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ABSTRACT: Macrocycles target proteins that are otherwise
considered undruggable because of a lack of hydrophobic cavities
and the presence of extended featureless surfaces. Increasing efforts
by computational chemists have developed effective software to
overcome the restrictions of torsional and conformational freedom
that arise as a consequence of macrocyclization. Moloc is an
efficient algorithm, with an emphasis on high interactivity, and has
been constantly updated since 1986 by drug designers and
crystallographers of the Roche biostructural community. In this work, we have benchmarked the shape-guided algorithm using a
dataset of 208 macrocycles, carefully selected on the basis of structural complexity. We have quantified the accuracy, diversity, speed,
exhaustiveness, and sampling efficiency in an automated fashion and we compared them with four commercial (Prime, MacroModel,
molecular operating environment, and molecular dynamics) and four open-access (experimental-torsion distance geometry with
additional “basic knowledge” alone and with Merck molecular force field minimization or universal force field minimization,
Cambridge Crystallographic Data Centre conformer generator, and conformator) packages. With three-quarters of the database
processed below the threshold of high ring accuracy, Moloc was identified as having the highest sampling efficiency and
exhaustiveness without producing thousands of conformations, random ring splitting into two half-loops, and possibility to
interactively produce globular or flat conformations with diversity similar to Prime, MacroModel, and molecular dynamics. The
algorithm and the Python scripts for full automatization of these parameters are freely available for academic use.

■ INTRODUCTION

Macrocycles comprise a (hetero)cyclic core of at least 12
atoms, with molecular weight typically between 500 and 2000
Da. Ring sizes of 8−11 atoms and 3−7 atoms are classified as
medium and small cycles. Although some naturally occurring
rings contain up to 50 atoms, 14-, 16-, and 18-membered rings
occur at a higher frequency.1 Generally, they encompass a large
variety of chemical structures that originate from macro-
cyclization of simple building blocks, for example, cyclo-
peptide,2 cycloalkanes, and cyclodextrins,3 or as a result of de
novo total synthesis or semisynthetic routes.4 Among their
clinical applications as drugs, macrocycles are used in oncology
(temsirolimus and5,6 epothilone B derivatives7,8), as antibiotics
(vancomycin, macrolides, and rifampicin), immunology
(sirolimus and zotarolimus), and in dermatology (pimecroli-
mus).9 Other applications of macrocycles are in supra-
molecular chemistry (crown ethers,10 cryptands, catenanes,
rotaxanes,11 and calixarenes). Recently, macrocycles have
received growing attention in medicinal chemistry12−15

because of their unique ability to disrupt protein−protein
interactions,16 improve metabolic stability,17 and improve
cellular permeability by conformational restriction18−21
resulting in a higher oral bioavailability compared to noncyclic
congeners. Although macrocycles are outside of Lipinsk’s rule
of five, these molecules are able to bind proteins that are
otherwise considered challenging because of their lack of

hydrophobic cavities where functional groups can be
anchored.22,23 It has been estimated that nearly 25% of the
ring atoms can contribute to the contact area with the protein
surface through nonpolar contacts. Nevertheless, both ring
atoms and peripherals/substituents show the same probability
to match a hotspot, suggesting that ligand-based drug design of
macrocycles should take into account these two components in
order to identify potent binders.24 We have recently described
multiple scaffolds of artificial macrocycles which are readily
synthesizable using multicomponent reaction chemistry
(MCR)25−30 and investigated the structural basis of macro-
cycles targeting PD1−PDL1, p53−MDM2, and IL17A
receptor interactions.30−33 Thus, we are highly interested in
computational tools to rapidly screen conformational space of
large virtual macrocycle libraries as a filter to synthesize
bioactive compounds. To date, several benchmarks demon-
strated the feasibility of algorithms with the aim of producing
macrocycle conformations with enough accuracy and unique-
ness for common computer-aided drug design (CADD)
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strategies, such as docking and pharmacophore screening.34

