− cells, of ALDH-expressing cells,
as well as the expression of stemness markers such as Oct4,
nanog and sox2 (84). Along these lines, CXCR4-expressing
tumor cells demonstrated higher ability to form mammospheres
than CXCR4-negative cells (85); like CXCR4, CXCR7/ACKR3
was found to play key roles in promoting the CSC sub-
population, as indicated by reduced levels of CD44+/CD24low

cells, of ALDH-expressing tumor cells and of Oct4 and nanog
expression following down-regulation of CXCR7/ACKR3 (56).
Following co-culturing of the tumor cells with CAFs, a process
that has led to increased production of CXCL12, CXCR4
inhibition has reduced the formation of spheroids that were
enriched with CD44+/CD24− cells (86). Additional findings
connected chemokines with CSCs and resistance to therapy
by demonstrating that CXCR4 signaling was required for the
generation of cells with CSC characteristics out of tamoxifen-
resistant luminal-A breast tumor cells (87).

Metastasis-Promoting Functions: EMT and
MMPs
A major paradigm in the context of chemokine-directed site-
specific metastasis is that in response to chemokines that
are expressed at specific organs, tumor cells that express the
corresponding receptors migrate and home to these sites. Such
processes were well-exemplified for the CXCL12-CXCR4 pair,
as well as for other chemokine axes in a very large number of
malignant diseases [summarized for example in (23, 25, 26)]. In
parallel, irrespective of directing cancer cells to defined organs in
the course of metastatic spread, chemokine-induced cytoskeleton
re-organization and tumor cell migration/invasion were reported
inmany tumor systems andwere strongly connected to the ability
of the cancer cells to acquire a more aggressive phenotype.

Within the scope of the current review article, we wish to
expand the discussion beyond such direct chemokine activities
that promote tumor cell migration and invasion, and elaborate
on other chemokine-induced functions that can promote cancer
cell spreading and metastasis, such as EMT and MMP release.
Indeed, the arena of chemokine activities was expanded toward
direct abilities of chemokines to promote in the tumor cells
mesenchymal properties; the mesenchymal characteristics of
cells undergoing EMT include properties such as elevated
expression of vimentin and of specific transcriptional repressors
(such as twist, snail, slug and zeb) alongside with reduced
E-cadherin expression. As mesenchymal properties generally
facilitate motility, often independently of chemotactic gradient-
mediated processes, in some of the studies the elevated levels
of EMT were connected to increased tumor cell migration
and invasion.

For example, a recent study demonstrated that CXCL1 derived
from TAMs elevated EMT properties in luminal-A and TNBC
breast tumor cells, in a NF-κB-mediated process that has led to
activation of SOX4 (88). Another study indicated that through
the activities of the transcription factor Brachyury that has led to
CXCL8 up-regulation in breast tumor cells, EMT processes were
increased in adjacent cancer cells. Accordingly, CXCL8 induced
tumor cell invasiveness through a Brachyury-dependent process
(89). With relevance to obesity-related aspects of breast cancer,
CXCL8 that was induced via the PI3K/Akt-mediated pathway
was found to mediate the EMT-inducing effects of leptin and
its ability to increase tumor cell invasion (90). Similar roles
for CXCL1/CXCL8 and their receptors in inducing EMT were
implicated in several other publications of breast tumor cells
(66, 78, 91, 92).
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In parallel, CCL2 activities via CCR2, as well as CCL5-
induced signaling were demonstrated to contribute to increased
EMT and twist expression, at times accompanied by increased
tumor cell invasion in breast cancer cells (93–96). Similar
findings were obtained for the CXCL12-CXCR4 axis, when over-
expression of CXCL12 or constitutively active CXCR4 have led
to reduced E-cadherin levels, accompanied with up-regulation of
slug, vimentin and fibronectin or with switch toward elevated
expression of cadherin 11 (84, 97, 98). Mechanistic analyses
indicated that over-expression of CXCL12 in breast tumor cells
has led to E-cadherin reduction through activation of the NF-κB
pathway (84) and by up-regulation of β-catenin expression (98).
As before, CXCL12-CXCR4-induced EMT-related properties in
the cancer cells were often accompanied by increased tumor cell
migration or invasion (84, 97, 98).

In parallel to the EMT-inducing properties of chemokines,
they also were implicated in up-regulation of other processes
that can promote metastasis, such as the release of MMPs
that facilitate cancer cell spreading through extracellular matrix
(ECM) components during extravasation or intravasation in
the course of tumor cell dissemination. For example, twist
up-regulated the expression of functional MMPs by non-
transformed and transformed breast cells through CXCL8 and
CCL5 activities (99–102). Other chemokines (CXCL1, CCL9)
were also connected to induction of MMPs in breast tumor cells
(102, 103). Elevated production of functional MMP2 and MMP9
was detected in breast tumor cells following CXCL12 stimulation,
in the context of CXCR4 expression (104, 105). Addressing
the roles of CXCR7/ACKR3, the other CXCL12 receptor, the
study of murine breast tumor cells demonstrated that CXCL12
has induced the functional expression of MMP9 through
CXCR7/ACKR3 in vitro and that CXCR7/ACKR3 inhibition
has led to reduced tumor growth and MMP9 expression in
tumors in vivo (106). In contrast, the research of rat mammary
adenocarcinoma cells demonstrated that the ability of CXCR4-
over-expressing cells to degrade matrix was antagonized by
simultaneous co-expression of CXCR7/ACKR3 (107).

