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Animal selection for genetic improvement of productivity may lead to an increase in
inbreeding through the use of techniques that enhance the reproductive capability of
selected animals. Therefore, breeding strategies aim to balance maintaining genetic
variability and acceptable fitness levels with increasing productivity. The present study
demonstrates the effectiveness of genomic-based optimum contribution strategies at
addressing this objective when fitness and productivity are genetically antagonistic traits.
Strategies are evaluated in directional selection (increasing productivity) or conservation
(maintaining fitness) scenarios. In the former case, substantial rates of genetic gain
can be achieved while greatly constraining the rate of increase in inbreeding. Under
a conservation approach, inbreeding depression can be effectively halted while also
achieving a modest rate of genetic gain for productivity. Furthermore, the use of optimum
contribution strategies when combined with a simple non-random mating scheme
(minimum kinship method) showed an additional delay in the increase of inbreeding
in the short term. In conclusion, genomic-based optimum contribution methods can
be effectively used to control inbreeding and inbreeding depression, and still allow
genetic gain for productivity traits even when fitness and productivity are antagonistically
correlated.

Keywords: optimum contribution, inbreeding, genomic selection, fitness, productivity

INTRODUCTION

Over the past 30 years, selective breeding has mainly focused on production traits, with some of
these traits being dramatically improved (Hayes et al., 2013). However, new issues and challenges
have recently arisen as a consequence of increased concern for biodiversity, animal robustness,
welfare, and market preferences toward product hygiene and quality (Olynk, 2012), thus requiring
the re-assessment of strategies to address the new objectives.

With previous selection pressure being focused mainly on production, the genetic variability
of many functional traits (e.g., fertility) has been eroded as a consequence of the negative
antagonistic correlation with productivity traits and the lack of selection pressure to improve them
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(Hoekstra et al., 1994; Pryce et al., 2002; Oltenacu and Broom,
2010). This can be sorted by constructing a selection index to
allow for selection for productivity while preventing the fast
reduction in fitness (van der Werf et al., 2009). However, the
low heritability and lack of relevant data means that low or
modest improvements can be achieved, thus rendering necessary
alternative strategies such as genomic prediction to increase the
accuracy of predictions.

Furthermore, the widespread use of artificial insemination,
multiple ovulation and embryo transfer in some species has
led to selected parents of high genetic merit having 100s to
10s of 1000s of progeny (Brackett, 2012). This has resulted
in a high level of inbreeding, which could be related to a
loss in fitness. In order to control the increase in inbreeding
resulting from selection, optimum contribution strategies have
been developed in livestock genetic improvement schemes to
maximize the genetic gain for a pre-set level of inbreeding
(Wray and Goddard, 1994; Meuwissen, 1997; Grundy et al.,
1998). These methods take into consideration the genetic
merit of candidates and their genetic relationships in order to
determine the optimum number of progeny for each candidate.
Alternative implementations of these strategies focused on
conservation programs (i.e., for endangered species) aiming to
minimize inbreeding and enhance fitness (Ballou and Lacy, 1995;
Fernández et al., 2011). Although these dynamic methods are
mainly based on the optimization of candidate selection and
subsequent random mating, they can be also combined with
non-random mating strategies in two-step programs to achieve
a further reduction in inbreeding (Sonesson and Meuwissen,
2000).

Hence, to ensure that the maximum benefit is achieved,
selection programs should combine strategies for (i) increasing
the accuracy of EBV and (ii) optimizing the selection of
candidates and their genetic contributions. Previous studies
combining genomic predictions with optimized selection have
shown a synergistic effect leading to greater selection response
(Nielsen et al., 2011; Pryce et al., 2012; Sonesson et al., 2012;
Clark et al., 2013). Furthermore, genomic estimates provide a
more precise estimate of the true genetic relationships among
animals than the obtained with the traditional pedigree-based
relationship matrix (Sonesson et al., 2012). However, so far, no
previous study has addressed the dynamics of the above when
selection considers two genetically antagonistic traits.

The present study addresses genomic-based optimum
contribution in the presence of genetic antagonism between key
functional and production traits. Two main scenarios are tested
in a simulation study focusing on (i) a genetic improvement
scheme aiming at maximizing genetic gain while controlling
inbreeding and (ii) a conservation program aiming at minimizing
inbreeding while allowing for genetic gains.

