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A substantial body of evidence has shown that signal 
transducer and activator of transcription 3 (STAT3) has an 
important role in the heart in protecting the myocardium from 
ischemia and oxidative stress. These actions are attributed to 
STAT3 functioning as a transcription factor in upregulating 
cardioprotective genes. Loss of STAT3 has been implicated 
as well in the pathogenesis of heart failure and, in that 
context and in addition to the loss of a cardioprotective gene 
program, nuclear STAT3 has been identified as a transcriptional 
repressor important for the normal functioning of the 
ubiquitin-proteasome system for protein degradation. The 
later finding establishes a genomic role for STAT3 in controlling 
cellular homeostasis in cardiac myocytes independent of 
stress. Surprisingly, although a well-studied area, very few 
downstream gene targets of STAT3 in the heart have been 
definitively identified. In addition, STAT3 is now known to 
induce gene expression by noncanonical means that are not 
well characterized in the heart. On the other hand, recent 
evidence has shown that STAT3 has important nongenomic 
actions in cardiac myocytes that affect microtubule stability, 
mitochondrial respiration, and autophagy. These extranuclear 
actions of STAT3 involve protein–protein interactions that are 
incompletely understood, as is their regulation in both the 
healthy and injured heart. Moreover, how the diverse genomic 
and nongenomic actions of STAT3 crosstalk with each other is 
unchartered territory. Here we present an overview of what is 
and is not known about both the genomic and nongenomic 
actions of STAT3 in the heart from a structure-function 
perspective that focuses on the impact of posttranslational 
modifications and oxidative stress in regulating the actions 
and interactions of STAT3. Even though we have learnt a great 
deal about the role played by STAT3 in the heart, much more 
awaits to be discovered.
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Introduction

First recognized in 1994 as the acute-phase response factor 
(APRF),1 signal transducer and activator of transcription 3 
(STAT3) is one of 7 mammalian STAT transcription factors that 
play a central role in signaling by growth factors and cytokines. 
Of the STATs, STAT3 has a critical nonredundant role in cell 
growth, survival, and differentiation. The unique importance of 
STAT3 is underscored by the observation that of the STAT fam-
ily members only disruption of the STAT3 gene causes embryonic 
lethality.2 Studies over the past 20 years have shown that STAT3 
has important actions in protecting the heart under stress.3-6 In 
addition, human failing hearts were reported to exhibit reduced 
STAT3 levels and activity.7-9 Yet a cohesive understanding of how 
STAT3 protects the heart has yet to be achieved. The protec-
tion afforded by STAT3 has been ascribed to both traditional 
genomic actions, i.e., the upregulation of protective genes, and 
more recently some may say fanciful nongenomic actions that 
target mitochondrial function and autophagy. Neither action 
is fully understood. Nor is it known how the two are regulated 
and integrated under either normal or stress conditions. Here we 
present an overview of what is known and not known about the 
protective actions of STAT3 in the heart from a structure-func-
tion perspective and how posttranslational modifications and 
oxidative stress may act as determining factors in regulating the 
genomic and nongenomic actions of STAT3.

Overview

The STAT3 protein is 770 amino acid in length with 6 distinct 
domains (Fig. 1).4 A terminal NH

2
-domain that participates in 

higher order complex formations that are not well understood is 
followed by a coiled-coil domain important for protein–protein 
interaction with other transcription factors and co-regulators. 
Next, the DNA binding domain canonically interacts with an 
interferon γ (gamma)-activated sequence (GAS) in the promoter 
region of specific genes.10 A subsequent linker domain is located 
just before a Src homology-2 (SH2) domain that is essential for 
interaction with specific tyrosine-phosphorylated sites such as the 
YXXQ sites of the gp130 receptor of the IL-6 type cytokines, 
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acetylation, STAT3 has been shown to positively 
affect the accessibility of other transcription factors to 
promoters as well as to enhance transcriptional activ-
ity of NFκB.19,20 Finally, K685 acetylation was shown 
to be important for interaction of STAT3 with DNA 
methyltransferase 1 and subsequent methylation and 
silencing of certain promoters.21 Nearly all of these 
sorts of studies were performed on non-cardiac cells 
and thus their relevance to cardiac cells is unproven; 
however, the fundamental aspects of STAT3 signal-
ing and regulation that they define are likely relevant 
to cardiac myocytes, particularly under conditions 
of gene induction and genomic plasticity related to 
stress. For instance, recent evidence was reported that 
increased p300 acetyltransferase activity in neonatal 
rat ventricular myocytes due to drug-induced p300 
stabilization impacts positively on STAT3 activation 
and half-life.22

Cardiac Protective Actions of STAT3 
Revealed by Genetic Mouse Models

STAT3 has been implicated in the protection of the myocar-
dium produced by different types of preconditioning (ischemic, 
pharmacological, and remote), as well as postconditioning.4 In 
the case of preconditioning, STAT3 has been implicated both in 
the early short-lived phase (not involving gene expression) and 
the delayed (by upwards of 24 h) longer-lived phase known as 
the second window of protection (involving gene expression). 
In many cases, the evidence reported is correlative or based on 
the use of a JAK2 inhibitor.23-36 More definitive evidence for the 
importance of STAT3 in the heart has come from mouse genetic 
models. In 2003, Jacoby et al. explored the effect of postnatal 
deletion of STAT3 specifically in cardiac myocytes by crossing 
floxed STAT3 mice with mice expressing Cre recombinase under 
control of the α-myosin heavy chain (MHC) promoter that is 
active predominately in mature cardiac myocytes.37 In these 
mice, myocardial dysfunction and marked cardiac fibrosis were 
noted with advanced age in the absence of cardiac insult. These 
hearts were also found to have a greater susceptibility to injury 
and greater contractile dysfunction was seen with doxorubicin. 
After lipopolysaccharide (LPS) injection hearts of these mice 
showed a significant increase in inflammation, fibrosis, and apop-
tosis, which was attributed to increased production of TNF-α 
presumably due to increased oxidative stress. The cellular source 
of TNF-α, specifically whether cardiac myocytes contributed, 
was not reported. Overall, the findings support an important role 
for STAT3 in both the aging/aged heart and the heart exposed to 
oxidative stress, although the exact basis for this was not defined.