Chemoresistance and Endocrine
Resistance
A major obstacle in cancer therapy is intrinsic resistance to
therapy or resistance that is acquired due to many different
mechanisms, some of which taking place in the cancer cells
following their interactions with TME elements. Being a
part of the TME, chemokine axes were found to increase
chemoresistance and resistance to endocrine therapy. In line with
the fact that CSCs often stand in the basis of resistance to therapy
(75, 108, 109), chemokine activities that increase the CSC sub-
population may eventually also reduce tumor cell response to
treatments, and the two processes may thus be connected [as
reported for example in (81)].

To date, key roles were identified in breast cancer for
CXCR1/CXCR2 and their CXCL1/CXCL8 ligands in promoting
resistance to chemotherapeutic drugs such as doxorubicin and
paclitaxel. By taking different measures to modify the expression
of chemokine receptors or of the chemokines themselves,

evidence was provided to the ability of this chemokine
axis to directly promote chemoresistance in vitro and in
animal studies (34, 66, 110, 111). Actually, in vivo studies
demonstrated the benefit of co-administration or sequential
treatment by chemotherapy and by inhibitory measures directed
to CXCR1/CXCR2 on the volume of breast tumors, on their
ability to metastasize, on neovascularization and on repopulation
of the tumors by drug-resistant cells (34, 66, 81, 110–112). Along
these lines, a study by Massagués and colleagues demonstrated
that CXCR2 inhibitors that were administered to mice prior and
in the course of chemotherapy, sensitized the tumor cells to the
cytotoxic effects of the drugs. This study has revealed a regulatory
loop in which genotoxic stress created by chemotherapeutic
drugs limited the survival of breast tumor cells, but the expression
of tumor necrosis factor α (TNFα) was also increased and has
led to elevated production of CXCL1/2 by the tumor cells;
these chemokines recruited CXCR2-expressing CD11b+ Gr1+
myeloid cells which in turn acted via S100A8/9 factors to
promote the viability of tumor cells that expressed CXCR2.
Myeloid cells recruited by CXCL1/2 thereby enhanced viability
and chemoresistance in the cancer cells (113). Other members of
the chemokine receptor family, such as CCR5 and CXCR4, were
also noted as chemoresistance-mediating factors in breast cancer,
acting to increase DNA repair [CCR5; (83)] or to elevate tumor
cell proliferation and reduce sensitivity to chemotherapeutic
drugs through induction of interleukin 1 (IL-1) by MSCs
[CXCR4; (114)].

In addition, chemokines were reported as potential
regulators of endocrine therapy in breast cancer. It was recently
demonstrated that CCL2 derived from TAMs has led to elevated
endocrine resistance in luminal-A breast cancer cells, through the
activation of the PI3K/Akt/mTOR cascade (115). Important roles
for the CXCL12-CXCR4 axis in this aspect were also reported,
demonstrating that CXCL12 has induced the activation of the
two estrogen receptors—ERα and ERβ–and these processes were
down-regulated when CXCR4 was inhibited (54). Moreover,
this same study demonstrated that CXCR4 activation has led to
increased ERβ activities in the presence of tamoxifen treatment,
altogether suggesting that CXCL12-induced CXCR4 activation
enabled ERβ to promote down-stream signaling that may
overcome inhibition by endocrine therapy. Roles for CXCR4 in
resistance to endocrine treatments were also demonstrated when
CXCL12 administration has increased the volumes of tumors
generated by luminal-A breast tumor cells in mice treated by the
estrogen receptor antagonist Fulvestrant (116). Along these same
lines, it was found that CXCR7/ACKR3 increased the stability
of ERα and conferred insensitivity to tamoxifen in luminal-A
breast cancer cells (117).

To conclude this part of the review, the findings presented
above emphasize the significant involvement of chemokines in
up-regulating multiple tumor-enhancing aspects, where they act
directly on the cancer cells to promote many levels of the
malignancy process. By promoting tumor cell proliferation and
survival, CSC enrichment, EMT induction,MMPproduction and
therapy resistance, chemokines can elevate cancer establishment
at the primary site as well as tumor cell dissemination to remote
organs and the generation of metastases.
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ATYPICAL CHEMOKINE ACTIVITIES
EXERTED AT THE TUMOR
MICROENVIRONMENT

Immune Checkpoints and Their Blockade
As noted above, by virtue of their chemotactic properties toward
leukocytes, chemokines have a strong impact on the content
of immune and inflammatory cells at the TME, as has been
broadly investigated and reviewed [e.g., (4–12)]. However, a
relatively novel topic of research that is still in its early phases
indicates that chemokines can impact immune activities not only
by directly dictating the leukocyte landscape at tumor/metastatic
sites but also by affecting aspects related to inhibitory immune
checkpoints—such as the PD-1/PD-L1 axis—and their blockade.

In this respect, an interesting research aspect is the ability
of chemokines to up-regulate or stabilize the expression of
PD-L1 by tumor cells, thus indirectly reducing the efficacy
of anti-tumor immune functions. For example, CXCL8, whose
source was in gastric cancer-derived MSCs, has induced the
expression of PD-L1 in gastric cancer cells. The process was
mediated by STAT3 and mTOR activation, leading to tumor
cell resistance against CD8+ T cell-mediated killing (118).
Along these lines, CXCL5 that was secreted by CAFs promoted
the expression of PD-L1 by several colorectal cancer cell
lines; here, CXCL5 signals were transferred through CXCR2,
leading to PD-L1 up-regulation via a PI3K-dependent process.
In mouse models the potential relevance of these findings
to tumor progression was supported by the fact that the
expression of CXCR2 and p-Akt was coordinated with PD-
L1 expression in the tumors, and by immune-suppressive
activities of the CAFs (119). Evidence in the same direction
was obtained in colorectal cancer, where macrophage-derived
CCL5 acted through p65-STAT3 complexes that bound the COP9
signalosome promoter, giving rise to PD-L1 stabilization and up-
regulation in the cancer cells. These CCL5-mediated activities
have led to enhanced escape from T cell-mediated immune
activities (120).