MATERIALS AND METHODS

Simulation of Populations
A base population with a size of 2,000 animals (1,000 males and
1,000 females) was simulated with initial allelic frequencies of

0.5 for all loci and randomly mated for 50 generations to allow
the establishment of linkage disequilibrium between markers
and the QTL following a similar process as in Behmaram et al.
(2013) and Boustan et al. (2013). After the 50th generation,
1,000 individuals (500 males and 500 females) were randomly
chosen as the base generation of the simulation of the ensuing
monitoring period; the latter consisted of 20 generations under
different selection and optimum contribution strategies described
below.

Simulation of Genomes
For each animal, the genome consisted of 20 chromosomes of
equal length (140 cM), with 64,000 bi-allelic single nucleotide
polymorphisms (SNPs) evenly distributed among them (3,200
nucleotides per chromosome). One 1000 SNPs were considered
as functional genes and randomly sampled without replacement.
In addition, 10,000 SNPs were also randomly chosen without
replacement and selected as genetic markers in linkage
disequilibrium with the functional genes. These SNPs were
used to compute identity-by-state (IBS) genomic relationships
among individual animals. Mutation rate was assumed to be
2.2 × 10−5 per nucleotide (Brito et al., 2011) and recombination
was simulated based on SNP distance using the Haldane mapping
function (Haldane, 1919).

Simulated Traits
Two main traits were considered: (i) a productivity trait with
a moderate-high heritability (0.30) and (ii) a fitness-related
trait with a low heritability (0.10), reflecting a threshold-based
ability of the animal to survive and reproduce. These heritability
estimates reflect estimates from studies based on real data in
different livestock species (Luan et al., 2009).

Productivity was assumed to be a mainstream trait that will
be normally selected for in a livestock genetic improvement
program. Fitness was assumed to be an important trait
antagonistically related with productivity, which may or may
not be included in the selection program, as explained later.
The antagonistic genetic correlation between the two traits
was assumed to be −0.50, with half of the genes being
simulated to have an equal but opposite effect on the two traits
and therefore, being representative of a pessimistic scenario
considering previous estimates of negative correlations between
productivity and fitness (Ingvartsen et al., 2003; Oltenacu and
Broom, 2010). Furthermore, fitness was assumed to be affected
by inbreeding depression, as explained later.

The phenotypic variance of each trait was standardized to 1
and, therefore, the additive genetic variance (Vα) was equal to the
heritability of the trait. For each trait, the effects of the functional
genes were assumed to follow a normal distribution with mean 0
and variance α2, α being the average effect of allelic substitution
(α =

√
Vα/2npq, where n is the number of loci affecting the trait

and p and q are the allelic frequencies at a starting value of 0.5
(Falconer and Mackay, 1996).

When simulating both traits, two alternatives were considered:
(i) fitness phenotypes were assumed to be available (i.e., recorded)
in all animals or (ii) only a proportion of animals (20%) having a
relevant phenotypic record.
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True and Predicted Breeding Values
True breeding values (TBVs) for each animal and trait were
computed from gene effects and allelic frequencies simulated
for the correspondent functional genes, with phenotypic values
being simulated by adding to the TBV an environmental
deviation normally distributed with mean 0 and variance Ve.
Following classic infinitesimal theory (Nadaf et al., 2012),
genomic estimated breeding values (GEBVs) were simulated by
adding an error term to the TBV. This error term was computed
assuming a targeted accuracy r of the GEBVs (TBV-GEBV
correlation) and a normal distribution N [0, (1−r2)Vα] for the
error term. The use of this approach to simulate GEBVs has been
developed and used in previous studies (Dekkers, 2007; Granleese
et al., 2015).

Low heritability traits are expected to have lower genomic
prediction accuracies when compared to medium-high
heritability traits and, in addition, animals with genotypes
and phenotypes (training population) are expected to have
higher accuracies than animals with genotypes only (Daetwyler
et al., 2010). Therefore, accuracies for productivity GEBVs were
assumed to be always 0.70, as all animals were simulated to have
phenotypic records. Accuracies for fitness were assumed to be
0.50 for animals with phenotypic records and 0.40 for animals
without phenotypic records.

