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Abstract Uncovering the genetic risk and protective

factors for complex diseases is of fundamental importance

for advancing therapeutic and biomarker discoveries. This

endeavor is particularly challenging for neuropsychiatric

diseases where diagnoses predominantly rely on the clini-

cal presentation, which may be heterogeneous, possibly

due to the heterogeneity of the underlying genetic sus-

ceptibility factors and environmental exposures. Although

genome-wide association studies of various neuropsychi-

atric diseases have recently identified susceptibility loci,

there likely remain additional genetic risk factors that

underlie the liability to these conditions. Furthermore,

identification and characterization of the causal risk vari-

ant(s) in each of these novel susceptibility loci constitute a

formidable task, particularly in the absence of any prior

knowledge about their function or mechanism of action.

Biologically relevant, quantitative phenotypes, i.e., endo-

phenotypes, provide a powerful alternative to the more

traditional, binary disease phenotypes in the discovery and

characterization of susceptibility genes for neuropsychiat-

ric conditions. In this review, we focus on Alzheimer’s

disease (AD) as a model neuropsychiatric disease and

provide a synopsis of the recent literature on the use of

endophenotypes in AD genetics. We highlight gene

expression, neuropathology and cognitive endophenotypes

in AD, with examples demonstrating the utility of these

alternative approaches in the discovery of novel suscepti-

bility genes and pathways. In addition, we discuss how

these avenues generate testable hypothesis about the

pathophysiology of genetic factors that have far-reaching

implications for therapies.
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Introduction

Genetic studies of human diseases have been marked by an

explosion in the number of susceptibility loci identified

through genome wide association studies (GWAS) in the

past several years. Similar to other complex disorders,

neuropsychiatric diseases, too, had a share of their genetic

risk loci discoveries, with—for example—28 published

studies to date on Alzheimer’s disease (AD), 18 on bipolar

disorder and 22 on schizophrenia, according to the Catalog

of Published GWAS accessed on 21 Aug 2012 [1]. The

translation of this success to viable therapies and biomarker

discovery depends on the identification and characteriza-

tion of the actual disease genes and functional variants at
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these susceptibility loci. Furthermore, despite the large

number of discovered loci, a substantial component of

genetic susceptibility remains unexplained for complex

diseases [2•]. To overcome these major hurdles in the post-

GWAS era requires a multitude of alternative approaches

including the use of endophenotypes, which are biologi-

cally-relevant, quantitative and heritable phenotypes [3•]

(Fig. 1a).

The endophenotype approach was initially advocated in

psychiatric genetics [4, 5] due to the need to have an

objective and quantifiable outcome in genetic studies,

given the relatively imprecise nature of the clinical diag-

nosis, which is thought to result in heterogeneity. The

rationale for using endophenotypes, instead of or in addi-

tion to the binary disease phenotypes, stems from the fol-

lowing assumptions: (1) Endophenotypes represent an

intermediate outcome between genes and clinical diagnosis

of a disease, and given their closer proximity to the genetic

variation than the disease outcome, the genetic component

influencing the endophenotype will be larger and therefore

easier to detect [6, 7]; (2) Endophenotypes are under the

influence of a smaller number of genes than the more

complex disease outcome [6]; (3) Given its quantitative

nature, using an endophenotype as an outcome variable

will be statistically more powerful than the binary case/

control approach in detecting genetic associations; (4)

Since they are objectively quantifiable, endophenotypes

constitute a more homogeneous and accurately measurable

phenotype than disease outcome; (5) The endophenotype

approach can allow inclusion of individuals with and

without a given diagnosis, which will increase power,

particularly in family studies or for traits that are age

dependent [7, 8]; (6) The endophenotype approach will

provide information about the underlying mechanism of

action for the gene and variant of interest and might

therefore more readily enable downstream functional

investigations, including the generation of animal models

with quantifiable outcomes [9]. While the accuracy of these

Fig. 1 Definition (a) and utility

(b) of endophenotypes. The

graded arrow represents the

continuum of AD with darker
colors symbolizing greater

clinical expression of disease.