Similarly, chemokines can up-regulate the expression of
inhibitory immune checkpoints by myeloid cells at the TME.
For example, in gastric cancer CSF-2 elevated the production by
macrophages of CXCL8, which then elevated PD-1 expression
by TAMs, giving rise to inhibition of CD8+ T cell activities
(121). Also, in a recent study it was demonstrated that
CXCR2+ MDSCs that were recruited to mouse mammary
tumors by ELR+ CXC chemokines such as CXCL1/2, up-
regulated the expression of immune checkpoint molecules (e.g.,
PD-1, CTLA-4, LAG3) by CD4+ and CD8+ T cells; they have
also induced T cell exhaustion, partly through interferon γ

(IFNγ) (122).
The above findings demonstrate that chemokine activities

can lead to elevated expression of molecules that participate
in down-regulation of immune activities in cancer. This way,
chemokines can reduce the efficacy of therapeutic approaches
using ICBs in cancer; accordingly, it was suggested that inhibition
of chemokine axes may potentiate the efficacy of ICBs and
augment anti-tumor immune activities that restrain tumor
growth and metastasis. Obviously, such chemokine/chemokine

receptor-targeting modalities can affect not only immune
checkpoint regulation by chemokines, but also the impact of
chemokines on the leukocyte landscape at tumor/metastatic
sites. Indeed, in gastric cancer tissue samples obtained following
treatment by the CXCR1/2 inhibitor reparixin, reduced levels
of proliferating tumor cells were noted, alongside with reduced
presence of PD-L1+ macrophages and increased fraction of
CD8+ T cells (121). In rhabdomyosarcoma, where MDSCs
of the CXCR2+ CD11b+ Ly6Ghigh phenotype mediated local
immune suppression, the efficacy of antibodies directed to
PD-1 was augmented when tumor-bearing mice had myeloid
cells deficient in CXCR2 (123). Essentially similar findings
were noted in a mouse model of lung cancer, where PMN-
MDSCs reduced T cell proliferation, and treatment of mice
with antibodies to CXCL5—which is a key chemoattractant of
such MDSCs—has reduced the proportion of PMN-MDSCs and
elevated the efficacy of anti-PD-L1 in increasing the survival of
mice (124).

Similar findings demonstrating the importance of chemokine-
induced MDSC infiltration in regulating the efficacy of ICB
activities were provided in a recent study of anti-PD-1-resistant
gliomas. Here, the survival of mice was increased when the CCR2
antagonist CCX872 was used, and further improvement was
obtained upon treatment with anti-PD-1 (125). Increased benefit
in terms of tumor inhibition was also obtained by measures that
down-regulated CCR1 or CCL5 activities, combined with ICBs
directed to PD-1 or PD-L1; here again, major roles were revealed
for TAMs andMDSCs as targets whose inhibition potentiates the
activities of ICBs (126, 127).

In parallel, improved activities of ICBs upon

chemokine/chemokine receptor inhibition, manifested by

reduced presence of immuno-suppressive/myeloid cells and
increased immune surveillance was noted when the CXCL12-
CXCR4 axis was down-regulated. In a model of metastatic
breast cancer, in which ICBs were combined with the CXCR4
inhibitor plerixafor (AMD3100), the drug had multiple
effects including reduction of fibrosis and of Tregs alongside
with increased infiltration of CTLs; also, the inhibition of
CXCR4 by plerixafor increased the effect of dual treatment
of mice by anti-PD-1 + anti-CTLA-4, in terms of metastatic
inhibition and prolonged survival (128). Following their
studies demonstrating that plerixafor decreased the intra-
tumor infiltration of Tregs, Poznansky and colleagues have
recently combined plerixafor with anti-PD-1 in ovarian
cancer models. The joint inhibitory modality had higher
efficacy than each measure alone in enhancing infiltration and
function of effector T cells, increasing memory T cells, and
reducing the presence of MDSCs in the tumors. Compared
with treatment by each element alone, the combined therapy
was more potent in inhibiting tumor growth and increasing
survival of mice (129). Along the same lines, anti-PD-L1
synergized with the CXCR4-inhibiting drug plerixafor in killing
tumor cells in a mouse pancreatic model (130). Additional
reports have also provided evidence to the benefit provided
by co-inhibition of the CXCL12-CXCR4 axis and ICBs in
other animal model systems, through regulation of immune
activities (131–133).

Frontiers in Immunology | www.frontiersin.org 8 June 2020 | Volume 11 | Article 952

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Morein et al. Atypical Chemokine Activities in Cancer

In this context, it is important tomention that chemokines can
induce intra-tumor infiltration not only of deleterious leukocyte
sub-population but also of immune cells that can exert anti-
tumor activities. Under these circumstances, it is expected that
the chemokines themselves, rather than their inhibition, will
collaborate with ICBs and increase their potency. One such
example was demonstrated by the cooperativity between CCL5—
known as chemattractant of T effector cells (2)—and CXCL9
that can act through CXCR3 to recruit Th1 cells, CD8+ T cells
and NK cells (2). In this study, it was found that tumor-derived
CCL5 has recruited effector T cells to tumors; the release of
IFNγ by T cells has increased the production of CXCL9 by
macrophages, leading to increased immune surveillance of the
tumors. Moreover, tumors that expressed CCL5 and CXCL9 were
responsive to anti-PD-1 treatment, in contrast to tumors that did
not (134). These findings illustrate the importance of non-ELR
CXC chemokines such as CXCL9 and CXCL10 that act through
CXCR3 to recruit anti-tumor immune cells and can also have
anti-angiogenic activities. Although when CXCR3 is expressed
by tumor cells its ligands may promote tumor growth (16, 135–
137), many studies demonstrated that these chemokines exert
immuno-angiostatic activities on the TME (16, 138, 139). Thus,
it is expected that in different tumor systems, chemokines acting
through CXCR3 would act alongside with ICB activities, as was
suggested by several published reviews (16, 138, 139).