Selection Index
Different combinations of selection on productivity and
fitness were considered: (a) index I50 was created as a
50%/50% combination of the productivity and fitness GEBVs
(equal emphasis); (b) index I25 was created as a 75%/25%
productivity/fitness GEBV combination; and (c) index I0
included only productivity GEBVs. These weights were meant to
reflect the relative emphasis placed on each trait, independently
of the assumed heritabilities and genetic correlation.

Inbreeding and Inbreeding Depression
The genomic relationship matrix (G) based on IBS relationships
among animals was computed in every generation using the
method of Van Raden (2008):

G = ZZ
′

/k

with Z being the centered matrix (subtraction of the expected
genotype frequencies from the incidence matrix with genomic
information) and k the scaling parameter computed as k= 26pq,
where p and q are the allelic frequencies at the base generation of
the simulation.

Genomic inbreeding for each individual (i) was computed
as Gii – 1, as these inbreeding coefficients represent the
correlation between uniting gametes in an individual. Pedigree
inbreeding based on pedigree relationships was also computed
for comparison, assuming that animals in the base population
were unrelated.

As mentioned above, simulated fitness was assumed to be
affected by inbreeding depression. Therefore, a phenotypic
reduction of 5% in fitness per 0.1 (10%) increase in inbreeding
was assumed in concordance with previous studies (Theodorou

and Couvet, 2006). For inbreeding depression purposes, only
genomic inbreeding was considered, as differences between
pedigree and genomic rates of inbreeding were expected due to
selection (Sonesson et al., 2012). A threshold for fitness was also
imposed, and animals whose fitness was reduced by 50% or more
were considered to be dead or unable to mate.

Optimum Contribution Strategies
Maximize Genetic Gain (MGa and MGb Strategies)
The optimum contribution theory described by Meuwissen
(1997) was used, adapted to genomic selection. The genetic
gain in generation t+1 was defined by ctGEBVt, with ct being
the vector of contributions of selected candidates to generation
t+1. This expression was maximized with Lagrange multipliers
assuming a constraint for the average relationship of selection
candidates Ct+1 = c

′

tGtct/2 = 1− (1−1FG)t , where Gt was the
genomic relationship matrix among selection candidates and
1FG was the desired rate of genomic inbreeding (Sonesson et al.,
2012), which was set to 0.01 or 0.005 in the present study.
Once ct was calculated, the offspring was produced by sampling
a male and a female with replacement under random mating.
Contributions were optimized for both sexes (MGa strategy) or
only for sires (MGb strategy). These two strategies are considered
relevant to current livestock genetic improvement program.

Minimize Rate of Inbreeding (MI Strategy)
The Lagrange multipliers’ approach was used to develop
strategies relevant for a conservation program aiming to protect
biodiversity by minimizing the rate of inbreeding for a given rate
of allowed gain in the trait of interest. In this case, the constraint
was set to 1I + It , where It is the average index value observed
for the population in generation t and 1I is the desired rate of
gain in the index (set to 0.30 in the present study). Contributions
under this scheme were optimized for both sexes.

Additional Considerations
Main scenarios tested are summarized in Table 1. Sires and
dams selected in the optimum contribution scenarios described
above were mated as dictated by the respective number of
expected contributions of each selected parent assuming each
mating produced a single offspring. Two mating strategies
were tested in these main scenarios: under random mating,

TABLE 1 | Summary of factor levels considered per strategy (MGa, MGb,
MI, truncation of the best 10% of the animals and absence of artificial
selection).