The brackets and text above

them depict the different uses of

endophenotypes at various

disease stages (Color figure

online)
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assumptions needs to be established, the endophenotype

approach has begun to generate hypotheses for novel

genetic loci and pathways implicated in human disease and

to enable the downstream characterization of disease

variants and genes, as exemplified in this review (Fig. 1b).

AD, the most common dementia in the elderly, is

especially amenable to the endophenotype approach, for a

number of reasons. First, AD has a distinct neuropathology

characterized by accumulation of amyloid b (Ab) in senile

plaques and hyperphosphorylated tau in neurofibrillary

tangles, both of which are quantifiable phenotypes, and the

latter correlates with clinical disease severity [10]. Second,

discoveries of Mendelian mutations in the amyloid pre-

cursor protein (APP), presenilin 1 (PSEN1) and PSEN2

genes in early-onset AD that lead to elevations in secreted

Ab and their modeling in animals harboring these muta-

tions (reviewed [11]) bolstered the amyloid cascade

hypothesis [12]. The ability to measure Ab levels in the

serum and cerebrospinal fluid (CSF) of AD patients and

their relatives [13], and the determination that Ab levels

are heritable [14] enabled the first studies utilizing Ab
levels as endophenotypes in genetic studies that discovered

genetic loci and variants influencing AD risk and Ab
[8, 15–17]. This was followed by investigations of CSF Ab
[18] and tau levels [19] as endophenotypes in AD genetics

studies. Third, the availability of prospective, elderly

cohorts with rich clinical, neurocognitive and neuroimag-

ing measures [20–22], knowledge that many of these

measures are heritable [6, 7, 23], and detection of pre-

clinical changes in these measures (reviewed [24••])

advocate their use as endophenotypes in genetic studies of

AD. Fourth, the advent of technology that allows mea-

surement of gene expression levels for all known tran-

scripts (transcriptome), development of methodologies that

allow analysis of this data at the whole-genome level,

significant heritability attributed to gene expression levels

(reviewed [3•]) and the availability of well-characterized

brain tissue from neuropathologic AD and other patients in

which transcriptome can be measured, empowered the use

of gene expression levels from brain and other tissues as

endophenotypes in AD.

This review focuses on three types of endophenotypes in

AD: gene expression levels, neuropathologic measures and

cognitive measures. These diverse endophenotypes span the

vast spectrum of biological insights that can be gained by

this quantitative approach: genetic associations with tran-

script levels, the most proximal of these traits to the sus-

ceptibility allele, may uncover the initial mechanism for the

functional consequences of the allele. Neuropathologic

phenotypes can relate a variant to the known neuropathology

of the disease and might enable the dissection of patho-

physiologic pathways influenced by the polymorphism of

interest. Finally, the use of cognitive endophenotypes can

uncover genetic risk factors governing distinct aspects of

human cognition and the clinical expression of the disease.

We recognize that there are many other endophenotypes

that are currently utilized or are excellent candidates for

genetic studies of AD, including Ab and tau levels, neu-

roimaging measures such as hippocampal volume and

magnetic resonance spectroscopy levels and methylation

patterns. Although a comprehensive assessment of all these

endophenotypes is beyond the scope of this review, the

generalizations that can be drawn from this synopsis could

potentially be applicable to many other quantitative phe-

notypes in AD research.

Gene Expression Endophenotype

Gene expression levels constitute a special group of

endophenotypes for a number of reasons. First, because the

tested phenotype is the level of the expressed gene tran-

script(s), genetic studies of gene expression endopheno-

types (also known as expression quantitative trait loci or

eQTL studies) directly identify the gene under the influ-

ence of genetic variants. This is in contrast to any other

phenotype, where genetic studies merely implicate a ‘‘locus

of interest’’ without definitive information about the

affected gene. This first characteristic of the gene expres-

sion endophenotype can be utilized to uncover plausible

disease genes via combined assessment of gene expression

endophenotype and disease phenotype as discussed below.