Bone Remodeling
The bone is a preferred metastatic site which generally marks
poor prognosis in many malignancies, including breast cancer.
Following tumor cell invasion to bones, their metastatic
colonization at the site is accompanied by bone remodeling,
reflecting an inappropriate balance between bone-forming
osteoblasts and bone-resorbing osteoclasts that leads to bone
destruction. This osteolytic process, driven by several mediators
such as RANKL and others, serves well the needs of the
metastasizing cancer cells and contributes to their outgrowth in
this niche (140, 141).

Many members of the chemokine family were found to
contribute to bone remodeling with and without connection
to malignancy (140–144). In this context, under physiological
conditions, CXCL8 can promote RANKL production by
osteoblasts and collaborate with it to increase the generation of
osteoclasts (141, 145–147). Thus, when cancer cells acquire the
ability to express CXCL8, it is assumed that they will enhance
osteoclastogenesis during the metastatic process. Indeed, several
studies support such a scenario: when breast tumor cell-
derived supernatants promoted osteoclastogenesis, as indicated
by increased generation of TRAP+ cells out of peripheral blood
mononuclear cells, the process was down-regulated by inhibitors
of CXCL8 or its receptors (146, 148, 149). Moreover, CXCL8
produced by tumor cells or by CXCL8-transgenic mice gave
rise to elevated osteolysis in vivo, whereas antibodies to CXCL8
prevented bone damage and elevated the survival of mice (146).
It was also found that breast tumor cells produced semaphorin
D, which has increased CXCL8 production by osteoblasts and
the levels of TRAP+ expressing cells in vitro. In parallel,
in vivo studies indicated that shRNA-mediated inhibition of

semaphorin D expression in breast tumor cells has led to
reduced levels of metastasis and longer survival, accompanied
by reduced formation of osteolytic skeletal lesions (147). In this
context, it is interesting to note that analysis of plasma from
breast cancer patients identified significant correlation between
increased CXCL8 levels and elevated degree of bone resorption
as well as with bone metastasis, supporting key roles for CXCL8
in this setting (146).

In parallel, CCL2 was found to be expressed at the site of
metastatic breast cancer localization in the bones (150) and
breast cancer-derived CCL2 has acted through CCR2 to promote
osteoclast differentiation and contributed to bone metastasis
(151). Moreover, it was found that MAPK11 (p38β) activation in
breast cancer cells has given rise to elevated CCL2 production,
which then contributed to increased bone resorption (152).

The picture seems to be more complex in the case of axes
including CCL5 and CCL3, and their shared receptors CCR1 and
CCR5 in regulating bone remodeling in cancer (141, 144, 153).
Information also is lacking regarding the roles of the CXCL12-
CXCR4 pair in this context. This axis is of particular interest
because CXCL12 was found to promote bone resorption under
physiological conditions, and in parallel is a leading factor in
driving tumor cell homing to the bones in a very large number of
malignancies. In view of these dual roles of CXCL12, it is expected
that the CXCL12-CXCR4 pair will be instrumental in regulating
osteoclastogenesis and osteolysis in tumors, but currently this
aspect was mainly investigated in multiple myeloma (141, 144)
and needs to be extensively addressed in future studies.

Pro-cancerous Tumor-Stroma Interactions
MSCs and CAFs are major components of the tumor stroma that
in many malignancy-related systems (including breast cancer),
although not all, have been strongly connected to increased
tumor-promoting functions. The activities of MSCs and CAFs
at the tumor setting include induction of EMT, angiogenesis
and more, and are affected by their interactions with the TME,
primarily the pro-inflammatory TME (154–165).

The sources of CAFs are diverse, including resident
fibroblasts, adipose MSCs and bone marrow-derived MSCs
that differentiate to CAFs at the tumor site (155, 166–169).
In addition to their roles as chemoattractants of MSCs to
tumor sites, which have been reviewed previously [e.g.,
(155, 158, 170, 171)], chemokines can stand in the basis of
tumor-stroma interactions that promote cancer progression.
MSCs and CAFs can establish direct contacts with the cancer
cells; in addition, the tumor cells and stromal cells can affect each
other indirectly by the release of soluble mediators. In the scope
of this article we hereby elaborate on studies demonstrating the
roles of chemokines in regulating tumor-stroma interactions,
which eventually affect the pro-malignancy functions of one or
both cell types, or of the TME.

In this respect, our recent study indicated that interactions
formed between TNBC cells and MSCs under the influence
of the pro-inflammatory cytokine TNFα have given rise to
increased lung metastasis in a breast cancer animal model
system (159). In this system, we demonstrated that cell-to-
cell contacts between the tumor cells and the stromal cells, as
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well as soluble mediators, have led to increased production of
inflammatory chemokines; this process was further promoted
by stimulation of tumor-stroma co-cultures with TNFα and
IL-1β. One of the key chemokines that was potently elevated
due to such inflammation-driven TNBC-MSC cross-talks was
CXCL8. Our findings indicated that following TNFα stimulation
of tumor-stroma co-cultures, NF-κB activation has led to CXCL8
induction, partly through a Notch1-dependent process. Then,
CXCL8 that was expressed at elevated levels played direct roles
in promoting angiogenesis as well as tumor cell migration and
invasion (159, 160). Here, it was interesting to note that similar
elevations in CXCL8 production were not evident when the
partners in the co-cultures were luminal-A breast tumor cells
instead of TNBC cells (159). In another study of TNBC cells,
Jin et al. demonstrated that in response to factors released
by the tumor cells, CAFs and macrophages released CXCL8
that promoted the proliferation and migration of the cancer
cells in a process that depended on CXCR2 activation (40).
Other members of the ELR+ CXC chemokine family, CXCL1
and CXCL2 were found to be induced in normal mammary
fibroblasts that gained a CAF phenotype in response to tumor
cell-derived osteopontin, that also promoted tumor growth (172).