Strategy Index Const1 (%) Const2 Propor (%)

MGa I0/I25/I50 0.5/1.0 − 100/20

MGb I0/I25/I50 0.5/1.0 − 100/20

Truncation selection I0/I25/I50 − − 100/20

MI I0/I25/I50 − 0.3 100/20

Absence of artificial selection − − − −

Factors considered were the proportion of fitness in the index (Index), the desired
rate of genomic inbreeding (Const1) or genetic gain for fitness (Const2) and the
proportion of animals with fitness phenotypic records (Propor).
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selected animals were mated at random with replacement. Under
non-random mating, the static minimum kinship approach,
which minimizes average co-ancestry (Ivy and Lacy, 2012) was
followed. In the latter, individual mean molecular relationships
(average molecular relationship of an animal with the rest of
the population) were computed in every generation thereby
creating two sex-specific lists where animals were ranked from
lowest to highest mean relationship. The sire and dam with
the lowest mean relationship were mated, followed by the sire
and dam with the next lowest mean relationship. This process
continued until all breeding pairs were formed. Any breeding pair
with a relationship greater than the average relationship in the
population was rejected, and the male was then mated to the next
unpaired female with the lowest mean relationship.

In addition to the main scenarios addressed in Table 1,
other scenarios were simulated to test the concordance and
validity of results. These secondary scenarios corresponded to
(i) different number of males and females per generation (200
males and 800 females); (ii) different number of chromosomes
(30 chromosomes to mimic the bovine genome); (iii) greater
population size per generation (2,000 instead of 1,000).

Scenario Assessment
All scenarios described above were run for 50 replicates and
breeding strategies were compared for rates of inbreeding (1F),
genetic gain (1TBV) and phenotypic change per generation.
These rates were assessed in two intervals: from generation 0 to 5

(G0–G5) and from generation 6 to 20 (G6–G20), as it is expected
that drift will also contribute to reducing the genetic variance
in the early generations and, therefore, it may increase the early
rates of inbreeding in the truncation methods. Rates of genomic
inbreeding (1FG) were also compared with corresponding
pedigree inbreeding rates (1FP) and were computed only for the
last interval to avoid the first generations.

RESULTS

Table 2 shows the results obtained from optimum contribution
of both sexes, maximizing genetic gain for different inbreeding
constraints (MGa). Results from truncation selection are
included in Table 2 for comparison. In all cases random mating
among selected parents was assumed. Rates of genetic gain and
genomic inbreeding under an MGa strategy with an inbreeding
constraint of 0.01 (1%) were always similar to those obtained
with the corresponding truncation selection scheme. However,
a genomic inbreeding constraint of 0.005 (0.5%) in the MGa
strategy reduced 1FG by about half and the impact of inbreeding
depression on fitness by 40–60%, while yielding only slightly
smaller rates of genetic gain for the two traits (Table 2).

Table 3 shows the performance of an optimum contribution
strategy to maximize the genetic gain applied only to males (MGb
strategy) and considering random mating. When compared
with optimum contribution of both sexes (Table 2), 1TBV for

TABLE 2 | Comparison of optimum contribution of both sexes for maximization of genetic gain (MGa) with the desired rate of genomic inbreeding
(Const) and truncation selection (Truncation 10%) strategies under random mating: results are the observed rate of genomic inbreeding (1FG), the rates
of genetic improvement (1TBV) in productivity and fitness and the rate of phenotypic change (1P) in fitness after accounting for inbreeding depression,
for selection indices emphasizing 0, 25, and 50% on fitness (I0, I25, I50).

Trait Strategy (Const) 1FG (%) Production (1TBV) Fitness (1TBV) Fitness (1P)