Second, genetic factors identified via eQTL studies provide

guidance about the underlying mechanism of action of the

‘‘functional variants’’ at the ‘‘locus of interest’’. This can

enable a more directed search for such ‘‘functional vari-

ants’’, for example by focusing on regulatory variants that

influence whole transcript levels or splice isoforms. Fur-

thermore, such information can guide downstream in vitro

studies that are more relevant to the underlying genetic

variation. Third, the ability to assess concerted expression

level changes or eQTL associations at the transcriptome

level via pathway analysis can lead to identification of

novel biological networks that may underlie disease path-

ophysiology. Below, we discuss the utility of gene

expression endophenotypes in gene discovery and charac-

terization in AD, highlighting examples that take advan-

tage of these special characteristics of this approach.

Utility in Gene Discovery

The utilization of gene expression endophenotypes in gene

discovery in AD first began with transcriptome profiling (or

mRNA profiling) studies, which are recently comprehen-

sively reviewed [25]. The underlying premise of these
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studies is that mRNA from patients with disease will have

changes in comparison to controls; and that these changes

may underlie disease pathophysiology. The most important

caveat in this assumption is that the detected gene

expression changes may be a consequence of the disease

and non-specific, rather than a causal event [3•]. This pitfall

is especially concerning if the transcriptome profiling is

performed in tissue affected by the disease (such as the

temporal cortex in AD). Indeed, in a detailed microarray-

based transcriptome profiling study of 14 different cerebral

cortex regions and the hippocampus, from 69 autopsied AD

subjects of varying clinical and pathologic severity versus

18 controls (maximal number of subjects utilized in the

study), Haroutunian et al. [26] identified the greatest

number of gene expression changes in regions from the

temporal cortex across the disease stages, with increasing

changes occurring in later disease stages and stronger

correlations between gene expression and disease severity

seen in more advanced disease. Importantly, most of the

changes observed were downregulations rather than upre-

gulations. Collectively, these results could imply that the

progression of disease and cell loss may be driving these

changes, rather than vice versa. These authors [26] and

others [27] attempted to overcome this concern by analysis

of autopsied AD subjects with mild neuropathology and

concluded that gene expression changes that occur in

regions prior to the development of neuropathology are

unlikely to be a consequence of the disease process.

Bossers et al. [27] analyzed 49 prefrontal cortex samples

from subjects with Alzheimer’s-type neuropathology to

identify correlated changes in gene expression which var-

ied with advancing Braak stage. They determined that the

most significant changes occurred in ‘‘synaptic activity

genes’’ between Braak stages II and III, which is prior to or

just at the onset of AD-type neuropathology when the

subjects were clinically non-demented. The authors also

noted that levels of several genes correlated with increasing

intracellular Ab levels during these Braak stages, leading

them to postulate that expression changes in genes of

synaptic activity may be a coping mechanism against

increased Ab that occurs prior to clinical and neuropatho-

logical AD. While it is not possible to draw definitive

conclusions about the longitudinal cascade of events, includ-

ing gene expression changes, based on cross-sectional

assessment of brain tissue from small numbers of distinct

subjects, these results nevertheless generate intriguing

hypotheses about AD pathophysiology via correlative

analysis of transcriptome and neuropathology data.

Another approach in utilizing gene expression endo-

phenotypes in gene discovery is combined transcriptome

profiling and AD risk association studies. In a small

hippocampal mRNA profiling study of six AD versus two

control brains, Li et al. [15] detected lower GSTO1

(glutathione S-transferase omega-1) levels in the AD

brains, followed by significant associations with age-at-

onset of both AD and Parkinson’s disease with variants in

both GSTO1 and its nearby homologue GSTO2 [28]. This

prompted follow-up genetic studies with disease risk and/

or age-at-onset phenotypes with mixed results [29–33]. In

a GWAS of brain gene expression (brain eGWAS) levels

in *800 tissue samples from *400 brains [34•], we

identified strong associations with variants at this locus

and brain GSTO2 but not GSTO1 levels [35], consistent

with results from another brain eQTL study [36]. In our

study, we determined that the same variant associated

with both lower brain levels of GSTO2 as well as

increased AD risk in older subjects, which is biologically

consistent with the antioxidant functions of this gene.