In breast cancer it was also demonstrated that CCL2 levels
were higher in stromal cells derived from tumors compared
to normal breast tissues and that fibroblast-derived CCL2
contributed to tumor growth and metastasis in vivo (82, 162).
More so, physical as well as indirect interactions between breast
tumor cells and cancer-associated stromal cells (and not normal
mammary stromal cells) have contributed to elevated levels of
CCL2 (82, 159, 161, 162). It was found that under such interactive
settings, CCL2 has contributed to elevated tumor cell migration,
generation of CSCs and angiogenesis (82, 161). CCL2 production
in the tumor-stroma setting was connected to pro-inflammatory
conditions: pro-inflammatory stimuli (TNFα and IL-1β) have
strongly up-regulated the release of CCL2 by tumor-stroma co-
cultures (159), and in parallel CCL2 has induced an inflammatory
TME in mice, demonstrated by high localization of macrophages
and increased stroma and collagen density in mice (173). As
with CXCL8, a connection to the Notch pathway was revealed
for CCL2 in mediating tumor-stroma interactions, when CCL2
produced by fibroblasts that were activated in the presence of
breast cancer cells has elevated CSC levels in cancer cells by
activating the Notch pathway, and has induced the expression of
Notch1 by the cancer cells (82).

Strong interactions through the CCL5-CCR5 axis were also
reported to exist between breast tumor cells and stromal cells,
mainly MSCs. For example, osteopontin was found to be
a key factor released by breast tumor cells, binding αVβ3
integrins expressed by MSCs and then giving rise to elevated
levels of CCL5 production. This interactive loop gave rise to
increased metastasis in mice that were administered with tumor-
MSC co-cultures, through osteopontin and CCL5-dependent
mechanisms (163). Also, the study by Weinberg and colleagues
demonstrated that CCL5 released by MSCs has acted through
CCR5 to promote breast tumor cell migration, invasion and
metastasis in animal studies (164). In the same spirit, CCL5
produced by MSCs has acted on CCR5-expressing breast

tumor cells, leading to the release of CSF-1 and then to
increased accumulation of macrophages and MDSCs in tumors.
Accordingly, CCR5 inhibition by siRNAs gave rise to reduced
metastasis formation, accompanied by decreased levels of CSF-
1-expressing macrophages and CD11+ Ly6C+MDSCs (174). In
another study, it was demonstrated that the conditioned medium
(CM) of MSCs increased the expression levels of two CCL5
receptors, CCR5 and CCR1 by murine breast tumor cells; in
line with these findings the inhibitor met-CCL5 inhibited the
migration of the cancer cells in response to MSC-derived CM
(102). Cooperativity of CCL5 with IL-6 was also noted when CM
of MSCs promoted breast tumor cell migration (175).

When coming to address the roles of CXCL12 in mediating
tumor-stroma interactions in breast cancer, the majority of
studies indicated that this chemokine or CXCR4 stand in the
center of tumor-promoting cross-talks between cancer cells and
stromal cells. CAFs constituted a major source for CXCL12, and
produced it in higher levels than normal fibroblasts or fibroblasts
located in seemingly healthy tissues that were adjacent to patient
tumors (176–178). Moreover, CXCL12 production was elevated
when CAFs or MSCs interacted directly or indirectly with
breast tumor cells (86, 179). Under such conditions, CXCL12-
and CXCR4-mediated signaling elevated a large number of
pro-cancerous characteristics and functions in breast cancer:
tumor cell proliferation and invasion, generation of CSCs and
angiogenesis (through attraction of endothelial progenitor cells),
as well as tumor growth and metastasis in vivo (86, 176–180).

However, the roles of CXCR4 in mediating tumor-
stroma networks that promoted breast malignancy were
put to question in several other studies. In one of these
works it was demonstrated that CM of MSCs elevated the
proliferation of breast tumor cells not through CXCR4, but
rather via CXCR7/ACKR3 (181). Another study indicated
that CXCR7/ACKR3 expression by breast cancer cells was
down-regulated by MSC-derived CXCL12 (possibly due to
ligand-dependent receptor internalization), and under these
conditions, metastasis was reduced. However, when TGFβ was
introduced, CXCL12 production by the MSCs was reduced,
CXCR7/ACKR3 expression levels remained intact and metastasis
was elevated (182). Here, it is worth noting that unlike these
findings, a positive feedback loop between TGFβ and CXCL12
was found in relation to CAFs, when TGFβ and CXCL12
up-regulated each other’s expression in mammary CAFs, and
both contributed to the gradual process of fibroblast transition
to CAFs (177).

