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Abstract: We investigated the flash light sintering process to effectively reduce electrical resistance
in silver nanowire networks. The optimum condition of the flash light sintering process reduces
the electrical resistance by ~20%, while the effect of the conventional thermal annealing processes
is rather limited for silver nanowire networks. After flash light sintering, the morphology of the
junction between the silver nanowires changes to a mixed-phase structure of the two individual
nanowires. This facile and fast process for silver nanowire welding could be highly advantageous to
the mass production of silver nanowire networks.
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1. Introduction

Transparent conductive electrodes (TCE) are considered one of the most important technologies for
developing next generation electronic devices including liquid crystal displays, light emitting diodes,
touch screens, and photovoltaic cells [1–4]. Research in the field of TCE is dedicated to the development
of state-of-the-art technology that can combine high electrical conductivity with comparable optical
transmittance in large-area devices [5]. Additionally, researchers have focused on introducing the flexibility
of TCE components to the manufacturing of foldable/rollable electronic devices. So far, the indium tin
oxide (ITO) is the most widely used material in TCE because of its high electrical conductivity and
transmittance properties [6]. Much effort has been devoted to realizing flexible ITO by reducing the
thickness of the conducting layer. However, the intrinsic brittleness of the oxide materials cannot withstand
severe deformation, such as the 1 mm-radius bending stress necessary for foldable devices [7].

Metal nanowires (NWs), which are one-dimensional metal structures with high aspect ratio, have been
proposed as the ideal material for flexible TCE due to their high electrical conductivity with low surface
coverage [8–13]. Networks of NWs are highly advantageous to the industry because they can be used
to produce large-area films by implementing simple coating techniques (e.g., slot-die coating, which is
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a common method in film-producing). Much research has been conducted to overcome the trade-off relation
of electrical conductivity/transmittance in NW networks [14]. It has been demonstrated that longer metallic
NWs could lead to positive effects on the electrical conductivity-transmittance relation [15]. The lengths of
as-synthesized NWs are typically around several micrometres. Furthermore, silver (Ag) is considered to
be the most promising material with respect to realising the feasibility of NW networks [16–18]. Devices
containing Ag NWs have attracted much interest owing to their low-dimensional structure, which can lead
to enhanced transparency and electric conductivity for applications in transparent conducting electrodes [19].
However, the insulating ligands used for Ag NW synthesis are typically made of polyvinylpyrrolidone
(PVP), and the solution dispersion process can reduce electrical conductivity because of the large contact
resistance between NWs [20]. Therefore, an additional fabrication process is required to reduce junction
resistance between Ag NWs to optimize network conductivity.

Many methods for welding NWs have been reported, such as mechanical pressing, Joule heating,
thermal sintering, electron beam-induced welding, plasmonic welding, soldering, and focused ion-beam
welding [21–26]. Among them, thermal sintering, e.g., in ovens and furnaces, has been predominantly
used for the sintering of NWs because it is a facile and cost-effective process. However, thermal
sintering has serious drawbacks, i.e., low heating and cooling rates and long processing times. Various
reports from experimental and theoretical approaches have showed that nanowire structures can easily
change into nanoparticles at elevated temperatures at which the Ag atoms move easily by diffusion;
a phenomenon known as Rayleigh instability [27–29]. To protect NW-welding from over-diffusion and
breaking, precise control of the applied energy is necessary. The process of optical heating is considered
suitable for welding because of its short irradiation time. While optical heating has several advantages
over thermal processes, the morphological transformation of nanowires under light irradiation has
been scarcely investigated [30,31]. In this study, we attempted to construct Ag NW networks via the
flash light sintering process, which can selectively sinter the junction of Ag NW networks to effectively
reduce electrical conductivity. Additionally, we performed a detailed analysis on the junction structure
after flash light sintering to understand the mechanism behind Ag NW welding. The flash light
sintering process could be an easy and cost-effective way to integrate Ag NWs into TCE devices.

2. Materials and Methods

Ag NWs were synthesized using a modified polyol process, as previously reported. First, 6 g of
PVP was slowly added to 70 mL of ethylene glycol (EG) and completely dissolved at 60 ◦C. After a clear
solution was formed, 2 g of AgNO3 was added and dissolved within 15 min. Then, an FeCl3 solution
(0.05 M, 100 µL) was added into the mixture solution at room temperature, and the solution was placed
in a pre-heated reactor to grow Ag NWs at 150 ◦C for 60 min. Finally, the suspension was cooled to
60 ◦C, and acetone and ethanol were used to wash the precipitate three times by centrifugation at
5000 rpm for 10 min.