Hilfiker-Kleiner et al. also reported progressive fibrosis, along 
with a reduction in capillary density, in hearts of cardiac myocyte-
restricted STAT3 KO mice that became significant at 3–4 mo.38 
With advanced age, dilated cardiomyopathy, impaired cardiac 
function, and premature death was observed. Evidence was 
reported that STAT3 KO cardiac myocytes produce unidenti-
fied paracrine factors that stimulate (mouse embryonic) fibroblast 

as well as a specific tyrosine phosphorylated residue of activated 
STAT1 or STAT3 to form parallel dimers important in canoni-
cal STAT3 signaling. Although fairly homologous among all 
STAT family members, the SH2 domain of STAT3 is distinctive 
enough to allow for development of specific small molecule inhib-
itors of STAT3, such as Stattic and S3I-201.11 Two sites of phos-
phorylation that constitute an “ignition” for canonical STAT3 
activation are located in a COOH-terminal region known as the 
transcription activation domain (TAD).4 The first site is Y705, 
phosphorylation of which leads to STAT3 dimer formation fol-
lowed by translocation to the nucleus and induction of gene 
expression. Y705 is phosphorylated by the Janus kinase (JAK) 
family members, Src kinase, and epidermal growth factor kinase 
(EGF).12 The other phosphorylation site of importance in regu-
lating STAT3 activity is S727. Many serine/threonine kinases 
have been shown to phosphorylate S727 such as protein kinase 
Cε (PKCε), PKCδ, ERK1/2, mTOR, ZIP kinase, and CDK5.12 
S727 phosphorylation can take place either in the cytoplasm or 
nucleus. In canonical STAT3 signaling S727 phosphorylation has 
been shown to play a role in boosting the transcriptional activity 
of STAT3 through the recruitment of transcriptional cofactors, 
such as the histone acetyltransferase p300/CBP.4,12 STAT3 S727 
phosphorylation may also favor STAT3 homodimer formation.13

STAT3 function is regulated as well by p300-mediated acet-
ylation of lysine residues within the NH

2
-terminal (K49, K87) 

and SH2 (K685) domains. Acetylation of the latter, which rather 
unexpectedly may occur in the cytoplasm, plays a critical role 
in stabilizing STAT3 dimers and enhancing transcription.12,14,15 
Acetylation of K49 and K87 was shown to be important for gene 
transcription by enhancing or strengthening the interaction of 
STAT3 with p300 and thus stabilizing enhanceosome assembly.16 
Acetylation of these residues is important as well for nuclear reten-
tion of STAT3 with deacetylation mediated by histone deacety-
lases (principally HDAC1 and 4) resulting in STAT3 nuclear exit 
(and degradation).17,18 By binding p300 and thereby directing 

Figure 1. Major domains of STAT3 showing location of critical sites for posttrans-
lational modification. From N-terminus to C-terminus, they are: oligomerization 
(OLG) domain, coiled-coil domain, DNA binding domain (DBD), linker domain (LD), 
SH2 domain, and the transcription activation domain (TAD). Phosphorylation of 
Y705 and S727 within the TAD has a critical role in the canonical genomic actions of 
STAT3. S727 phosphorylation has also been implicated in the noncanonical genomic 
and nongenomic actions of STAT3 through either enhanced recruitment of tran-
scriptional co-factors (e.g., p300) and GRIM19, or alterations in STAT3 conformation. 
Acetylation of lysine residues (K49 and K87) within the NH2-terminal OLG domain 
are important for transcription by enhancing p300-STAT3 association and stabiliz-
ing enhanceosome assembly, as well as for nuclear retention of STAT3. Acetyla-
tion of K685 within the SH2 domain helps stabilize STAT3 dimers and enhances 
transcription. Asterisks (*) indicate redox-sensitive cysteine residues: C259 (within 
the coiled-coil domain), C418, C426, and C468 (within the DNA binding domain), and 
C765 within the TAD. Other sites of phosphorylation of STAT3 have been identified, 
but their importance in controlling the genomic and nongenomic actions of STAT3 
is not defined.
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Although cardiac STAT3 is important for limiting infarct 
damage, unrestricted continuous activation of STAT3 by the 
gp130-receptor system after myocardial infarction was shown to 
be detrimental.45 Thus, a precise regulation of STAT3 activity 
in terms of magnitude, time course, concurrent signals, or other 
as yet undefined parameters is essential for its beneficial effects. 
The finding of detrimental consequences after myocardial infarc-
tion with unbridled STAT3 activity via gp130 may explain why 
increased IL-6 serum levels are prognostic markers for adverse 
outcome in patients with myocardial infarction and heart failure.