Overall, the research on the impact of chemokines at the
TME has been largely expanded beyond their fundamental
roles in regulating the migration of leukocytes, endothelial
cells and stromal cells. Currently, it is becoming evident that
chemokines affect the ability of immune cells to exert anti-tumor
activities by regulating the expression of immune checkpoints
and the activity of ICBs. Moreover, chemokines facilitate
metastasis by remodeling bone structure and by mediating
pro-tumorigenic interactions that take place between cancer
cells and stromal cells. Evidently, all of these activities largely
contribute to elevated tumor progression and may lead to
reduced patient survival.
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Activities of Atypical Chemokine
Receptors in Cancer
Between others, in the previous sections of the article we
described non-conventional activities of CXCL12, taking place
via its two receptors, CXCR4 and CXCR7/ACKR3. Whereas,
CXCR4was characterized as a typical tumor-supporting receptor,
many lines of evidence indicated CXCR7/ACKR3 can have pro-
metastatic effects but in specific settings it can act in an opposite
manner. The tumor-restricting activities of CXCR7/ACKR3 may
be connected to the fact that unlike CXCR4, it is an atypical
chemokine receptor (and thus was given the additional name
ACKR3). ACKRs lack the classical heterotrimeric G protein-
mediated signaling pathway, they control responses to a variety
of CXC and CC chemokines and they are expressed by various
cell types. This class of receptors was originally considered
as “decoy receptors” that sequester chemokines from the
microenvironment, thereby inhibiting the effects of chemokines
at different settings. In parallel, recent studies indicate that
ACKRs regulate cancer progression by their chemokine-
sequestering functions, as well as by other mechanisms.

Aside from controlling motility-related aspects in cancer,
such as tumor cell invasion, endothelial cell migration
(angiogenesis) and eventually tumor progression in vivo (183–
187), CXCR7/ACKR3 regulates non-conventional cancer-related
activities. The array of atypical cancer-regulating functions
of CXCR7/ACKR3—when it acted alone or in the context of
CXCR4—were discussed in the previous sections of the article,
as appropriate. The intriguing findings on CXCR7/ACKR3
illustrate the importance of the ACKR subgroup in general; thus
in this section of the manuscript we discuss the atypical roles of
additional key ACKRs in malignancy: ACKR1 (DARC, Duffy),
ACKR2 (D6, CCBP2) and ACKR4 (CCRL1, CCX-CKR).

ACKR1 is a highly promiscuous receptor that binds a
large number of chemokines, from the CC and CXC sub-
families, mainly those of the inflammatory sub-group. Through
internalization, ACKR1 plays key roles as depot of chemokines;
accordingly, its constitutive expression by venular endothelial
cells results in low availability of ELR+ CXC chemokines
that promote angiogenesis (2, 4, 27). By sequestering ELR+
CXC chemokines as well other members of the family, and
possibly also via other pathways, ACKR1 usually acquires anti-
tumorigenic effects. Indeed, ACKR1 was strongly connected
to improved outcomes in breast cancer as well as in several
other malignancies, at times upon co-expression with ACKR2 or
ACKR4 (188–192). Accordingly, ACKR1 was causatively linked
to reduced tumor growth and metastasis in animal models, and
ACKR1 single nucleotide polymorphisms that were related to
chemokine sequestration affected angiogenesis, tumorigenesis
and lung metastasis (193–195). The anti-tumor activities of
ACKR1 were mediated not only by reducing microvessel density,
but also by inhibiting atypical cancer-related activities, such
as MMP9 production and tumor cell proliferation, as well
as increasing tumor cell senescence (192, 194–196); from the
mechanistic perspective, it was demonstrated that ACKR1 caused
anti-tumor effects by interfering with CXCR2-induced STAT3
activation in pancreatic adenocarcinoma cells (192). Moreover,

in prostate cancer ACKR1 expressed by vascular endothelial
cells interacted with tetraspanin KAI1 (CD82) on tumor cells,
leading to decreased DNA synthesis and induction of tumor
cell senescence (195); in parallel, it was found that melanoma-
expressed KAI interacted with endothelial cell-expressed ACKR1
preventing CXCL8-inudced gap formation in endothelial cells
and leading to tumor cell senescence (197).

Very much like ACKR1, ACKR2 binds and internalizes
inflammatory chemokines, leading them to degradation;
however, unlike ACKR1, the activities of ACKR2 are limited
mostly to CC chemokines that signal through CCR1 and CCR5
(2, 4, 27). By virtue of its expression by lymphatic endothelial
cells and by tumor cells, ACKR2 plays key roles in preventing
inflammatory conditions in a variety of settings, and was mainly
referred to as tumor-restricting receptor (2, 4, 27). In breast
cancer and in many other malignancies, ACKR2 expression
was causatively linked to down-regulation of tumor growth
and metastasis (198–202). In many cases, ACKR2 inhibited the
infiltration of tumor-supporting leukocytes, angiogenesis or
tumor cell invasion; often, these processes were accompanied
by reduced levels of the relevant chemokines and competition
with CCR2-mediated signaling (198–202). However, through
the same mechanisms of CCL2/CCR2 inhibition, ACKR2 was
also reported to prevent the activities of beneficial leukocyte
sub-populations, such as NK cells and neutrophils that are
cytotoxic against tumor cells (203, 204).

By functioning in these manners, the tumor-restricting but

also the tumor-promoting activities of ACKR2 resulted from
the expected, motility-related functions that are involved in

cancer progression. However, in addition, ACKR2 was found

to restrict tumor progression by regulating atypical chemokine
activities at the tumor setting, such as cancer cell proliferation
(198, 199). However, in this context of non-conventional cancer-
related chemokine activities, it is possible that ACKR2 may
also have pro-tumor effects. This is illustrated by a recent
study demonstrating that fibroblast-derived CXCL14 acted in
the context of tumor cell expressed ACKR2, activating the
ERK pathway and inducing EMT, elevating migration and lung
colonization by luminal-A breast cancer cells (205).