Ag NWs were re-dispersed in ethanol and coated on an SiO2/Si substrate using the air spray
method. The size of SiO2/Si substrate is 3 cm × 1 cm and the size of Ag NWs network is around
1 cm × 0.8 cm. Air pressure and needle-to-substrate distance were critical parameters for the spray
coating process to ensure a uniform Ag NW network. To measure the electrical resistance, we made the
electrodes on end of the prepared Ag NWs network by Ag paste. Consequently, the Ag NW networks
were treated with a white light flash from a xenon lamp (ILC technology, L6755, Sunnyvale, CA, USA)
comprising a wavelength range of 230–1600 nm and using a variable irradiation time. The pulse
duration ranged from 1 to 5 ms, and quartz was used as a light guide. The size of spot was more than
1 cm × 1 cm, which could cover the whole Ag NW networks. The flash light was also applied on the
Ag electrodes, but there was no change for Ag electrodes.

The electrical resistance of the Ag NW networks was measured using a conventional multimeter.
The microstructure was investigated using scanning electron microscopy (SEM) (JSM-7600F, JEOL,
Tokyo, Japan) and transmission electron microscopy (TEM) (JEM-2100F, JEOL, Tokyo, Japan).
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3. Results and Discussion

The sintering process for the Ag NW network is schematically illustrated in Figure 1. When the
external energy, e.g., thermal heating or optical irradiation, is applied to the nanowire junction, a mass
diffusion causes the morphology to change. At the first stage, the PVP layers between Ag NW junctions
are eliminated owing to the low melting temperature of the material. When two nanowires come into
contact, junction welding starts to minimize its surface energy. As further external energy is applied,
the Ag NWs begin to break and transform to completely fragmented particles. However, typical
annealing process can give the Ag NWs welding and breaking together (shown on Figure 1a) due to its
high applied energy; thus, the heat treatment duration is expected to be a critical factor for determining
the Ag NW weld quality and enhancing the electrical conductivity of NW networks. The short process
time of flash light sintering potentially makes it a superior process for providing sufficient external
energy when constructing Ag NW networks (Figure 1b).
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Figure 1. Schematic diagram of the morphology transformation of Ag nanowire (NW) under (a) thermal
heating or high flash light sintering; (b) optimal condition of flash light sintering.

Figure 2a presents the change in electrical resistance of Ag NW networks during thermal heating at
a 5 ◦C/min ramp rate at a temperature up to 240 ◦C. The relative resistance, R/R0, increases monotonically at
first and abruptly when the temperature reaches 200 ◦C. To investigate the morphology changes in terms
of the applied temperature, Ag NWs deposited on SiO2/Si substrates were annealed isothermally at 130,
170, and 200 ◦C for 10 min. SEM images of the thermal heating process at the selected temperature are
displayed in Figure 2. Ag NW networks annealed at 130 and 170 ◦C did not show any morphological
change, as shown in Figure 2a–d. However, after annealing at 200 ◦C, the majority of the wires broke into
isolated short wires or particles, leading to a significant enhancement of the electrical resistance (Figure 2a).

To evaluate the electrical resistance change of the Ag NW network in terms of the flash light sintering
process conditions, we deposited the Ag NW network on the Si/SiO2 substrate and added the Ag paste on
the ends of substrate for tracking the electrical resistance change by the flash light applying conditions,
as shown in Figure 3a. The samples were prepared depending on the irradiation energy, duration time,
and number of irradiations. At the relatively low irradiation energy density of 1.02 J/cm2, a reduced
electrical resistance was observed at the samples under a duration time of 2 ms (Figure 3b). At the lowest
irradiation energy density, 1 ms of irradiation was not enough for the formation of welded connections
between Ag NWs. Moreover, a relatively high electrical resistance was introduced even after repeated
irradiation. For longer duration times, the electrical resistance was decreased by inter-connected Ag NWs,
but some Ag NWs hindered electrical conductivity. It was also observed that the highly increased electrical
resistance originated from further fragmentation of NWs by repeated irradiation. For a moderate duration
time of 2 ms, the electrical resistance significantly decreases to ~80% of the original electrical resistance,
indicating that this duration time is the optimum duration time for the formation of well-connected
NWs. At the highest irradiation energy density of 1.54 J/cm2, the decrease in electrical resistance is
limited and saturated by the combined effects of inter-connected junctions and NWs breaking (Figure 3c).
For high irradiation energy densities and long duration times, the formation of isolated NWs is intensified,
corresponding to an increased electrical resistance for repeated irradiation. It should be noted that the
electrical conductivity of Ag NW networks can be enhanced by optimizing the irradiation energy and
duration time during the flash light sintering process.
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irradiations for an energy density of (b) 1.02 J/cm2 and (c) 1.54 J/cm2 in air at room temperature.