Furthermore, pathway analysis of the significant genes in

our brain eGWAS showed significant enrichment for

glutathione metabolism genes, suggesting there may be

additional genes in this pathway with potential influence

on AD and other neurodegenerative diseases. Other genes

which were detected by expression profiling studies of AD

versus control tissue, followed by significant associations

with AD risk, include POU2F1 [37] and IL-33 [38]. These

studies highlight the potential utility of the gene expres-

sion endophenotype in identifying gene(s) and pathways

that may harbor regulatory variants that influence disease

risk.

More recently, joint assessment of disease GWAS with

eQTL studies have been advocated to prioritize suggestive

results from disease GWAS and/or identify novel candi-

date disease genes, based on the premise that disease

variants will be enriched for regulatory variants that

influence gene expression and vice versa [39••]. Indeed, in

a comparison of eQTL results from lymphoblastoid cell

lines from HapMap samples with human disease/trait

GWAS summary data, Nicolae et al. [40] identified sig-

nificant enrichment for SNPs that influence expression

(eSNPs) amongst human disease/trait associating variants.

Combined assessment of brain expression endophenotype

associations [36] with disease GWAS showed enrichment

for eQTLs amongst schizophrenia risk alleles [41]. This

approach, combined with pathway analysis led to nomi-

nation of novel genes for diabetes in another study [42].

We have applied this approach for the first time to a large

AD GWAS [43], by combining with our brain eGWAS

data and detected an enrichment for significant eSNPs

amongst suggestive AD risk SNPs [34•]. These results

suggest that AD, like other complex human diseases, may

at least in part be influenced by regulatory variants. The

novel genes detected in the ‘‘grey zone’’ of disease GWAS

by this approach warrant further studies for identification

of functional variants and to demonstrate their downstream

regulatory effects.
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Utility in Gene Characterization

Gene expression endophenotypes can also be used to

characterize the effects of disease risk variants and their

downstream consequences on the disease gene. A prime

example of this is MAPT, which has rare variants leading to

frontotemporal dementia with parkinsonism linked to

chromosome 17, as well as common variants within a

haplotype block that associate with multiple taupathies

(reviewed [44]). These variants have been shown to influ-

ence either splicing or transcriptional activity of MAPT

[45–48].

Another example of gene expression endophenotype

explorations for a known risk gene is APOE, which has

common missense polymorphisms, leading to three iso-

forms APOE e2, e3 or e4, where APOE e4 has clearly been

shown to influence AD risk, whereas APOE e2 might

confer protection from AD [11, 49]. APOE isoforms have

dual types of functions in the brain with roles in both

maintaining neural health and also in promoting AD

pathophysiology (reviewed [50]). In addition to the most

well-studied isoforms, a number of promoter region poly-

morphisms have been identified for APOE that impart risk

for AD, at least partially independently of the APOE iso-

form (reviewed [51]). Although consensus is still lacking,

the most well studied promoter region polymorphism

-491AA appears to confer AD risk independent of APOE

e4 and increase APOE transcriptional activity [52, 53],

suggesting that both APOE isoforms and levels may play a

role in AD pathogenicity. Despite absence of conclusive

evidence for the role of the promoter region polymor-

phisms in AD risk, the transcriptional complexity of APOE

and its dual role in the central nervous system (CNS),

APOE-directed therapeutics aimed at modifying its levels

are advocated for treatment of AD. A recent study in ani-

mal models of AD demonstrated clearing of Ab and

reversal of behavioral and electrophysiologic deficits upon

treatment with a transcriptional inducer of APOE [54].