ACKR4 joins ACKR2 in sequestering CC chemokines, but
with preference to homeostatic members of the family: CCL19,
CCL21, CCL25 (and with lower affinity CCL13). Resembling
ACKR1 and many of the functions of ACKR2, ACKR4
demonstrates predominantly tumor-restricting effects, and was
positively correlated with patient survival rates in several cancers;
at times, ACKR4 expression was inversely correlated with the
expression of chemokines in patient materials (188, 191, 206–
208). Supporting these findings are the results of a breast cancer
report, demonstrating that ACKR4 overexpression by breast
tumor cells inhibited tumor growth and lung metastases, and
decreased the expression of mouse CCL19, CCL21, CCL25 and
CXCL13 chemokines in xenografts (208). In this study, and
in reports on hepatocellular carcinoma and nasopharyngeal
carcinoma, the tumor-restricting effects of ACKR4 were
mediated by inhibition of cancer cell proliferation, EMT and/or
migration, through abrogation of the relevant chemokine axes
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(207–209). Conversely, although smaller primary tumors were
formed when CXCR4-over-expressing mouse TNBC cells were
administered to mice, the cancer cells acquired increased ability
to colonize the lungs; in this case, ACKR4 promoted EMT in
the tumor cells, reduced adherence of the cancer cells to each
other and to ECM proteins, and increased their resistance to
anoikis (210).

The findings discussed above suggest that CXCR7/ACKR3
may have definite tumor-enhancing roles but also can acquire
anti-malignancy effects in certain settings. In contrast, ACKR1,
ACKR4 and in many cases also ACKR2 exert anti-tumor
functions at conventional migration-related processes as well as
at non-conventional aspects. Thus, specific ACKRs may have
important implications toward chemokine-designed therapies
in cancer.

DISCUSSION

The chemokine family includes a very large number of members,
which regulate physiological and pathological conditions at many
different levels. In cancer, specific members of the family that act
under defined situations can exert anti-tumor activities, e.g., by
recruiting cytotoxic immune cells to tumors or down-regulating
angiogenesis. However, in many of the malignancies, a large
number of the chemokines demonstrates the ability to promote
tumor growth and progression and dominate the setting by
giving rise to elevated tumor aggressiveness.

Their prime function as inducers of cellular motility has
set chemokines and their receptors as major regulators of
malignancy-related events that depend on cell migration in
response to chemotactic signals (Figure 1—“Typical” chemokine
activities in cancer). These events include primarily the following
mechanisms: (1) Chemokines control in spatial and temporal
manners the migration of different leukocyte subsets and
their recruitment to tumors/metastases, thus having a strong
impact on leukocyte content at these sites. Accordingly,
the equilibrium between immune cells that recognize tumor
antigens vs. pro-inflammatory/immune-suppressive cells has
major roles in determining the fate of the developing tumor
and of metastases; (2) Signals delivered by specific chemokines
promote the migration of endothelial cells and their progenitors,
thus supporting the essential process of angiogenesis; (3)
Chemokines recruit MSCs from other tissues, primarily bones,
to tumors/metastases; there, the MSCs can express many tumor-
promoting activities on their own, and also after their transition
to CAFs; (4) Cancer cells that express chemokine receptors
respond to their corresponding chemotactic cues at remote sites,
thus chemokines form an important venue that through directed
tumor cell migration dictates site-specific metastasis.

At first, reports on chemokine activities that are beyond
regulation of cell motility were sporadic; however, with time
it became clear that chemokines influence cancer cells and the
TME at many levels that are not directly connected to cell
migration, eventually supporting the establishment of primary
tumors and cancer cell spreading to metastatic sites. Such
chemokine functions were exemplified in this article by focusing

on the activities of several tumor-promoting chemokines of the
CXC and CC sub-families—mainly of the inflammatory arm—
in breast cancer (Figure 1—“Atypical” chemokine activities in
cancer). We have illustrated such atypical roles of chemokines in
promoting tumor cell proliferation and survival and in parallel
in regulating the senescence of cancer cells; in enriching tumors
with CSCs; in promoting the mesenchymal phenotype of cancer
cells (EMT) and the release of MMPs; and in elevating resistance
to chemotherapy and to endocrine therapy. In parallel, atypical
chemokine activities lay out the basis for a tumor-supportive
TME by modulating immune checkpoints and interfering
with their blockade, by facilitating bone metastasis through
osteoclastogenesis and bone resorption, and bymediating tumor-
stroma interactions that promote the pro-cancerous potential of
the tumor cells and of their adjacent milieu.

Very likely, the different levels affected by the chemokines
are inter-connected, further amplifying disease progression. First
and foremost is the strong connection of chemokines to immune
activities: here, the ability of chemokines to regulate the immune
and inflammatory contextures of tumors is joined by their ability
to promote the expression of inhibitory immune checkpoints and
to regulate the efficacy of their blockade. As a result of these joint
activities, chemokines may strongly impact the efficacy of ICBs
and of other immune-mediated anti-cancer therapies.

Another illustration of integrative chemokine effects at several
levels simultaneously is provided when chemokines affect in
atypical manners the cancer cells themselves. For example,
tumor cell stemness is strongly connected to elevated EMT
and to therapy resistance; accordingly, in some of the studies
mentioned above chemokines were found to promote some
of these processes concurrently. Similarly, when cancer cells
acquire in response to chemokine activities a mesenchymal
phenotype that is manifested by EMT-related properties, they
often also gain increased ability tomigrate and invade. Additional
strong connections are revealed when chemokines stand in
the center of tumor-stroma interactions. Such interactions,
which are mediated by chemokines or lead to their increased
production can eventually play key roles in promoting directly
the aggressiveness of the cancer cells (proliferation, invasion,
therapy resistance etc.) and the pro-tumor nature of the TME
(for example, recruitment of inflammatory cells, angiogenesis
and bone remodeling).

The research of some of these topics is only at its beginning,
and evidence of novel aspects that are regulated by chemokines
in the course of cancer development and progression are
now emerging. These aspects include for example the ability
of chemokines to elevate the levels of DNA repair (83), to
alter tumor cell metabolism (48, 96, 211, 212), to regulate the
localization and retention of dormant cancer cells in the bone
marrow (213) and to promote vasculogenic mimicry by tumor
cells (38).