We recently assessed whether STAT3 is important in hyperten-
sion-induced cardiac remodeling using mice with reduced global 
STAT3 activity due to a S727A mutation.46 Hearts of SA/SA mice 
showed signs of developing systolic dysfunction in response to 
angiotensin II-induced elevated blood pressure after 17 d. With 
angiotensin II, fibrosis was seen in the left ventricle of both wild-
type and SA/SA mice; however, fibrosis in SA/SA mice was largely 
reparative and was associated with loss of myocytes, while in wild-
type hearts reactive fibrosis predominated. Cardiac hypertrophy 
as indexed by heart to bodyweight ratio and left ventricular ante-
rior wall dimension during diastole was greater in wild-type mice. 
Altogether, our study and those involving STAT3 KO support 
the conclusion that the presence of STAT3 in cardiac myocytes is 
important for normal function and protection from stress.

In 2000, Kunisida et al. published a study highlighting the 
importance of STAT3 in hypertrophy and cardiac protective sig-
naling.47 Cardiac myocyte-specific STAT3 overexpressing hearts 
exhibited age-related pathological hypertrophy associated with 
increased expression of β-myosin heavy chain (MHC) and atrial 
natriuretic factor (ANF) and protection against doxorubicin 
induced cardiomyopathy. The later was likely in part the conse-
quence of countering doxorubicin-induced reduction in STAT3 
levels, as well as increased cardiotrophin-1 expression (and 
presumably increased expression of other protective proteins). 
Subsequently, the same group reported the impact of overexpress-
ing a constitutively active form of STAT3 (caSTAT3) specifically 
in cardiomyocytes in several studies.39-41 Two studies highlighted 
the significant role of activated STAT3 in upregulating MnSOD, 
a mitochondrial superoxide scavenger that protects the heart 
against increased levels of hypoxia/reoxygenation-induced ROS. 
Another study emphasized the importance of activated STAT3 in 
vascular formation by upregulating VEGF synthesis and enhanc-
ing VE-cadherin expression, which translated into an increase 
in capillary density. However, overexpressing STAT3 may not 
necessarily enhance the normal function of active STAT3 in the 
heart. At higher unphysiological levels, STAT3 might interact 
promiscuously with other proteins and artifactually affect cel-
lular events. Even so, Hilfiker-Kleiner et al. presented compelling 
evidence from cardiac myocyte-restricted STAT3 knockout mice 
and patients that STAT3 deficiency contributes to the etiology of 
postpartum cardiomyopathy due to reduced MnSOD expression, 
increased oxidative stress, and reduced capillary density.9

Arguably, a more reasonable approach to increase STAT3 
activity in the heart is to remove the naturally occurring nega-
tive feedback inhibitor of STAT3 activation by the JAKs, which 
is SOCS3. Oba et al. recently reported that progression of left 

proliferation, but inhibit (mouse lung) endothelial cell prolifera-
tion. At 3–4 mo a number of genes associated with fibrosis and 
anti-angiogenesis were upregulated (COL1A1, COL8A1, OPN, 
BGN, TNC, PAI-1, CTGF, TSP1, TIMP1, MMP-12, MCP-1, 
IL2RB, IL15, MCP3, and BCL2A1). Surprisingly, no change was 
observed in protein levels of VEGF, which previously was linked 
to the protective actions of STAT3 in heart. In this regard, it is 
worth noting that the link between the cardioprotective effect 
of STAT3 and VEGF upregulation, as well as between STAT3 
and MnSOD/SOD2 upregulation, was obtained with agonist 
stimulation (leukemia inhibitory factor/LIF) that induces mul-
tiple intracellular signaling pathways, as well as by overexpression 
of constitutively active STAT3.39-41 The importance of concur-
rent signaling in shaping the character of STAT3 signaling is 
described elsewhere.3

Hilfiker-Kleiner et al. also tested the role of STAT3 in isch-
emia-reperfusion and infarction.38 Infarct size and apoptosis were 
greater 24 h after reperfusion in KO mice with a significantly 
impaired fractional shortening 7 d after the insult. After 24 h 
reperfusion, increased mRNA levels were observed for the pro-
apoptotic and pro-autophagy protein BNIP3, while mRNA 
levels of the prosurvival gene HSP70 were decreased. Again no 
changes were seen in mRNA or protein for VEGF. With myo-
cardial infarction, a marked increase in mortality was seen: 32% 
wild-type vs. 100% KO. In a follow up study, this group provided 
compelling evidence to support the conclusion that the negative 
effects of cardiac myocyte-targeted STAT3 KO on capillary 
density and contractile function with advanced age was due to 
elevated cardiac expression of miR-199a, which in turn compro-
mised the ubiquitin-proteasome system (UPS) of protein degra-
dation by reducing expression of two UPS component proteins 
(although UPS activity was not directly assessed).42 Transfection 
of cardiac myocytes with pre-miR-199a resulted in thinning of 
width and extension of length, as well as reduced levels of α- and 
β-MHC mRNA and protein levels of total MHC and troponin-
T. These effects were recapitulated by knocking down the two 
UPS components. Expression of miR-199a or pharmacological 
inhibition of UPS was also associated with increased protein argi-
nine methyltransferase I (PRMT-I) expression and asymmetric 
dimethylarginine (ADMA) synthesis in cardiac myocytes, which 
in turn was demonstrated to impair endothelial cell function. 
In addition, greater miR-199a promoter activity was found in 
STAT3 knock-down cardiac myocytes. Finally, using the cardiac 
myocyte-targeted STAT3 deficient mouse model others found 
that STAT3 is essential for ischemic and pharmacological pre-
conditioning,33 and depending on the protocol is important for 
ischemic postconditioning as well.43 These findings were mir-
rored in aged hearts associated with a reduction in STAT3 levels. 
Bolli et al. developed a tamoxifen-inducible cardiac myocyte-
targeted STAT3 knockout (KO) mouse.44 Deletion of STAT3 
abrogated the upregulation of cardioprotective (COX-2 and 
HO-1) and antiapoptotic proteins (e.g., Mcl-1, Bcl-xL, c-FLIPL, 
and c-FLIPS) that are normally expressed in response to delayed 
pre-conditioning. However, the impact of STAT3 deletion on 
the infarct-sparing actions of delayed preconditioning was not 
reported.
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fibrosis in the SOCS3 KO hearts, reduced expression of CNTF, 
TGFβ2, matrix metalloproteinase-9, collagen 1, and collagen 3 
and increased expression of TIMP-2 was seen compared with 
wild-type hearts. Altogether, the findings of this study elegantly 
demonstrate the key role of STAT3 in cardioprotection.