G6–G20 G0–G5 G6–G20 G0–G5 G6–G20 G0–G5 G6–G20

Index = Production

I0 MGa (0.5%) 0.467 0.574 0.458 −0.291 −0.233 −0.410 −0.466

I0 MGa (1.0%) 0.896 0.662 0.478 −0.331 −0.240 −0.569 −0.693

I0 Truncation 0.950 0.637 0.479 −0.321 −0.243 −0.618 −0.721

Index = Production + Fitness; All animals with fitness phenotypic records

I50 MGa (0.5%) 0.462 0.293 0.228 0.103 0.086 −0.010 −0.139

I50 MGa (1.0%) 0.887 0.337 0.233 0.115 0.091 −0.113 −0.350

I50 Truncation 10% 0.884 0.344 0.238 0.112 0.101 −0.188 −0.340

I25 MGa (0.5%) 0.467 0.522 0.419 −0.180 −0.151 −0.297 −0.381

I25 MGa (1.0%) 0.891 0.596 0.443 −0.196 −0.160 −0.427 −0.608

I25 Truncation 0.913 0.589 0.440 −0.200 −0.158 −0.506 −0.614

Index = Production + Fitness; 20% of animals with fitness phenotypic records

I50 MGa (0.5%) 0.463 0.289 0.221 0.102 0.089 −0.012 −0.135

I50 MGa (1.0%) 0.885 0.333 0.233 0.117 0.092 −0.112 −0.350

I50 Truncation 0.865 0.334 0.235 0.113 0.097 −0.177 −0.334

I25 MGa (0.5%) 0.465 0.519 0.413 −0.170 −0.143 −0.287 −0.372

I25 MGa (1.0%) 0.890 0.591 0.434 −0.194 −0.156 −0.426 −0.605

I25 Truncation 0.908 0.588 0.439 −0.197 −0.158 −0.502 −0.613

Average standard errors

- MGa 0.002 0.005 0.003 0.004 0.002 0.004 0.003

- Truncation 0.011 0.0048 0.0028 0.004 0.0026 0.0074 0.0062
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TABLE 3 | Optimum contribution of sires for maximization of genetic gain (MGb) with the desired rate of genomic inbreeding (Const): results are the
observed rate of genomic inbreeding (1FG), the rates of genetic improvement (1TBV) in productivity and fitness and the rate of phenotypic change (1P)
in fitness after accounting for inbreeding depression, for selection indices emphasizing 0, 25, and 50% on fitness (I0, I25, I50).

Trait Strategy (Const) 1FG (%) Production (1TBV) Fitness (1TBV) Fitness (1P)

G6–G20 G0–G5 G6–G20 G0–G5 G6–G20 G0–G5 G6–G20

Index = Production

I0 MGb (0.5%) 0.474 0.382 0.347 −0.189 −0.178 −0.329 −0.413

I0 MGb (1.0%) 0.901 0.441 0.371 −0.217 −0.186 −0.495 −0.640

Index = Production + Fitness; all animals with fitness phenotypic records

I50 MGb (0.5%) 0.472 0.203 0.176 0.066 0.063 −0.072 −0.168

I50 MGb (1.0%) 0.902 0.230 0.183 0.076 0.069 −0.197 −0.381

I25 MGb (0.5%) 0.470 0.351 0.316 −0.115 −0.110 −0.253 −0.342

I25 MGb (1.0%) 0.901 0.395 0.336 −0.131 −0.117 −0.404 −0.570

Index = Production + Fitness; 20% of animals with fitness phenotypic records

I50 MGb (0.5%) 0.471 0.201 0.171 0.066 0.067 −0.070 −0.164

I50 MGb (1.0%) 0.901 0.227 0.184 0.074 0.070 −0.199 −0.382

I25 MGb (0.5%) 0.473 0.351 0.315 −0.117 −0.108 −0.255 −0.341

I25 MGb (1.0%) 0.903 0.397 0.340 −0.135 −0.121 −0.412 −0.574

Average standard errors

- MGb 0.002 0.004 0.003 0.003 0.002 0.004 0.003

TABLE 4 | Optimum contribution of both sexes for minimization of inbreeding (MI) under random mating: results are the observed rate of genomic
inbreeding (1FG), the rates of genetic improvement (1TBV) in productivity and fitness and the rate of phenotypic change (1P) in fitness after accounting
for inbreeding depression and for selection indices emphasizing 0, 25, and 50% on fitness (I0, I25, I50); the constraint in the rate of gain for the index
was 0.30.

Trait 1FG (%) Production (1TBV) Fitness (1TBV) Fitness (1P)

G6–G20 G0–G5 G6–G20 G0–G5 G6–G20 G0–G5 G6–G20

Absence of artificial selection

- 0.049 0.001 −0.001 −0.001 0 −0.022 −0.017

Index = Production

I0 0.016 0.151 0.143 −0.076 −0.072 −0.091 −0.078

Index = Production + Fitness; all animals with fitness phenotypic records

I50 0.039 0.150 0.130 0.050 0.045 0.027 0.031

I25 0.022 0.191 0.176 −0.064 −0.061 −0.081 −0.069

Index = Production + Fitness; 20% of animals with fitness phenotypic records

I50 0.038 0.144 0.127 0.047 0.043 0.026 0.030

I25 0.023 0.193 0.176 −0.067 −0.060 −0.084 −0.069

Average standard errors

- 0.001 0.002 0.001 0.001 0.001 0.001 0.001

productivity was generally reduced (30% on average) and 1TBV
for fitness was also reduced (26% on average) when productivity
and fitness were equally weighted.