It is similarly critical to characterize the novel AD

candidate variants and genes that are being identified in

late-onset AD (LOAD) GWAS (reviewed [55]) with

respect to their influence on gene expression endopheno-

types. This information will provide focus for the down-

stream functional variant discovery, in vitro and in vivo

studies and ultimately set the stage for the search of ther-

apeutics targeting the appropriate mechanisms and path-

ways. We have begun to characterize the novel LOAD

GWAS variants for their influence on gene expression

endophenotypes using our brain eGWAS [56•] and eQTL

analyses of data generated from peripheral immune cells

[57]. The latter study demonstrated that AD-associated

variants, such as the one in the PICALM locus, influence

gene expression in non-resident CNS cells and suggest that

infiltrating immune cells may play a role in the onset of

AD. On the other hand, the brain data identified association

between the top AD risk variants at the CLU and MS4A loci

with brain levels of CLU and MS4A4A genes, implicating

regulatory genetic variation for these genes in AD risk.

Furthermore, we detected additional strong gene expres-

sion associations for both CLU and ABCA7, some of which

also confer AD risk, independent of the top GWAS vari-

ants, suggesting that new regulatory AD variants might

exist at these loci, in addition to the top SNPs already

identified by disease GWAS. Our findings in CLU are

corroborated by Ling et al. [58•] who determined that the

AD-protective CLU variant is also associated with higher

CLU1 isoform levels in human brains. The direction of the

gene expression endophenotype effect is identical in these

two studies, and indicate that therapeutic approaches aimed

at increasing levels of CLU in the brain might confer

protection from AD. Interestingly, valproic acid (VPA), a

well-known anti-epileptic and anti-depressant with histone

deacetylase (HDAC) inhibiting properties, was shown to

induce CLU expression in astrocytes [59]. VPA was also

previously highlighted as a potentially promising drug for

AD due to its pro-neurogenesis and neuroprotective prop-

erties [60]. Although clinical trials of VPA in AD patients

have yet failed to demonstrate a beneficial outcome

[61, 62], evidence warrants further investigations along the

CLU induction axis as a potential therapeutic avenue in

AD. Gene expression endophenotypes may be informative

biomarkers in such future therapeutic trials.

Neuropathology Endophenotype

Despite recent achievements by various GWAS consortia

[43, 63–66], a large proportion of the genetic contribution

to Alzheimer disease still remains to be identified. The

utility of the conventional approach that relies heavily on

clinical diagnosis (i.e., a dichotomy of cases vs. controls) is

dampened by contamination of the control group with

persons with pre- or sub-clinical disease. Use of the

intermediate neuropathologic endophenotype helps to

address these disadvantages. While the majority of persons

clinically diagnosed with AD have AD pathology [67–69],

AD pathology is also common among persons without

dementia [70–73]. Neuropathologic abnormality have been

reported in persons both with and without cognitive

impairment [74, 75], suggestive of a disease process

involving pathologic change of brain structure. Moreover,

the phenotypic heterogeneity of dementia reflects a broader

spectrum of neurodegenerative conditions other than AD,

including cerebrovascular infarctions, neocortical Lewy

bodies, and TAR DNA-binding protein 43 (TDP-43), just

to name a few. Each of these diseases independently
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contributes to the clinical dementia phenotype [76, 77].

Further, this heterogeneity extends to the probable AD

phenotype [78]. Given this context, neuropathologic phe-

notypes provide several important implications.

First, compared to the more distal clinical phenotypes,

neuropathologic traits lie directly in the pathway connect-

ing genetic actions to the clinical expression of AD

dementia. In other words, genetic variants do not directly

cause cognitive decline and AD, but rather contribute to a

series of events associated with neuropathology; these, in

turn, result in cognitive decline and AD. Thus, utilization

of neuropathologic outcomes increases statistical power to

discover genetic variants that influence AD-related pro-

cesses. Using the well-known apolipoprotein E genotype

(APOE), we demonstrated that among a group of only

about 500 community based elderly with European

ancestry, quantitative pathologic AD phenotypes provide

considerably more power than phenotypes of clinical AD

diagnosis or cognitive function [79•]. In this analysis, the

association of the protective APOE e2 allele with clinical

AD and level of cognition were not significant. However, it

has a strong association with a measure of overall burden

of AD pathology (p = 10 9 10-5). Similar differences

were seen with the e4 allele. We subsequently showed that

measures of AD pathology mediated the association of

allele status with cognitive decline illustrating that AD

pathology is in the causal chain linking the genetic variant

with cognitive decline [80]. Other studies have reported

similar findings [81].