Some of these algorithms are based on distance geometry
(DG),35 inverse kinematics,36 genetic algorithms,37 molecular
dynamics (MD) simulations implementing either low-
frequency modes38 or normal-mode search steps plus energy
minimization,39 and, most recently, Monte Carlo multiple
minimum/mixed torsional/low mode.40

Generally, these software programs are distinguished on the
basis of the strategy adopted to generate conformations,
systematic or stochastic. For example, molecular operating
environment (MOE), MacroModel (MM), Cambridge
Crystallographic Data Centre (CCDC) conformer generator,
and experimental-torsion DG with additional “basic knowl-
edge” (ETKDG) belong to the stochastic search category.
Nevertheless, a major issue with these techniques is the
generation of large numbers of representative conformers. On
the other hand, a problem related to systematic search
methods is the constrained flexibility of the ring, which is
often insufficiently sampled by rotating a single bond at a time.
In contrast to noncyclic molecules, the change in a single bond
rotation impacts all bonds in macrocycles. Developing
methods for sampling macrocycle conformations or improving
upon the currently existing methods without generating a large
number of conformers is a key step in the exploration of
macrocycles in drug discovery.
The computational basis of finite Fourier transform of ring

structures was developed in 198541 and its first embedding
within a specialized conformer generator for macrocycle
conformational sampling was shown in the publication of
Gerber and co-workers in 1988.42 Fourier representation of the
atomic position for macrocycle sampling has the advantage of
generating a number of conformations that depend solely on
the number of atoms in the ring, with few other user defined
parameters. In the original publication, the author assessed the
extensive conformational space covered by the Moloc software
by taking (E)-cyclodecene and s-cis/s-trans-caprolactam as two
study cases, investigating the potential of their method in
combination with NMR spectroscopy of a macrocyclic
tetrapeptide as a third example. This resulted in an exhaustive
set of low-energy conformations of macrocyclic systems
generated automatically, reproducing the experimented
observed conformations, including s-cis/s-trans-isomers and,
finally, showing the potential application in modeling surface
loops of proteins.
Herein, we benchmark the Fourier-based algorithm using a

database of 208 macrocycle crystal structures and compare the
performances of Moloc with the commercial software Prime,
MOE, MD, MM, and four open-access packagesexper-

imental-torsion DG with additional “basic knowledge” and
with the minimization steps employing the Merck molecular
force field (MMFF94s43) or the universal force field (UFF44),
CCDC, and conformator. We systematically assess the
accuracy, structural diversity, and speed. Moreover, concepts
of exhaustiveness and sampling efficiency (SE) are introduced.
The aim of our work is to identify software capable of
producing diverse and accurate conformations for daily virtual
screening (i.e., docking). Moreover, because significant
conformational changes in total shape and volume guide the
bioavailability of certain macrocycles,45 we believe that the
application of this approach could efficiently identify generic
shapes of membrane-permeating conformations.
A summary of the different software and the theoretical

principles behind their functionality are presented in Table 1.

■ MATERIALS AND METHODS

Dataset. For a direct comparison of Moloc with the
commercial and free software, we used the dataset of 208
macrocycles of Sindhikara and co-workers,49 consisting of 130
crystal structures from the Cambridge crystallographic data-
set,50 a subset of 60 structures from the Protein Data Bank
(PDB51) selected by Watts and co-workers39 accounting for
diverse and challenging macrocyclic topologies (disulfide
bridges, cross-linking amide bonds, and polycyclic rings,
including cyclodextrins, polyglycines, cycloalkanes, and pepti-
dic macrocycles) and 18 crystals from the Biologically
Interesting Molecule Reference Dictionary (BIRD) dataset
chosen on the basis of quality (low-temperature factors and/or
resolution < 2.1 Å) and structural diversity. Further details
about the full dataset composition can be found in the
Supporting Information from Sindhikara and co-workers.49

Preparation of the Input Structures. Nonbiased starting
conformations were prepared by removing the initial crystallo-
graphic coordinates, the partial charges, and the explicit
hydrogens. Processed structures were converted to isomeric
SMILES, preserving the stereochemistry flags. The resulting
SMILES codes were employed as input for conformational
sampling by conformator, CCDC conformer generator, and
ETKDG alone or in combination with the minimization steps
employing the MMFF94s or UFF while for Moloc, a set of
random three-dimensional (3D) structures were generated
using Mol3d.