The use of optimum contribution from a conservation
perspective is exemplified in Table 4, which shows the results
obtained under a strategy to minimize the rate of inbreeding for a
given rate of genetic gain (MI strategy) under random mating.
A scenario assuming absence of artificial selection is included
in Table 4 for comparison. Results suggest that the use of this
strategy will lead to a rate of inbreeding similar to that observed
in the complete absence of selection while at the same time
allowing for a modest but noteworthy increase in genetic gain for
productivity and fitness. The rate of phenotypic deterioration of

fitness when compared to the absence of selection was reduced
and, in some cases, halted and reversed.

In scenarios with fitness records being available to a
proportion of animals only, despite the lower accuracy, the
rate of genetic gain decreased marginally (Tables 1–3), probably
due to the combined effect of fitness (lower heritability)
and productivity (higher heritability) and the relatively small
difference in accuracies (0.1) among animals with and without
genotypes.

The use of an alternative mating program, based on optimum
contribution followed by a mating scheme to minimize co-
ancestry according to the minimum kinship method yielded
interesting results that are summarized in Figure 1. The

Frontiers in Genetics | www.frontiersin.org 5 February 2016 | Volume 7 | Article 25

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-07-00025 February 24, 2016 Time: 11:34 # 6

Sánchez-Molano et al. Optimum Contributions with Antagonistic Traits

FIGURE 1 | Effect of mating strategy. Pedigree inbreeding (A) and genomic inbreeding (B) in an optimal contribution of both sexes strategy to maximize genetic
gain followed by either random mating (solid line) or mating based on the minimum kinship principle (dashed line); selection index was 50%/50% productivity/fitness;
genomic inbreeding constraint was 0.01.

FIGURE 2 | Comparison between the rates of genomic (1FG, solid lines) and pedigree (1FP, dashed lines) inbreeding during the selection period.
(A) MGa with 50% selection emphasis on fitness assuming a constraint of 0.005 in the rate of genomic inbreeding and all animals having fitness records; (B) MI with
50% selection emphasis on fitness assuming a constraint of 0.30 in the rate of gain for the index and all animals having fitness records; (C) Truncation selection for
the best 10% of animals with 50% selection emphasis on fitness.

minimum kinship scheme minimized the average co-ancestry
and inbreeding in the first four generations but afterward
inbreeding rates increased to the same levels as under random
mating of selected parents. This observation was independent of
the genomic inbreeding constraint set for maximizing genetic
gain, and applied equally to optimum contribution of both
sexes and males only. No differences in the rates of genetic
gain for productivity and fitness were observed when comparing
minimum kinship with random mating (data not shown).

A comparison between genomic and pedigree inbreeding
rates is shown in Figure 2. Under optimum contribution
and conservation approach, 1FP overestimated 1FG by
5–16% (Figure 2A) or by 30–69% (Figure 2B), whereas
under truncation selection 1FP underestimated 1FG by
17–23% (Figure 2C). In absence of selection, no difference

was observed between rates of pedigree and genomic
inbreeding.

Additional analyses (Supplementary Table S1) led to very
similar results when 30 chromosomes were simulated, instead
of 20, in order to mimic the bovine genome. With the MGb
strategy, use of a different number of males and females (200
and 800, respectively) in the population led to an approximate
reduction of 16% in the rate of genetic gain for similar
inbreeding levels when compared with equal number of sires
and dams (500 each). In such case, the rate of increase in
inbreeding with the MI strategy was nearly doubled. The
effect of increasing the population size to 2,000 animals was
more pronounced in the MI strategy, where the rate of
inbreeding was reduced to about a third of that observed
with 1,000 animals, whereas the rate of genetic gain in the
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MGb strategy slightly increased (∼5%) due to more selection
opportunities.