Second, genetic associations with clinical outcomes are

confounded by misclassification of pre- and sub-clinical

subjects. These are people that are harboring genetic

variants that link to AD pathophysiology, but these persons

have not yet reached the threshold for a clinical AD

diagnosis. As a result, the magnitude of the association can

be diluted due to the discordance between AD neuropa-

thology and diagnostic status. For example, in the study

outlined above, we found that APOE e4 was associated

with AD pathology among persons without dementia, i.e.,

in analyses restricted to the control group of a case–control

study [79•]. This issue is further complicated by individual

differences in cognitive or neural reserve [82]. Both

structural [83] and neuropsychological [84] components of

reserve have been shown to influence the level of resilience

in the face of accumulating disease pathology, such that a

greater reserve capacity reduces the deleterious effect of

AD pathology on clinical symptoms. Without directly

assessing genetic influences on disease pathology, such

influences could be easily masked by the modifying effect

of reserve. In a recent GWAS of AD pathology, Kramer

et al. [85•] discovered that polymorphisms in RELN were

associated with higher burden of neurofibrillary tangles

(NFT) among older persons without dementia, and they

hypothesized a potential role of reelin in tau phosphory-

lation and that upregulation of reelin may be a compen-

satory remedy to tau-related stress.

Third, a compelling rationale for using an endopheno-

type is to refine and partition a generic phenotype into ones

that are associated with very specialized pathways [6]. The

fine-tuning helps to address the complexity of the disease

biology and can amplify the association of contributory

loci along the targeted pathway. Substantial evidence

shows that AD tends to be co-existent with other brain

lesions like cerebrovascular infarctions, Lewy bodies, and

TDP-43, suggesting that not all AD-associated alleles will

work through the pathologic accumulation of Ab and

phosphorylation of tau, the pathologic hallmarks that

characterize AD. The disease also involves many other

biological processes such as oxidative stress [86], chronic

inflammation [87], alteration in lipid metabolism [88] and

depletion of molecular chaperones [89]. It is essential to

disentangle distinct genetic risk factors for the different

intermediate traits in order to understand the underlying

biological mechanisms that contribute to the onset of AD.

Sleegers et al. [90] presented a conceptual model for the

implications of recently discovered loci on AD suscepti-

bility highlighting the influence of these novel loci on

different aspects of AD pathophysiology. Clusterin (CLU)

was hypothesized to share many properties of APOE in

regulating Ab formation and lipid transportation; comple-

ment receptor 1 (CR1) on the other hand likely contributed

to chronic inflammation and C3b-mediated clearance; and

phosphatidylinositol binding clathrin assembly protein

(PICALM) was implicated in maintaining synaptic function

and mediating endocytosis in APP recycling.

Pathologic phenotypes offer the promise of assessing

different mechanistic hypotheses of action for each risk

allele. For example, we showed that CR1, but not CLU and

PICALM, was significantly associated with deposition of

neuritic plaques, and this association further mediates, in

part, the effect of the CR1 locus on cognitive decline [91•].

However, the CR1 locus also affects the accumulation of

cerebral amyloid angiopathy [92] and may therefore also

function through an effect on the cerebral vasculature.

Beyond demonstrating the utility of leveraging intermedi-

ate phenotypes to build a causal chain of events leading

from a risk factor to a clinical syndrome, CR1 also illus-

trates the strategy of using an intermediate phenotype to

perform fine mapping of a susceptibility locus, which can

help to locate the causal variant and to find additional

variants that have an effect on AD and its pathology [93].