Software Tested and Parametrization. MOE, Prime,
MM, and MD. Macrocycle sampling description and initial
condition for Prime, MOE, MM, and MD can be found in the
Methods section of Sindhikara and co-workers while the

Table 1. Free (Green) and Commercial (Salmon) Software for the Conformation Generation of Macrocycles and Their
Working Principles

methodology description usage

Moloc macrocycle shapes are characterized by a selection of harmonics which occur in an approximate Fourier representation of the
atomic coordinates of the rings.42

free

Conformator incremental construction of conformers with torsional angle assignment and a new deterministic cluster algorithm.46 free
CCDC ring template libraries to describe ring geometries using based on the wealth of experimental data in CSD. free
ETKDG stochastic search method that utilizes DG together with knowledge derived from experimental crystal structures.47,48 free
MOE perturbation of an existing conformation along a MD’ trajectory using initial atomic velocities with kinetic energy focused on the

low-frequency vibrational modes and energy minimization.38
commercial

Prime ring splitting to create to two half rings that are sampled independently and recombined.49 commercial
MD Desmond from Schrödinger suite 2014-4 chosen as a baseline method (MaestroDesmond Interoperability Tools; Schrödinger:

New York, NY, 2014).
commercial

MM brief MD simulations followed by minimization and normal-mode search steps.39 commercial
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results of accuracy, diversity, and speed can be found in the
Supporting Information.49

Moloc. Moloc is one of the first molecular modeling
packages and has since been updated regularly in close
collaboration with drug designers and crystallographers of the
Roche biostructural community, encompassing numerous
functions, such as conformational sampling, generation of 3D
pharmacophores,52 similarity analysis, peptide and protein
modeling, modules for X-ray data handling, and ligand-based
drug design. The generic Fourier description of the shape of
the ring atoms is based on the generation of a series of
harmonics.42 Radial and axial deviations are then applied until
a generic shape is found. Once it is identified, the algorithm
starts to build a number of conformations that is proportional
to the ring size. Geometric deviations, such as bond length and
angles, are fixed by minimizing against the MAB force field.53

In order to launch a sampling job, the “Mcnf” module was run
in batch with the parameters “w0” and “c3” to initiate
randomization of input atomic 3D coordinates and preserve
the stereochemistry of both E/Z bonds and sp3 carbon,
respectively. The selection of unique conformations is based
on energetic (0.1 kcal/mol) and structural [0.1 Å root mean
square deviation (RMSD) for cross-rigid body superimposi-
tion] thresholds. The conformations were kept within an
energetic threshold of 10 kcal/mol. A conformational job can
be launched using either two-dimensional (2D) or 3D atomic
coordinates that are generated using Mol3d. During the
conformational sampling, inner symmetries and permutations
are enumerated. The number of generic shapes used as a start
guide for the generation of the conformers grows as the square
of N(ln N) where N represents the number of ring atoms.
Finally, for assessment, the flexibility of the software, energetic
threshold, and hydrogen bond term were activated for the
conformational job.

Conformator. Conformator is a conformer generator
focused on the enhancement of molecular torsion based on
the assessment of torsion angles from the rotatable bonds.
Conformator consists of a torsion driver enhanced by an
elaborate algorithm for the assignment of torsion angles to
rotatable bonds and a new clustering component that
efficiently compiles ensembles by taking advantage of lists of
partially presorted conformers. The clustering algorithm
minimizes the number of comparisons between pairs of
conformers that are required to effectively derive individual
RMSD thresholds for molecules and to compile the ensemble.
For this purpose, conformator features two conformer
generation modes, “fast” and “best”, where “best” and “fast”
focuses on the accuracy or speed of conformer search to
generate conformers with the lowest RMSD values against a
reference, respectively. Both modes attempt to ensure
chemically correct bond angles and lengths as well as the
planarity of aromatic rings and conjugated systems. After
conformer generation, conformator performs a local optimiza-
tion employing the macrocyclic optimization score which
includes several well-known components from common force
fields and some components specific to the optimization of
macrocycles.46 For optimal comparison of the software, we
selected the “best” feature for macrocycle conformational
sampling using the isomeric SMILES codes described above
and requesting one thousand conformers per entry.