DISCUSSION

The present study used a stochastic simulation to assess the
performance of genomic-based optimum contribution strategies
in animal breeding when dealing with production traits
antagonistically related with fitness. Rates of genetic gain and
phenotypic change per generation were assessed in two intervals
as it is expected that selection will at first reduce the genetic
variance, thus constraining the rates of genetic gain in early
generations. Furthermore, the increased relatedness of selected
individuals across generation will also impose a reduction in the
rate of genetic gain when constraining the rate of inbreeding,
leading to higher rates in the early periods of selection compared
to later. Therefore, scenarios where strong selection is imposed
(e.g., low restriction on genomic inbreeding) showed different
rates between the two intervals, whereas scenarios with weak
selection intensity (e.g., strict restriction on genomic inbreeding)
led to similar rates of change in the two intervals.

Our results showed that the use of optimum contribution
strategies with index selection can increase genetic gain for
productivity and reduce (or even halt) the expected decay
in fitness despite their antagonistic correlation. Optimum
contribution may also alleviate the effect of inbreeding
depression, even when the majority of animals cannot provide
a phenotypic record for fitness. Compared with truncation
selection, the use of optimum contribution will maintain a
similar rate of increase in productivity while reducing the rate of
inbreeding and the effect of inbreeding depression to one half. In
addition, and considering a conservation perspective, our results
showed that optimum contribution-based strategies (MI) can
minimize inbreeding while maintaining or even improving other
valuable traits such as production. These strategies would lead to
a rate of inbreeding similar to that observed in absence of any
selection, while at the same time yielding small but respectable
increases in productivity and halting the decrease in fitness due
to inbreeding depression.

The advantages of the use of genomic-based over phenotypic-
based programs mainly depend on the accuracy of predicted
breeding values and, therefore, the size of the training population.
In our study we have assumed that the training populations
(animals with phenotypes and genotypes) for both fitness and
productivity are large enough to provide reasonable accuracies.
Nevertheless, it is important to note that for traits with low
heritability (fitness traits) the size of the training population
needed to reach reasonable accuracies will be bigger than the
one required for productivity traits. Daetwyler et al. (2010)
showed accuracies for the validation set (animals with genotypes
only) around 0.35 for traits with h2

= 0.1 and around
0.5 for traits with h2

= 0.3 when the training population
had 1,000 individuals. Given these values and the extensive
number of records generally available for cattle breeds, it is
expected that reasonable accuracies as the ones considered
in the present study would be reached. In the case of very

small populations or breeds, the limited size of the training
population would have an impact on the prediction accuracy,
and thereby, reducing any potential benefit from combining
genomic prediction with optimization of contributions. An
extremely small training population may result in an accuracy
too low to justify the use of genomic prediction alone and in
combination with the optimization of contributions as suggested
here.

In our study, the lack of fitness records in the majority of
animals (80%) reduced the rate of genetic gain only marginally.
This observation could be the result of a combined effect of (i) the
drop in accuracy affecting only fitness and not productivity (as all
animals have records for productivity); (ii) the small difference
(0.1) between the accuracies for animals with and without
fitness records; and (iii) the combination of two traits with
different heritabilities and accuracies when creating the index.
In order to clarify this situation, additional simulations (data
not shown) considering the I50 scenario and a greater difference
between fitness accuracies (0.5 for animals with records and 0.3
for animals without records) have shown higher reductions in
genetic gain (∼8%), still leading to a reduced rate of inbreeding
when compared with truncation selection.

In concordance with previous studies (Pryce et al., 2012;
Sonesson et al., 2012; Clark et al., 2013), our results have shown
a disparity between the rates of genomic (1FG) and pedigree
(1FP) inbreeding during the selection period. Whereas the
pedigree approach provides an expectation of the proportion
of homozygosity in a given system, the molecular (genomic)
approach using IBS reflects the true (realized) homozygosity. In
absence of selection, both rates of inbreeding are similar, meaning
that pedigree inbreeding is a good estimator of the realized
inbreeding. However, the two measures of inbreeding differ when
selection is applied, suggesting that the pedigree expectation may
not be a good approximation of the realized genomic inbreeding.
Therefore, and according to previous studies (Sonesson et al.,
2012), it is recommended that a genomic-based selection scheme
should consider genomic-based relationships among parents to
control inbreeding, in order to derive more stable and predictable
outcomes.