Genomic Actions of STAT3

STAT3 has been clearly shown to regulate different sets of genes 
by 3 distinct means: canonical, phosphorylated S727 (pS727)-
only, and unphosphorylated STAT3/U-STAT3.49 The latter are 
2 aspects of the noncanonical actions of STAT3 in mediating 
gene expression (Fig. 2). In canonical signaling, Y705 phos-
phorylation leads to STAT3 dimerization and translocation to 
the nucleus, where it induces transcription of certain genes by 
binding to a GAS element (TTCN

3
GAA).4,50 S727 phosphoryla-

tion enhances canonical transcription by recruiting the histone 
acetylase p300 (Fig. 2).16,51 STAT3 can also bind TTN

4–6
AA 

motifs,52,53 broadening its range of action.
STAT3 is now known to affect transcription noncanonically 

(Fig. 2),49,54-56 for instance: (1) STAT3 is constitutively present 
in the nucleus;55,57 (2) likely there are non-consensus binding 
sites for STAT3 in some promoters in the context of associa-
tion of STAT3 with other proteins involved in transcription, 
e.g., NFκB p65;58 (3) STAT3 can bind DNA as a monomer as 
well,10 although the significance of this to gene transcription is 
unknown; (4) STAT3 may not necessarily need to bind DNA 
to enhance transcription;51,59 (5) STAT3 S727 phosphorylation 
can enhance transcription independent of Y705 phosphoryla-
tion;49,60-62 (6) STAT3 contains a nuclear receptor binding motif 
(LXXLL motif) in the coiled-coil domain and was shown to 
synergistically enhance transcriptional activity of nuclear recep-
tors;63-66 (7) STAT3 and the shorter STAT3β spliceform lack-
ing the TAD were found to induce a smaller number of genes 
in common than the numbers of genes induced uniquely by 
either;67 and (8) U-STAT3, which may increase in nuclei of car-
diac myocytes during cardiac hypertrophy, can induce expression 
of a subset of inflammatory genes.56,68-70 U-STAT3 may function 
also as a chromatin/genomic organizer.10 Together these observa-
tions support the conclusion that STAT3 functions as a tran-
scriptional co-regulator, as well as a transcription factor per se.

How the 3 transcriptional mechanisms of STAT3 are coor-
dinated is unknown, but likely involves regulated STAT3–pro-
tein interactions. As mentioned, a number of genes have been 
implicated in the protective actions of STAT3 in the heart, but 
to our knowledge definitive evidence for a direct role of STAT3 
in their induction based on promoter analysis or ChIP assays is 
lacking. Three putative STAT3 binding sites were detected in 
the promoter for miR-199a, but evidence for STAT3 binding to 
the site was not shown and in this case STAT3 served to repress 
transcription.42

Nongenomic Actions

STAT3 has been shown to exert 3 actions in the cell affecting 
microtubule stability, mitochondrial function, and autophagy 

ventricular remodeling over a period of 14 d following an acute 
myocardial infarction was prevented in cardiac myocyte-targeted 
SOCS3 KO hearts.48 Enhanced activation of cardioprotective 
signaling pathways (STAT3, AKT, and ERK1/2) was noted 
in the KO heart, as well as reduced apoptosis. Compared with 
the wild-type hearts, following infarction KO hearts exhib-
ited increased expression of antioxidant (MnSOD and HO-1) 
and anti-apoptotic (Bcl-xL) proteins, as well as decreased levels 
of pro-apoptotic (Bad and Bax) proteins. Consistent with less 

Figure 2. Scheme depicting the genomic and nongenomic actions 
identified for STAT3 in cardiac myocytes and other cell types. The 
genomic actions of STAT3 include both canonical and noncanonical 
events. The former involves STAT3 functioning as a transcription factor 
in the nucleus by binding TTN4–6AA elements in promoters and enhanc-
ing transcription. The noncanonical genomic actions of STAT3, which 
are diverse and not well understood, include: induction of transcription 
by pS727 STAT3 (without Y705 phosphorylation) and unphosphorylated 
STAT3 (U-STAT3); enhancing transcriptional activity of other transcrip-
tion factors (e.g., nuclear steroid receptors); controlling the processing 
and nuclear retention of NFκB transcription factors; repressing gene 
expression; and modulating chromatin structure. Some of these actions 
may not require DNA binding and some events associated with the 
regulation of other transcription factors could conceivably occur in the 
cytoplasm. STAT3 has been shown to exert 3 actions in the cell that are 
extranuclear and do not involve gene transcription. These nongenomic 
actions of STAT3 control microtubule stability, mitochondrial function, 
and autophagy. For most, interaction of STAT3 with a specific protein 
has been implicated: stathmin (microtubule stability), GRIM19 (mito-
chondrial function), and PKR (autophagy). For microtubule stability 
and inhibition of autophagy, the STAT3–protein interaction provides a 
straightforward mechanistic link. The basis for the mitochondrial role 
of STAT3 is the least understood and other proteins besides GRIM19 
are likely involved. The permissive role of STAT3 in the ubiquitin-
proteasome system (UPS) is genomic and results from suppression of 
miR-199a expression. Understanding of crosstalk between the genomic 
and mitochondrial actions of STAT3 is limited, as is the likely interplay 
among the nongenomic actions of STAT3 (for instance, impaired mito-
chondrial function and enhanced autophagy/mitophagy). Evidence of 
complex interplay among microtubule stability, mitochondrial function, 
autophagy, and UPS in various cell types is reported in the literature in 
general, implying that STAT3 has a central role in cellular homeostasis 
and stress responsiveness. Differential regulation of posttranslational 
modifications of STAT3 could form the basis for the integration of the 
nongenomic and genomic actions of STAT3.
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was reported to occur through the TAD of STAT3 and to be pos-
itively affected by S727 phosphorylation.87 Interestingly, STAT3 
and GRIM19 mutually enhance their translocation to the mito-
chondria88 and the small heat shock protein HSPB8/HSP22, 
which is predominately expressed in skeletal/cardiac muscle was 
reported to be important for the mitochondrial translocation of 
STAT3.89 STAT3 mitochondrial uptake would also appear to 
require mitochondrial membrane potential and energy.79