CCDC Conformer Generator. Conformer generator from
CCDC is a knowledge-based method that uses data derived
from CSD libraries and heuristic rules. For instance, conformer
generator uses rotamer libraries to characterize preferred
rotatable bond geometries and ring template libraries to
describe ring geometries. Conformations are sampled based on
CSD-derived rotamer distributions and ring templates. A final
diverse set of conformers, clustered according to conformer
similarity, are returned. Each conformer is locally optimized in

Figure 1. Example of separation of a 21-membered macrocycle into three atomic categories for the calculation of the RMSDbackbone and
RMSDheavy atoms. Side chains, backbone, and heavy atoms are colored green, black, and blue, respectively.
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torsion space.48,54 For this work, the input structures described
previously were loaded into the CCDC conformer generator
through the CSD Python application programming interface
(API). Conformer generator runs a minimization using the
Tripos force field prior to conformational sampling, for which
one thousand conformers were requested for each entry.
ETKDG Alone and with Minimization. RDKIT is an open-

source toolkit for cheminformatics, comprising a wide variety
of analysis and synthesis tools including similarity search,
fingerprint calculations, 2D and 3D descriptor calculation, and
conformer generation (https://www.rdkit.org/). Currently,
RDKIT is able to generate conformers using DG and an
improved new method called ETKDG. The ETKDG algorithm
is based on DG including experimental torsion angle termed
experimental-torsion DG (ETDG) and “basic knowledge”
(ETKDG) of molecular terms, including linear triple bonds
and planar aromatic rings. The ETKDG method has been
demonstrated to be more accurate in reproducing crystal
structure conformations than DG alone. In addition, this
algorithm has been recently optimized by the implementation
of knowledge-based terms, preference for the trans-amide
configuration, and the control of eccentricity from 2D elliptical
geometry.48 Thereby, we decided to explore the ETKDG
approach for macrocycle sampling. Because ETKDG con-
formational sampling lacks any step of minimization, we ran
minimization steps after the ETKDG conformational job using
MMFF94s or UFF over 400 iterations per conformer in order
to explore the minimization effect on macrocycle conforma-
tional sampling. We used the Python API of RDKIT to
generate one thousand conformers per entry from the input
structures.
Comparison Parameters. Exhaustiveness. Not all the

software compared exhaustively sampled conformational space
but stopped before because some of them were not able to
generate conformations for some of the input structures. For
instance, no sampling was performed in the case conformator if
the assignment of torsion angles to rotatable bonds failed for a
specific structure because this is the flexibility determination
method employed using such a software. Thus, we defined the
term exhaustiveness as follows

Exhaustiveness
num. entries sampled

total entries
=

Accordingly, exhaustiveness values equal to 1 indicate full
sampling of all entries in the dataset. Correspondingly,
decreased exhaustiveness values indicate fewer entries sampled.
Accuracy. Based on previous benchmarks of conformational

sampling,38,39,46,49,55,56 we have used RMSD to quantify the
accuracy of the conformers in reproducing the reported
bioactive crystallographic coordinates.
The lowest RMSD values between each conformational

ensemble to the reference structure were calculated. Notably,
we have quantified the ring atom accuracy (RMSDbackbone) in a
separate manner from heavy atom accuracy (RMSDheavy atoms),
as indicated in Figure 1. This is based on the recently described
classification of contacts between the macrocycle and its target:
side chain, peripheral functional groups, and backbone atoms
to the receptor.24 Typically, a relative RMSD cutoff below 2.0
Å is considered an acceptable accuracy.57 However, because
macrocycles are more complex and larger than small
molecules, we considered an RMSDheavy atoms value up to 2.5
Å as reasonably accurate and RMSDheavy atoms values below 1.0
Å were treated as highly accurate. Finally, we used the

cumulative function distribution (CDF) to evaluate the
performance of the algorithm in sampling a specific percentage
of the dataset below two RMSDbackbone threshold values 0.5 Å
(highly accurate) and 1.0 Å (accurate).