Materials 2020, 13, 404 5 of 9

To support the relationship between the electrical conductivity and morphological changes of the
NW network during irradiation, an SEM analysis of the samples with respect to the duration time was
conducted, as shown in Figure 4. At a duration time of 1 ms under an irradiation energy density of
1.02 J/cm2, the welding process of Ag NWs is not completed because of insufficient irradiation time.
This implies that a high electrical resistance remains after repeated irradiation under the 1 ms-1.02 J/cm2

condition (Figure 3b). We have already confirmed from the electrical conductivity measurement that
the optimum condition of flash light sintering corresponds to an irradiation energy density of 1.02 J/cm2

and an irradiation time of 2 ms. Under this condition, we cannot directly distinguish the difference
between the SEM images of 1 ms and 2 ms (Figure 4a,b), but the morphology of welded structure
will be discussed on the TEM analysis section. Under the 5 ms-1.02 J/cm2 condition, the Ag NWs are
broken and electrical resistance is significantly increased. We conclude that the trend in morphological
changes of Ag NWs as a function of the applied energy during the flash light sintering process is
consistent with the trend in the electrical resistance of Ag NW networks.
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Figure 4. SEM images of Ag NW networks after irradiation under an irradiation energy density of
1.02 J/cm2 and a duration time of (a) 1 ms, (b) 2 ms, and (c) 5 ms.

When a Ag NW network is directly exposed to ambient conditions, atmospheric sulfur such as
hydrogen sulfide (H2S) or carbonyl sulfide (OCS) can easily react with the intrinsic defect structure
of the Ag NW pentagon, which leads to a significant increase in electrical resistance. [32–36] This is
one of the most important issues with Ag NW networks for practical applications. We also track the
electrical resistance of the Ag NW network in terms of days of exposure. Figure 5a shows the SEM
images after 10 days of exposure to ambient conditions. We can easily find nanoparticles that exhibit
a typical morphological feature of Ag NW sulfidation. Compared to other reports [37,38], our flash
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light-sintered Ag NWs show a relatively low increase in relative resistance without any protection layer
(see Figure 5b), which is caused by the removal of the strain on the junction of the Ag NW network.
The 1.5-fold increase in electrical resistance could also give a significant problem for expanding the
applications, which should be considered on other researches.
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Figure 5. (a) SEM image of the Ag NW network by sulfidation and (b) the change in relative electrical
resistance of the Ag NW network after 10-day exposure to air.

A TEM analysis has been conducted for obtaining the junction structure before/after the flash light
welding process. Figure 6a shows the two inter-connected Ag NWs after the coating process. Each Ag
NW remains an individual structure, and the pentagonal structure of [111] direction of the Ag NWs
is clearly observed [39]. Under the optimum condition (1.02 J/cm2, 2 ms) of the flash light sintering
process, the junction structure is completely changed to the mixed-phase structure of two Ag NWs.
The selected area electron diffraction (SAED) pattern of the welded Ag NWs has two different indices,
i.e., [111] and [110], which correspond to the parallel and perpendicular direction of Ag NWs growth
(Figure 6c). While the upper Ag NW morphology assumes an amorphous structure, the structure
remains identical to the individual Ag NWs. Figure 6d shows a schematic diagram of the direction of
the welded Ag NWs that supports crossing and networking. The optimal flash sintering is suitable for
fabricating Ag NW networks that have low contact and electrical resistance.
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Figure 6. TEM images of Ag NWs (a) before and (b) after the flash light sintering process; (c) selected
area electron diffraction (SAED) pattern of the junction of welded Ag NWs; (d) schematic diagram of
two welded nanowires.

4. Conclusions

In summary, we performed the flash light sintering process to investigate the welding mechanism
of Ag NW networks to effectively reduce the electrical resistance. The optimised condition of the
flash light sintering process could reduce the electrical resistance by ~20%, more stable than other
papers [37,38] without any protection layer. After flash light sintering, the junction structure of the Ag
NWs changed to the welded structure which was identical to the original Ag NW crystal structures
significantly reducing the electrical resistance. Furthermore, with this process, a wielded structure
with low electrical resistance can be obtained rapidly. Therefore, this technique could be applied to the
mass production of Ag NW networks for transparent electrode areas.
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