STAT3 has been shown to regulate several aspects of mito-
chondrial function, including activities of complexes I and II, 
mitochondrial permeability transition pore (mPTP) opening, and 
reactive oxygen species (ROS) production. Mitochondria from 
hearts of mice with postnatal cardiac myocyte-targeted STAT3 
KO have reduced ADP-stimulated respiration and complex I and 
II activities,75,77 and the STAT3 inhibitor Stattic reduced ADP-
stimulated respiration of rat mitochondria.77 Calcium-sensitivity 
of mPTP opening, which can trigger cell death, was enhanced 
in mitochondria from STAT3-KO mice and Stattic-treated rat 
mitochondria. Moreover, STAT3 co-immunoprecipitated with 
pore component cyclophilin D in rat left ventricular mitochon-
dria, suggesting that STAT3 may prevent mPTP opening by 
binding cyclophilin D similar to the actions of the cardioprotec-
tive agent cyclosporine A (CsA).77 In fact, STAT3 was shown 
to be important for preconditioning-induced infarct size reduc-
tion, but not pharmacological conditioning with CsA, suggest-
ing similar modes of action. Intriguingly, in aged mouse hearts 
mitochondrial STAT3 levels were reduced raising the possibility 
that loss of STAT3 may contribute to aging-related pathologies 
of cardiac myocytes.77 Others reported that postconditioning of 
the hearts of pigs increased mitochondrial levels of STAT3 Y705 
phosphorylation (not S727), which was associated with better 
complex I respiration and calcium retention capacity.84 Finally, 
mice with cardiac myocyte-specific overexpression of mitochon-
dria-targeted STAT3 bearing a mutation in the DNA-binding 
domain (MLS-STAT3E) were recently generated.76 MLS-
STAT3E expressing mitochondria showed modest decreases in 
complexes I and II basal activities; however, mitochondria from 
MLS-STAT3E hearts were protected against ischemic damage to 
complex I respiratory rates and release of cytochrome c into the 
cytosol. Compared with wild-type mitochondria, ischemia did 
not enhance ROS production by MLS-STAT3E mitochondria, 
which was attributed to partial blockade of electron transport 
through complex I.

The role of mitochondrial STAT3 in regulating ROS produc-
tion is intriguing and has been studied primarily in noncardiac 
cells. Both positive and negative actions of mitochondrial STAT3 
on ROS production have been reported and in some cases no 
parsing of the relative contribution of genomic and nongenomic 
actions of STAT3 was done: mouse STAT3 null hematopoietic 
stem/progenitor cells display mitochondrial dysfunction and 
increased ROS;90 TNF-induced necroptosis of L929 mouse fibro-
sarcoma cells was attributed to enhanced translocation of STAT3 
to the mitochondria by GRIM19 with a subsequent increase in 
ROS;88 mitochondrial STAT3 was implicated in nerve growth 
factor (NGF) induced neurite outgrowth and ROS produc-
tion;80 in astrocytes the absence of STAT3 resulted in decreased 

that are thought to be extranuclear and not involving gene tran-
scription (Fig. 2). Studies on these nongenomic actions of STAT3 
are evolving and the findings to date, though perhaps not defini-
tive, are nevertheless intriguing as they could foster development 
of new therapeutic strategies based on naturally occurring or 
forced extranuclear STAT3–protein interactions.

STAT3 has been proposed to directly contribute to microtu-
bule (MT) stabilization by interacting with and thereby inhib-
iting the activity of stathmin (a.k.a. oncoprotein 18), a small 
ubiquitously expressed and mainly-cytoplasmic protein.71-73 
Stathmin binds α/β-tubulin heterodimers causing depolymer-
ization of MTs. This role of STAT3 is reported to be important 
for cell migration and preventing axonal retraction/degeneration 
and evidence for this includes: (1) co-immunoprecipitation of 
STAT3 and stathmin (along with mutational analysis); (2) a suf-
ficient protein ratio of stathmin to STAT3; (3) negative effect 
of STAT3 deletion on MT stability and cell migration, along 
with recovery types of experiments with STAT3 mutants that do 
not bind DNA (which now has shortcomings given the revised 
understanding of the genomic actions of STAT3); (4) STAT3-
mediated reversal of stathmin-inhibition of tubulin polymeriza-
tion in vitro; and (5) the negative impact of STAT3 inhibitors on 
MT polymerization.