Diversity and SE. In order to systematically assess the
structural diversity of each conformational ensemble, we used
torsional fingerprints (TFs) in a similar manner to Sindhikara
and co-workers.49 The unique conformers were identified
using a torsional scan on multiple conformations of a truncated
version of the molecule comprising only the macrocycle
backbone. Correspondence between related molecules was
assessed by atom mapping from a maximum common
substructure analysis. Then, a comparison of the fingerprints
between the conformers was calculated using the torsional
fingerprint deviation (TFD).58 Conformers with unique
fingerprints were identified and kept if TFD was nonzero. As
a further descriptor for assessment of shape diversity, we used
the span in the radius of gyration (RoG), which is defined as
the difference between the highest and the lowest RoG
conformers.59 Aiming to establish a relation among the
exhaustiveness and the capability of the software to generate
unique conformers, we introduced the SE as

SE exhaustiveness
unique torsional fingerprints

num. conformers
=

i
k
jjjj

y
{
zzzz

SE values equal to 1 mean that each conformer represents a
unique conformation within taking in account the number of
entries sampled, while values close to 0 indicate high
redundancy among conformers and/or lower exhaustiveness.

Speed. Time efficiency for each software was quantified by
calculating the difference between the start and end time for
conformer generation per entry. Batch scripts were generated
for calculation of the time consumption for Moloc and
conformator. Because of the usage of Python API for RDKIT
and CCDC conformer generator, a tailored Python script was
implemented in order to calculate the time consumption for
CCDC conformer generator, ETKDG, and its further
minimizations steps (UFF or MMFF94s). Moloc, conformator,
and ETKDG alone or with minimization and CCDC
conformer generator were run in a machine utilizing a 4-core
Intel Xeon 3500 CPU-processor, 12 GB RAM, and 25 GB of
data storage in a 1 TB HDD. The speed of MOE, MM, Prime,
and MD was retrieved from the Supporting Information of the
Prime benchmark publication.49

Statistical Analysis. Data representation was carried out
using the Python library matplotlib 3.1.1.48 Statistical
comparison of data was computed using a nonparametric
Krustal−Wallis H-test among study groups using the stats
module of SciPy.60 All the p-values of the pairwise comparisons
among the software can be found in the Supporting
Information.

■ RESULTS
Exhaustiveness. According to our observations from

conformational sampling of macrocycles employing different
software, some methods were incapable of sampling all entries
into the database. Conformator resulted in the least exhaustive
sampling (190 out of 208 entries). Although the ETKDG
algorithm was able to generate conformers for all input
structures, the subsequent minimization step using UFF or
MMFF94s force fields resulted in less exhaustiveness than the
ETKDG algorithm alone (197 out of 208). All the remaining
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software tested (Moloc, CCDC conformer generator, and
ETKDG) or previously reported (Prime, MOE, MM, and
MD) was able to generate conformers for all input structures
(Table 3).
Accuracy. Figure 2 indicates that all the software can

generate conformers with reasonable accuracy (RMSDheavy atoms

< 2.5 Å) and MM, MOE, and Prime generated conformers
with median RMSDheavy atoms values below a threshold of 1.0 Å
with no statistical difference among the methods (Table S1).
Among the six other software tested in this work, ETKDG
algorithm plus MMFF94s minimization and Moloc were able
to generate conformers with the lowest median RMSDheavy atoms