In conservation schemes, control of inbreeding can be
additionally performed through the use of non-random mating
systems without affecting the rate of genetic gain achieved for
the trait of interest. Our results, in concordance with previous
studies (Sonesson and Meuwissen, 2000; Fernández et al., 2011),
showed that the use of the simplest mating strategy to minimize
co-ancestry within a genomic-based program reduced the rate of
inbreeding in the short term but did not prevent its subsequent
increase, leading to a final rate of inbreeding consistent with the
constraint applied at the optimum contribution step. Therefore,
if mating strategies are expected to be used, it would be
recommended to perform optimization of contributions and
mating in a single-step in order to avoid implementation
problems (Klieve et al., 1994; Fernandez et al., 2001; Kinghorn,
2011).

Based on our results, the use of optimum contribution
strategies combined with genomic data appears to be a powerful
tool to increase genetic gain while controlling inbreeding.
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However, before a large-scale implementation of these strategies,
certain considerations need attention. Firstly, constraints in
inbreeding and gain, and trait weights in the selection index have
to be carefully considered. Secondly, strategies may be applied
to one sex (i.e., males as in the MGb strategy in the present
study) or both sexes (i.e., MGa and MI strategies). Consideration
of both sexes will allow enhanced selection opportunities and
thus a higher genetic gain for the same rate of inbreeding but,
if the female reproductive rate is limited, the use of reproductive
techniques (e.g., multiple ovulation, in vitro fertilization) will be
necessary. Thirdly, the sex ratio of potential candidates will also
have an impact on results depending on the chosen strategy and
parameters. Under the MGb strategies presented here, the use
of 200 males and 800 females led to a slight reduction in the
rate of genetic gain for similar inbreeding levels when compared
with 500 males and 500 females. Under an MI strategy, the effect
was much stronger, leading to a twofold increase in the rate
of inbreeding. Therefore, when working with an MI strategy, it
would be recommended to consider a similar number of males
and females to try to maximize the effective size. Of course
each application should be tailored to the population structure
relevant to the livestock species in question.

It is important to highlight two assumptions (based on the
infinitesimal model) that were taken in the simulation to simplify
the interpretation of results: first, inbreeding depression was
simulated to be proportional to the average level of genomic
inbreeding rather than as a function of the dominance effect and
the loss of heterozygosity in the QTL (relative to the expected
under Hardy-Weinberg equilibrium), thus making it dependent
of the gene frequency. However, since our simulation assumed
1,000 QTLs with small effects, we expect that our approach
would simulate comparable levels of inbreeding depression to the
ones simulating dominance effects. Second, the approach used to
calculate GEBVs means that accuracies were kept constant across
generations, implying that the LD pattern between markers and
QTLs is the same across the whole selection period. In practice,
the LD patterns may change across generations and, thereby, the
levels of accuracy of predicted GEBVs will also change. However,
since all simulated scenarios were done using the same approach,
the changes in LD would affect all cases similarly, therefore being
the comparison across scenarios still valid.

Finally, and beyond the scopes of the present study, the use
of genomic-based optimum contribution strategies in breeding
programs has the additional advantage of measuring genomic
IBS (or IBD) inbreeding only in specific chromosomal regions
or genes of interest. This approach can, therefore, allow for a
more precise control of homozygosity in specific regions related
with fitness and/or rare alleles (Liu et al., 2014) or to minimize
ROH (runs of homozygosity; regions of the genome where the

copies inherited from our parents are identical) as proposed by
Pryce et al. (2012). Studies are currently being performed to allow
different inbreeding constraints for various chromosomal regions
(Gómez-Romano et al., 2014).

CONCLUSION

Our study demonstrated that the use of optimum contribution
strategies in a genomic context effectively reduces the rate of
increase in inbreeding while ensuring genetic improvement in
traits of interest in a wide range of scenarios. The inbreeding
impact on fitness was clearly contained, thus allowing the
maintenance of fitness levels and, therefore, genomic-based
optimum contribution strategies can be recommended both from
conservation and animal genetic improvement perspectives.
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