Excessive MT stabilization in the myocardium has been 
observed in animal models of pathological cardiac hypertrophy 
and heart failure,74 but the role of STAT3 in regulating MT sta-
bility in cardiac myocytes is not established. However, Ng et al. 
reported that gp130 family cytokines (established activators of 
STAT3) induced MT stabilization in neonatal rat ventricular 
myocytes, which could be inhibited with a JAK2 or STAT3 
inhibitor or STAT3 knockdown.74 In contrast, expression of a 
constitutively active STAT3 (spontaneously dimerizing STAT3) 
enhanced MT stabilization. A direct role for STAT3 in MT sta-
bilization in this study cannot be ruled in or out. The impact 
of constitutively active STAT3 would suggest that gene expres-
sion was involved, while evidence both for and against a role of 
Y705 phosphorylation in STAT3-stathmin interaction has been 
reported.71,73 Given the likely importance in the heart for MT 
stability in the context of mitochondrial function and autoph-
agy and its possible dysfunction in pathological conditions, the 
role of STAT3 as a regulator of this process warrants further 
investigation.

The observations that a component of complex I, GRIM19 
can associate with STAT3 prompted investigation into whether 
STAT3 plays a role in mitochondrial function.75-79 Many (but 
not all) studies have detected STAT3 in mitochondria from vari-
ous types of cells and tissues including cardiac myocytes and the 
heart, and in many (but not all) cases the STAT3 pool is enriched 
in phosphorylated S727 compared with the cytoplasm.80-85 This 
enrichment may be dynamically regulated as catecholamine-
induced hypertrophy of H9c2 cardiomyoblasts was associated 
with a reduction in mitochondrial STAT3 phosphorylated S727 
levels with no change in total STAT3 levels.86 Recently, the uptake 
of STAT3 by isolated mitochondria was shown to be mediated 
by GRIM19 and enhanced by STAT3 S727 phosphorylation,79 
which is not unexpected as association of GRIM19 with STAT3 
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embryonic fibroblasts was recently reported to increase STAT3 
expression and activity, which was accompanied by increased 
accumulation of S727 phosphorylated STAT3 in mitochondria 
and mitochondrial respiration.81 Obviously, more research needs 
to be done for a coherent understanding of the give and take of 
STAT3 signaling in mitochondria-nucleus crosstalk.

As mentioned, STAT3 was shown to be important for proper 
protein degradation in the cells by repressing the expression of a 
suppressor of the expression of UPS components.42 While inhi-
bition of UPS-mediated protein degradation (as would be seen 
with loss of STAT3) has been shown to enhance autophagy,98 
evidence was recently presented that STAT3 tonically inhib-
its autophagy by physically associating with protein kinase R 
(PKR).99 PKR is a ubiquitously expressed serine/threonine kinase 
that phosphorylates eukaryotic translation initiation factor 2-α, 
thereby inhibiting protein translation and inducing autophagy. 
PKR is activated (directly or indirectly) by a number of stresses 
including double stranded RNA, growth factor deprivation, and 
hydrogen peroxide.100,101 A physical association between the SH2 
domain of STAT3 and the catalytic domain of PKR was dem-
onstrated that could be disrupted by long chain saturated fatty 
acids.99,102 These observations were made with noncardiac cells; 
however, significant increase in autophagolysosomes and levels of 
LC3-II were reported in a STAT3-deficient HL-1 mouse atrial 
cardiac myocyte cell line, indicating enhanced autophagy.103 In 
summary, normal STAT3 expression would seem to favor UPS 
over autophagy, while loss of STAT3 would have the converse 
action.

Proving that STAT3 truly has nongenomic actions in a physi-
ological setting is extremely difficult and whether that has been 
achieved is debatable. In this regard, two cautionary notes need 
to be sounded: (1) overexpression studies are not the perfect 
complement of gene knockout/deletion studies; and (2) what 
defines the transcriptional activity of STAT3 is a moving target 
and could conceivably involve just the shuttling of other proteins 
into the nucleus or the modification of other transcription factors 
via enhanced posttranslational modification.

The Tail of the Rhino: Distinguishing Feature  
and Common Link?

The TAD is the least conserved portion of the STAT proteins, 
although with the exception of STAT2 and 6 all contain a 
P(M)SP motif that is a target for proline-directed kinases and 
is involved in recruiting p300 with various potencies.12,104 For 
STAT3, phosphorylation of the serine residue within this motif 
(S727) has been implicated in other aspects of STAT3 regula-
tion as well, including: (1) enhancing transcriptional activity by 
recruiting co-factors;12,104 (2) opposing Y705 phosphorylation 
by recruiting phosphatases or inducing conformational change 
by disrupting TAD-coiled-coil domain interaction,105-107 both 
of which have significance in preventing or terminating canoni-
cal STAT3 signaling; (3) determining subcellular distribution 
of STAT3, specifically uptake by mitochondria;79 (4) terminat-
ing STAT3-induced gene expression at a subset of promoters by 
recruiting histone methyl transferase SET9, which dimethylates 

mitochondrial membrane potential and ATP production, along 
with increased ROS production;91 cultured primary osteoblasts 
from STAT3 KO mice produced elevated levels of ROS;92 and, 
finally, the key importance of mitochondrial STAT3 to Ras-
dependent oncogenic transformation of cancer cells is likely due 
to increased ROS.93