value. However, in contrast to ETKDG plus MMFF94s
minimization (0.9471), Moloc retained superior exhaustive-
ness (1), indicating that it is able to generate reasonably
accurate conformers across a complex and diverse dataset of
macrocycle molecules. No statistical difference was found
among all open-source methods, including CCDC conformer

generator. Finally, MD showed a median RMSDheavy atoms value
slightly higher for the highly accurate threshold, and statistical
difference versus all the remaining private and open-access
methods. In RMSDbackbone and CDF analysis, Figure 2A shows
that Prime, MM, MOE, and CCDC conformer generator
produced the highest accurate conformers (RMSDbackbone < 0.5
Å) with no statistical difference among these four methods
(Table S2), returning a fraction of entries sampled for each
method of 0.63, 0.67, 0.58, and 0.46, respectively (Figure 2B
and Table 2). In addition, our data indicate that all the
remaining methods generated conformers below 1.0 Å. No
statistical difference was observed among MD, Moloc, and
ETKDG with MMFF94s, whose fraction of sampled entries
was, respectively, 0.79 for the first two and 0.78.
Such results indicate similar accuracy among these methods

to reproduce the reference macrocycle backbone structure.
Similarly, no statistical difference was found between Moloc
and MMFF94s and both produced a similar fraction of entries

Figure 2. Crystal structure accuracies for each method displayed as (A) RMSDheavy atoms and (B) RMSDbackbone, respectively. (C) Normalized
cumulative distribution function (CDFnorm). The accuracy threshold values, median, and outliers are presented as gray dots, red lines, and black-
contoured circles, respectively.
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sampled above the threshold (Moloc: 0.77, MMFF94s: 0.79).
Finally, comparison between conformator, ETKDG, and
ETKDG plus UFF minimization did not show any statistical
differences. A statistical difference was found when comparing
conformator, ETKDG, and ETKDG plus UFF minimization
versus Moloc or ETKDG plus MMFF94s minimization with a
fraction of entries sampled being 0.68 for conformator, 0.72 for
ETKDG, and 0.70 for ETKDG plus UFF minimization steps.
However, among these last groups of methods, ETKDG is the
most exhaustive followed by ETKDG plus UFF minimization
and conformator.
Diversity and SE. Although all software was challenged

with a one thousand conformers per entry request, not all of
them succeeded in accomplishing the task, either retrieving
fewer conformers per entry or unable to sample some, resulting
in poor exhaustiveness. Among the methods studied, only MD
and ETKDG succeeded in generating all conformers requested.
Nevertheless, we compared the TFs of the conformers for each
method in order to assess the number of unique conformers
generated and, furthermore, we employed the exhaustiveness
value to calculate the SE of each software. We identified Moloc
and ETKDG followed by ETKDG plus minimization with
either MMFF94s or UFF as the most efficient methods to
perform conformational search of macrocycles (Table 3). On
the contrary, although MD showed an exhaustiveness value of
1, it is also a highly redundant method generating only a
median of 59 unique conformers across 1000 conformers
retrieved, obtaining the lowest SE value (0.059) among all
reported methods. In a similar fashion to MD, MM showed a
low SE. Despite being a highly exhaustive methodology, the

relation between the number of conformers generated and
their uniqueness results in an SE of 0.333. Thus, Moloc and
ETKDG are three times more efficient in macrocycle
conformation sampling than MD. However, Prime (exhaustive-
ness: 1) was able to produce a median of 707 unique
conformers for a median of 932 conformers, resulting in an SE
of 0.7586. A similar behavior was observed for MOE, which
obtained exhaustiveness equal to 1 and an SE of 0.6316.
CCDC conformer generator showed an SE of 0.7500 with the
lowest number of unique conformers generated (Figure 3A)
across all the software studied.
Figure 4A compares the results obtained from the span of

RoG as a parameter to study the 3D conformational diversity
of the conformers moving from a globular to a flat-shaped
conformation (Figure 4B). Our data indicate that ETKDG
algorithm plus MMFF94s minimization (1.13 Å) achieved the
highest span in RoG with no statistical difference with Prime
(1.02 Å) and ETKDG with UFF minimization (1.08 Å) (Table
S4). On the other hand, the conformations produced by Moloc
(0.86 Å) were proven to be statistically similar to MM (0.93
Å), MOE (0.74 Å), MD (0.85 Å), conformator (0.87 Å), and
ETKDG alone without minimization (0.82 Å). Finally, with a
span in RoG of 0.15 Å, the conformers produced by CCDC
conformer generator were identified as having the lowest
diversity among all the software tested.