These types of studies are not unique to APOE and CR1, as

evidence supporting an association of the CETP AD sus-

ceptibility allele with AD pathology has recently been

reported [94]. Further, an interesting study from Brazil

reported that an individual’s proportion of African ancestry
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was associated with a lower burden of neuritic plaque

pathology, although no specific variants were reported [95].

Cognition Endophenotype

In parallel to the neuropathologic phenotypes, cognitive

endophenotypes (i.e., level of cognitive function and rate of

decline in cognition) serve as another promising alternative

in gene discovery [96]. These quantitative measures share

the strengths of the neuropathologic phenotypes as pre-

sented above. In particular, they are independent of diag-

nostic status and can be assessed in persons with and

without the clinical manifestation of the disease, which

helps to overcome the obstacle of confounding due to pre-

and sub-clinical contamination in the control group. We

and others have shown that cognitive decline begins years

prior to a clinical diagnosis of AD or MCI [97]. Further,

because of their quantitative nature, statistical power to

capture heritable variation is improved. It is now clear that

a better understanding of the earlier stage in the disease

progression holds great promise for effective prevention

and intervention strategies, and cognitive phenotypes can

help to detect genetic risk factors attributable to the pre-

clinical and subclinical change in cognition that are not

likely to be captured in conventional case–control studies.

An important additional strength of cognitive endophe-

notypes that complements neuropathologic traits is that

they can be measured within the individuals longitudinally

throughout life. Compared with cross-sectional data, these

longitudinal data directly address the question of change

over time [98]. AD is the result of a sequence of patho-

physiological events from Ab deposition to synaptic dys-

function, to tangle formation, to other structural changes

[99••]. Trajectories of change in cognition characterized by

repeated assessments of cognition provide objective evi-

dence about how AD manifests over time. Endophenotypes

such as cognitive decline have been increasingly used

[91•, 93, 94, 96, 100•, 101–107] to explore the genetic

linkage to these trajectories in two important ways.

First, the AD loci discovered so far in cross-sectional

susceptibility studies are interestingly not in concordance

with those that account for the disease progression. In a

recent genome-wide scan, none of the known AD suscepti-

bility variants, except APOE and CR1, were found to be

significantly associated with the rate of cognitive decline

[100•]. On the other hand, the study reported a highly sug-

gestive association with a locus near the PDE7A and MTFR1

genes which regulate inflammation and oxidative stress,

respectively. Similar non-findings were reported by a sepa-

rate GWAS effort, where minor allele homozygosity of

multiple novel variants were found to be associated with a

faster rate of disease progression in subjects with mild

cognitive impairment, but none of these variants matched

those identified in previous susceptibility studies [107].

However, it should be noted that the sample sizes of these

cognitive decline GWAS are a fraction of the size of the case/

control studies, so it is too early to make definitive statements

about known and novel susceptibility loci. Estimates suggest

that [5,000 subjects will be needed to begin to have rea-

sonable power to identify a given variant [100•].