S727 phosphorylation seems to have special importance in the 
mitochondrial actions of STAT3, as impaired activity of com-
plexes I and II of mitochondria from STAT3−/− pro-B cells could 
be restored by expressing a mitochondrial targeted STAT3 bear-
ing a pS727 mimetic while the non-phosphorylatable STAT3 
Y705F/S727A was ineffective.75 Moreover, a STAT3 with a 
phosphorylated Y705 mimetic or a constitutively active STAT3 
that spontaneously undergoes dimerization were not effective. 
Another study reported that a mitochondria-targeted serine-
dominant negative mutant of STAT3 attenuated NGF-induced 
neurite outgrowth, while wild-type and tyrosine-dominant nega-
tive mutant STAT3 enhanced NGF induced neurite outgrowth.80 
Also, a number of studies report that STAT3 pS727 is enriched 
in mitochondria compared with the cytoplasm.78-83

While the evidence for a direct role for STAT3 in the func-
tion of mitochondria is convincing, the issue of stoichiometry has 
raised a seemingly insurmountable argument against a direct con-
tribution of (normally expressed levels of) STAT3 to the electron 
transport chain based on protein–protein interactions. Phillips 
et al. determined through three different proteomic approaches 
that the mitochondrial complex I/II ratio to STAT3 in cardiac 
tissue to be ~105, at least under normal conditions.94 Involvement 
of other indirect mechanisms, such as regulating in some fashion 
the posttranslational modifications of mitochondrial proteins, 
remains a tenable hypothesis. For instance, a mitochondrial pool 
of GSK-3β localizes to the inner membrane and STAT3 was 
shown to associate with and negatively affect phosphorylation of 
GSK3β, thereby enhancing its activity.95 Altogether this would 
be expected to promote mPTP opening and ROS generation. 
Evidence was also recently reported that STAT3 tightly associ-
ates with inner mitochondrial membrane complexes in rat heart 
mitochondria, likely complex I.79 Thus, STAT3 functioning in 
a higher order complex with other proteins that results in post-
translational modification of complex 1 proteins is a possibility. 
Alternatively, Szczepanek et al. have proposed that STAT3 may 
function in the redox buffering of the mitochondria given reports 
that it possesses redox-sensitive cysteines.78

STAT3 may represent a means of communication between 
the mitochondria and nucleus to regulate cellular metabolism, 
although evidence to support this conclusion is circumstantial. 
Recent evidence from cancer research indicates that STAT3 in its 
capacity as a nuclear transcription factor can act as an “anaero-
bic switch”, favoring glycolysis and attenuating mitochondrial 
activity by suppressing genes for mitochondrial proteins.96,97 In 
fact, STAT3 has been implicated as a causative factor in the well-
known Warburg effect observed in cancer cells.97 STAT3 Y705 
phosphorylation and canonical signaling has been implicated in 
these actions of STAT3. A major regulator of mitochondria bio-
genesis is SIRT1, a NAD-dependent deacetylase that negatively 
impacts on canonical STAT3 signaling. SIRT1 KO in mouse 
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antioxidant molecule and redox-buffer, glutathione (GSH).121 
l-Buthionine-sulfoximine (BSO) pretreatment decreased GSH 
levels, induced ROS formation, and dose-dependently attenu-
ated STAT3 activation by LIF. Glutathione monoethyl ester, 
which is cleaved to GSH intracellularly, prevented the reduction 
in STAT3 activation, as did the antioxidant N-acetyl-cysteine; 
however, LIF-induced STAT1 activation was unaffected by GSH 
depletion. We also showed that thiophylic compounds inhibit 
LIF-induced STAT3 activation.122 Pretreatment of human micro-
vascular endothelial cells (HMEC-1), neonatal rat cardiac myo-
cytes, or adult mouse cardiac myocytes with the nitroxyl (HNO) 
donors Angeli’s salt or nitrosocyclohexyl acetate (NCA) inhibited 
STAT3 activation. NCA also blocked induction of inflammatory 
genes (ICAM-1 and CEBPD). The related 1-nitrosocyclohexyl 
pivalate (NCP), which is not a nitroxyl donor, also inhibited 
STAT3 activation, indicating that these compounds were act-
ing as thiolate-targeting electrophiles. JAK1 was not a target 
of acyloxy nitroso compounds, as NCA had no effect on JAK1 
catalytic activity. However, pretreatment of recombinant STAT3 
with NCA or NCP reduced labeling of free sulfhydryl residues. 
We also showed that NCP in the presence of diamide enhanced 
STAT3 glutathionylation in adult cardiac myocytes and altered 
the SDS-PAGE profile of STAT3 under non-reducing conditions. 
Finally, we observed that monomeric STAT3 levels are decreased 
in the Gαq model of heart failure in a redox-sensitive manner,122 
supporting the conclusion that the redox-sensitivity of STAT3 
has pathophysiological relevance.

STAT3 on a specific residue (K140) thereby causing its dissocia-
tion from the promoter;108 and (5) inducing gene expression in its 
own right.60,61 S727 phosphorylation likely impacts on the confor-
mation of the C-terminus or its accessibility. Approximately 150 
associations/interactions with other proteins have been ascribed 
to STAT3.109,110 For many, the particular region of STAT3 has not 
been identified, although the coiled-coil domain is likely respon-
sible. Surprisingly, only a few have been reported to involve the 
TAD of STAT3. Some interactions may be indirect, for instance 
p300-mediated interaction between STAT3 and Smad1.111 Table 
1 provides a listing of those that are (seemingly) direct and found 
from the literature. In one way or another, association of these 
proteins with STAT3 has been shown to determine the cellu-
lar and nuclear actions of STAT3; however, the impact of S727 
phosphorylation on the role of STAT3 in the heart is not well 
studied. We recently showed that hearts of mice with a S727A 
mutation in both STAT3 alleles adapted poorly to increased 
blood pressure compared with wild-type mice.46 Whether this 
was due to differences in the genomic or nongenomic actions of 
STAT3 will need to be assessed.