The tumor-promoting roles of chemokines in malignancy—
through conventional (motility-related) and non-conventional
functions—should be carefully considered in the context of
tumor heterogeneity. Malignant diseases differ considerably from
each other in terms of cause and progression patterns; this is
illustrated not only when different cancer types are compared

Frontiers in Immunology | www.frontiersin.org 12 June 2020 | Volume 11 | Article 952

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Morein et al. Atypical Chemokine Activities in Cancer

FIGURE 1 | Typical and atypical pro-tumor activities of chemokines and their receptors in cancer. The chemokine family contains many different members, some of

which can limit tumor progression for example by inducing the recruitment of cytotoxic immune cells to tumors, or by inducing angiostasis (e.g., CXCR3). However,

extensive investigations of chemokine roles in cancer indicate that chemokine activities that promote tumor development and progression are very common and often

dominate the malignancy process. Being prime regulators of leukocyte migration in the immune context, chemokines are primarily considered as inducers of cellular

motility. Accordingly, chemokine activities that promote tumor progression via induction of directional cell motility—of leukocytes, endothelial cells, stromal cells and

cancer cells—are regarded in the scope of this review as “Typical”. Very much like the “Typical” chemokine activities, also those that do not directly affect cellular

motility and are thus termed herein “Atypical”, can be exerted on the tumor cells or on the TME (tumor microenvironment). By addressing most of these aspects in

breast cancer, we emphasize in this review article the atypical activities of chemokines in cancer (thus given a higher proportion in this drawing, but not necessarily so

in the actual cancer setting). In the “Typical” part, we mention that typical chemokine-induced migration can lead to homing of cancer cells at specific metastatic sites

and to remodeling of the tumor landscape by recruiting leukocytes, inducing angiogenesis through endothelial cell migration, and attracting MSCs that can then

differentiate to CAFs. In parallel, in the “Atypical” part, we describe the roles of chemokines in reinforcing (1) the aggressiveness of the tumor cells, by elevating tumor

cell proliferation and survival, regulating senescence, enriching tumors for CSCs, inducing EMT and MMP production and elevating resistance to chemotherapy and

endocrine treatments; and (2) the pro-metastatic nature of the TME, by interfering with the activities of ICBs, remodeling the bone niche by elevating

osteoclastogenesis and bone resorption, and promoting tumor-stroma interactions that contribute to elevated malignancy. Together, all of these chemokine

effects—typical and atypical—eventually lead to elevated metastasis and worsening of disease course. *Anti-metastatic activities in cancer: Under specific settings,

the pro-metastatic activities of chemokines can be inhibited by other chemokines that act through classical chemokine receptors (e.g., CXCR3) or by atypical

chemokine receptors (ACKRs). Such tumor-inhibitory activities of ACKRs have been well-documented for ACKR1 and ACKR4, whereas ACKR2 was mostly reported

as an anti-malignancy element, with pro-tumor activities reported as well. In contrast, CXCR7/ACKR3 is mainly characterized as tumor-enhancing factor, although its

roles in malignancy are complex, can be anti-tumorigenic and often reflect its interactions with CXCR4, the other receptor that binds CXCL12.

but also within the same disease, as is the case in breast cancer
(e.g., the TNBC vs. luminal-A subtypes). In addition, a very
challenging aspect in this regard is intra-tumor heterogeneity
which is observed in many tumor types (73). Obviously, when
chemokine roles in cancer are investigated, these aspects of inter-
tumor and intra-tumor heterogeneity need to be considered.

More so, chemokine roles in cancer and their relevance
for therapy need to be regarded in the broader scope of
“chemokine heterogeneity”. Here, one needs to consider tumors

and metastases as multi-chemokine organs, thus the impact
of chemokines on tumor progression depends much on their
relative amounts, temporal/spatial localization at the tumor
site/metastatic organs and the expression of corresponding
receptors by cancer cells, leukocytes, endothelial cells, and
stromal cells. Eventually, these parameters will dictate to a large
degree which of the chemokine/s will dominate the overall
malignant setting, via its/their typical and atypical activities,
affecting the tumor cells or the TME.
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The aspect of “chemokine receptor heterogeneity” adds even
more to the complexity of chemokine roles in cancer, by
demonstrating the ability of ACKRs to control cancer-related
activities. Whereas, CXCR7/ACKR3 has predominantly pro-
metastatic roles in cancer, ACKR1 and ACKR4 demonstrate
mainly tumor-restricting effects. Here, they very often sequester
and thus prevent the activities of pro-metastatic chemokines at
many levels, conventional and non-conventional. Thus, certain
ACKRs may represent a balancing arm of the chemokine field
in controlling cancer progression and in this regard, should be
considered as a therapeutic tool in cancer.

To conclude, our understanding of the roles of chemokines in
cancer progression has been largely expanded with time. There
are circumstances in which chemokines can interfere with the
malignancy cascade, as illustrated by the immune-angiostasis
functions of non-ELR CXC chemokines and by the tumor-
restricting activities of ACKRs in certain settings. However,
often the motility-driven and atypical activities of chemokines
dominate the scene, leading to enhanced disease course and
poor prognosis. Pre-clinical and initial clinical studies suggest
that inhibitors of defined chemokines or of their receptors may
be effective as therapeutic measures in cancer, primarily when
they are joined by other modalities such as chemotherapy or
ICBs [as illustrated above and also discussed in (4, 20, 21, 214–

219)]; however, to reach the point in which chemokines or
their receptors are used as targets in cancer therapy, extensive
research of their functions, typical and atypical, is needed
in the broader context of tumor heterogeneity, chemokine
heterogeneity, and chemokine receptor heterogeneity at the
tumor bed and in metastases.
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