Second, AD develops slowly over decades and the cog-

nitive trajectories cover a wide spectrum from preclinical

phase of AD [108] all the way through the terminal decline in

the last few years of life [109]. Specific AD susceptibility

loci could be associated with different aspects of this cas-

cade; therefore, it is plausible that they differentially affect

various stages of the cognitive trajectory. Intermediate

phenotypes like cognitive decline provide additional utility

in dissecting the functional pathway in gene action. APOE is

again illustrative on this point: the AD susceptibility allele

APOE e4 was discovered decades ago, and so far little is

known regarding where the polymorphism exerts its effect

over the course of the disease. In particular, it is not clear

whether the effect of the APOE locus persists after the onset

of dementia or whether it differs in its magnitude of influence

along the progression. Most literature consistently reports

the effect of e4 on the risk of incident AD [110–113] and

decline in cognitive performance in persons free of dementia

[102, 114–117, 118•, 119, 120]. Controversy arises on

whether there is an e4 effect on cognitive decline in the late

stages of the disease. Some studies suggest that e4 is not

related to decline after a diagnosis of AD [121–125], which

would support the theory that APOE works primarily as a

triggering factor [126]. On the other hand, other studies have

found that the e4 allele remains as an important predictor of

the progression to AD after subjects experience cognitive

impairment [127, 128] and is associated with cognitive

decline in the early stages of AD [129]. To unravel these

controversies, more complex analyses such as nonlinear

mixed models could be considered for studies that have a

sufficient number of cognitive evaluations over a long

enough time [130]. Recently, using random change point

models, we have showed that, among participants who were

dementia free at enrollment but later developed incident AD,

e4 carriers had a more rapid cognitive decline both before

and after the onset of AD dementia [80]. The capacity to

incorporate these types of analyses into high-throughput

gene discovery programs will best exploit the use of endo-

phenotypes derived from longitudinal data for GWAS.

Future Directions

As the meta-analyses of AD GWAS come to a close,

we will have a number of validated and suggested
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susceptibility loci whose functional consequences can

begin to be elucidated by leveraging pertinent intermediate

traits such as the ones that we have discussed: RNA

expression, neuropathologic measures and cognitive mea-

sures (Fig. 2). As illustrated by the APOE and CR1 loci,

such studies can be critical in tying risk factors to a par-

ticular aspect of AD-related pathophysiology and can lead

to the elaboration of a causal chain of events linking risk

factors to a clinical syndrome such as AD. Furthermore,

gene expression studies in combination with disease asso-

ciation can nominate transcriptional regulatory mecha-

nisms as a testable culprit for novel AD GWAS loci, such

as CLU, ABCA7 and MS4A4A, as discussed. However,

beyond gene discovery, the AD GWAS have had an added

benefit in that the genotyping they have performed inclu-

ded many thousands of subjects with pertinent intermediate

traits, and these genotype data can now be repurposed for

discovery studies targeting the intermediate traits [34•, 56•,

100•]. A major limitation of such efforts is the fact that, in

many cases, the intermediate phenotypes were not col-

lected systematically in the same manner or using the same

strategy across different cohort studies, which complicates

the merging of results across individual studies and reduces

our statistical power. Nonetheless, such meta-analyses for

gene expression, neuropathologic, cognitive and other

traits is clearly an important goal for the near future as

large sample sizes will be needed for these studies, as has

been well demonstrated by the case/control approaches.

While repurposing existing data is a valuable activity that

will yield insights, we ultimately need to gather as many

intermediate traits as possible from the same subjects, as

this allows us to fully explore the relationship of these traits

and how the effect of a risk factor (genetic or environ-

mental) propagates to influence AD susceptibility. The AD

neuroimaging initiative [131] and prospective cohort

studies of aging, such as the Mayo Clinic Study of Aging

[22], and Religious Order Study and the Memory and

Aging Project, which also have brain donations [74], are

excellent illustrations of the type of resource that are

needed to powerfully investigate the pathophysiology of

AD and other neuropsychiatric diseases. Such studies, if

they were tenfold larger, would provide ideal platforms for

communities of investigators in this field to explore the

chain of events linking risk factors to a clinical syndrome.

This information will be critical in the successful transla-

tion of gene discoveries to viable therapeutic approaches.

Fig. 2 Simplified model for the pathophysiology of AD and its

endophenotypes: the flow of major pathogenic mechanisms from top
to bottom represent the proposed consequence of events. The

interactions between the various pathomechanisms are omitted for

simplicity. The dotted arrows and boxes symbolize the pathogenic

events that presumably precede the endophenotypes, and the endo-

phenotypes, respectively. The examples of genes that are associated

with the endophenotypes are taken from the text. While there are

clearly many other plausible endophenotypes in this cascade, only

those that are the focus of this review are shown

46 Curr Genet Med Rep (2013) 1:39–51
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