Redox-Sensitivity of STAT3

Perhaps a distinguishing feature of STAT3 compared with the 
other STATs is redox-sensitivity, although the basis for this selec-
tivity is not known. We recently showed that STAT3 activation 
in cardiac myocytes is impaired by depleting the major cellular 

Table 1. Proteins shown to interact with the TAD of STAT3

Protein Shown
Involves 

pS727
Function Expressed in heart

14-3-3ζ
U266 myeloma 
cell line, T cells

Yes
• Protects STAT3 from pS727 dephosphorylation by PP2A112

• Along with STAT3 sequesters pFoxO1 and pFoxO3a in cytoplasm and  
prolongs T cell activation113

Yes

GRIM19
Various cell 

types
Yes

• Translocation of STAT3 to mitochondria79

• Inhibition of STAT3 transcriptional activity87,114
Yes

CBP/p300
Various cell 

types
Yes

• Enhances STAT3 transcriptional activity51

• STAT3-dependent nuclear retention of NF-κB/p6520

• STAT3 acetylation (strengthened p300 binding and dimerization and DNA 
binding and enhanceosome assembly/transcription factor complexes)14-18

• STAT3-mediated NFκB p100 processing115

Yes

Pin1
HepG2 cells, 
MEF, MCF-7 

cells
Yes • Promotes STAT3 transcriptional activity and p300 recruitment116 NR

SET9
human colon 

cancer A4 cells
Yes • Dimethylation and downregulation of STAT3 binding at certain promoters108 Likely

CDK9 HepG2 ND
• localization of CDK9 to proximal promoter so as to phosphorylate RNA pol II 

switching it from initiation to elongation state117 Yes

Sp1 Rat heart, HUVE Yes
• Upregulation of ICAM-1 transcription after reoxygenation or reperfusion118

• Likely important at numerous genes
Yes

Cyclin D1 HepG2 ND • Inhibition of STAT3 transcriptional activity119 Yes (low in normal 
adult myocardium)

SRC-1/ 
NCoA-1

HepG2 No • Enhanced STAT3 transcriptional activity120 Yes

ND, not determined; NR, not reported.
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linked to the upregulation of antioxidant and anti-apoptotic 
proteins. Thus, reduced protein levels or activity of STAT3, or 
impediment of its interaction with other proteins may favor the 
creation of “the perfect storm”, the consequence being unbridled 
activation of multiple death-inducing processes in the cell simul-
taneously. That such a scenario may occur in heart failure and 
contribute to contractile degeneration is plausible, but not yet 
investigated.

Conclusions and Perspectives

Much has been learned about the beneficial actions of STAT3 
in the heart, but often times it is difficult to separate fact from 
supposition. In any case, what has emerged over the last few years 
is the central importance of STAT3 in regulating key cellular 
processes in cardiac myocytes in different cellular compartments 
by both genomic and nongenomic means. Another preeminent 
conclusion is that proper regulation of STAT3 in the heart and in 
cardiac myocytes in either direction, i.e., increased or decreased 
expression, heightened or depressed activation, is essential for 
the physiologic (genomic and non-genomic) actions of STAT3. 
For all these actions, both a housekeeping and a stress-responsive 
role of STAT3 is likely. STAT3–protein interactions are involved 
in all these processes and posttranslational modifications surely 
finesse the actions of STAT3, perhaps akin in naivety at this early 
stage of discovery to rhinos dancing in stilettos. Nonetheless, 
understanding how these interactions are regulated so as to coor-
dinate the actions of STAT3 in the healthy and stressed/injured 
heart could lead to new therapeutic strategies to prevent damage 
to the heart or improve its performance.
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Besides us, others have reported that STAT3 has redox-sensi-
tive cysteines that affect its function. Treatment of HepG2 cells 
with thiol targeting agents was reported to inhibit IL-6-induced 
STAT3 activation and increase STAT3 glutathionylation.123 
These agents also decreased nuclear accumulation of STAT3 
and impaired expression of STAT3-target genes. Peroxide was 
reported to induce STAT3 homodimer formation in HEK293 
cells and a cysteine in the N-terminus (C259) was implicated.124 
Another study identified 3 redox-sensitive cysteines in the DNA 
binding domain (C418, C426, and C468) and one within the 
transcription activation domain (C765).125 In a cell system using 
IL-6, these residues were found responsible for peroxide-reduced 
STAT3-mediated reporter gene expression from a consensus 
GAS element, but not from TTN

6
AA sites. The latter observa-

tion suggests that ROS may differentially affect STAT3 binding 
to DNA depending upon the promoter.

How might the redox-sensitivity of STAT3 impact on its role 
in cells? Concerning the genomic actions of STAT3, oxidative 
stress may alter the gene profile linked to STAT3 because of dif-
ferential promoter selection or STAT3–protein interactions. For 
the nongenomic actions of STAT3, protein–protein interactions 
may be affected. An early observation showed that STAT3 exists 
in higher order complexes with other proteins in the cytosol.126 
Redox-sensitivity might function to determine the binding part-
ners of STAT3, as well as its subcellular distribution. In short, 
redox-sensitivity may serve as a switch to coordinate the various 
roles of STAT3 depending upon the stresses placed on the cell.

Reduced STAT3 Activity in the Heart:  
The Perfect Storm?

Multiple studies have provided evidence that nongenomic 
STAT3 has a critical role in optimal mitochondrial function and 
preventing mPTP opening, inhibiting autophagy, proper func-
tioning of the ubiquitin-proteasome system, and microtubule 
stability. In fact, STAT3 may serve as an integrating factor for 
these processes. On the other hand, genomic STAT3 has been 
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