Speed. Surprisingly, the speed of macrocyclic conformation
generation differed dramatically between the software ranging
from seconds to more than a day. This will have consequences
for usage in virtual screening of large macrocycle libraries.
Because sampling is carried out under similar conditions,
comparisons allow analysis of the time required to accomplish
the conformational task. The overall results of the computa-
tional speed are shown in Figure 5. With 2.6 s per entry,
CCDC conformer generator outperformed the other software
in time needed to finish a conformational job. On the other
hand, MD was the slowest followed by conformator, which
required 17.9 h. Prime, Moloc, and MOE produced
conformations with a similar speed within 1 h with
nonsignificant differences between MOE and Moloc (Table
S5). More interestingly, we observed a statistical difference
between ETKDG alone and UFF/MMFF94s resulting in a
median of 35.1 s, 1.3 min, and 17.6 per entry.

Study Cases. In addition to the benchmark results
described above, we report cases of effective accuracy in
predicting the crystallographic coordinates of macrocycles
using Moloc both in terms of lowest RMSDbackbone/
RMSDheavy atoms and in relation with the ring size. For
convenience, we kept the same categories as previously
reported,49 binning the database in three groups containing
10−19, 20−29, and over 30 ring atoms, respectively. We
referred to Prime as a comparative example among other
commercial software.

10−19-Ring-Sized Macrocycles. 10−19-ring-sized macro-
cycles represent a challenge in the context of organic synthesis
because of the high energetic strain. Similarly, medium-sized
rings suffer from increased ring strain over their 5- and 6-
membered or macrocyclic congeners.62,63 This can be
quantitatively captured in deviations from ideal antiperiplanar
conformations, transannular strain, and Pitzer strain compo-
nents. Out of the total 208, 117 macrocycles belong to this
class, including 30 from PDB, 79 from CSD, and 8 from BIRD
datasets. According to our findings, Moloc predicted the
coordinates of ACOPUF (Figure 6A), a 12-ring-sized macro-

Table 2. Fraction of Entries Sampled below the Two RMSD
Backbone Thresholds Chosen as Highly Accurate (<0.5 Å)
and Accurate (<1.0 Å)

method <0.5 Å <1.0 Å

Prime 0.63 0.90
MM 0.67 0.90
MOE 0.58 0.80
MD 0.40 0.79
Moloc 0.31 0.79
conformator 0.26 0.68
CCDC 0.46 0.65
ETKDG 0.19 0.72
MMFF94s 0.27 0.78
UFF 0.17 0.70

Table 3. Summary Table of the Exhaustiveness and SE,
Number of Conformers, and TFs

method exhaustiveness

unique
TF

(median)

number of
conformers
(median) SE

Prime 208/208 = 1 707 932 0.7586
MM 208/208 = 1 100 300 0.3333
MOE 208/208 = 1 48 76 0.6316
MD 208/208 = 1 59 1000 0.0590
Moloc 208/208 = 1 67 67 1
conformator 190/208 = 0.91 246 338 0.6648
ETKDG 208/208 = 1 1000 1000 1
MMFF94s 197/208 = 0.95 998 998 0.9471
UFF 197/208 = 0.95 535 535 0.9471
CCDC 208/208 = 1 6 8 0.7500
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cycle from the CSD database, with an RMSDbackbone of 0.07
Åslightly better than Prime (0.12 Å)and with less
conformations (requiring only 93 for the former against 871
for the latter). In a similar fashion, Moloc predicted the
bioactive conformation of cytochalasin D (Figure 6C), an 11-
membered ring macrocycle from the PDB database, with a
high accuracy (0.12 Å) employing only 9 conformers, whereas
Prime (0.15 Å) employed 185. BANROX (Figure 6B) and
DOZWUL (Figure 6D) were two CSD macrocycles of 13- and

14-atom backbone, respectively, with an RMSDheavy atoms of
0.09 and 0.10 Å. These data indicate that this software is highly
accurate for medium-sized rings. In contrast to Prime, Moloc
also proved to be superior in terms of the number of
conformations, producing only 33 and 93 conformers rather
than 95 for BANROX and 388 for DOZWUL, and accuracy
with RMSDheavy atoms values of 0.44 and 0.41 Å for Prime.

20−29-Ring-Sized Macrocycles. This category includes 67
X-ray structures, 27 from PDB, 34 from CSD, and 6 from

Figure 3. Panel showing (A) box plot of number of the conformers and (B) TFs for each method. Graphical description of median and outliers is
the same as in Figure 2.

Figure 4. (A) Box plot of span RoG for each method and (B) example of a cyclic octapeptide61 in its globular (lowest RoG) and flat-like
conformations (highest RoG) with intramolecular hydrogen bonds predicted with Moloc (red dotted lines).
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BIRD database. On the one hand, Moloc reproduced 7 entries
with high accuracy (<0.5 Å) and 38 with accuracy <1.0 Å, with
the best being DEMJAG10 (Figure 7A) and kabiramide C
(Figure 7B), two macrocycles of 22 and 25 ring size from the
CSD and PDB dataset, whose closest coordinates to the
bioactive molecule were 0.13 and 0.17 Å RMSDbackbone,
respectively. Despite producing 789 and 172 conformations,
Moloc remained superior to Prime, for which the closest
coordinates for the two referred macrocycles were 0.82 and
0.35 Å, respectively (1000 conformations per entry). On the
other hand, it is also interesting to assess the robustness of
Moloc in generating accurate conformations of the heavy
atoms. In that respect, only 11 crystal structures resulted in an
interval of RMSDheavy atoms < 1.0 Åmostly belonging to the
CSD (10) with only one from the PDB dataset (Figure 7C).
Among these macrocycles, it is noteworthy to mention
WURVEL (Figure 7D), a 27-membered ring entry from the
CSD database, whose closest atomic coordinates (1.0 Å)
indeed were not dissimilar from those predicted using Prime

(1.06 Å); nevertheless, Moloc produced 163 conformations
while Prime produced 983.

>30-Ring-Sized Macrocycles. Highly flexible macrocycles
represent a challenge for every conformational algorithm, given
the large number of rotatable bonds and possible values of
torsional angles around the ring. Another problem is the
number of replacements that attach to the ring and their
degree of branching. In this subset, a total of 24 crystalline
structures can be found and, specifically, 5 are cross-linked and
another 5 are cyclopeptides that were originally included by
the Prime developers in order to make the benchmark more
challenging. Five macrocycles, all belonging to the CSD
database, appeared in the list predicted with RMSDbackbone <
1.0 Å. Among them, Moloc predicted the crystallographic
coordinates of OCERET (Figure 8A), a 35-atom backbone
macrocycle, with an RMSDbackbone of 1.04 Å with 168
conformations. On comparison, Prime performed slightly
better with 0.83 Å but produced 957 conformations. Only
SUMMOC (Figure 8B) and LENPEA (Figure 8C) were

Figure 5. Box plot showing the distribution of the speed ranges for each entry. The reader is referred to Figure 2 for the legend. Three significant
threshold values were added to visualize the differences in the performance level in completing a conformation work, i.e., 1 min, 1 h, and 1 d.

Figure 6. Examples of macrocycles having a flexibility of 10−19-atom backbone and indication by their dataset identifier (A−D). The atoms of the
crystallographic structure to which the lower RMSD conformer has been aligned are colored in gray, whereas those of the conformer predicted
using Moloc are in green.
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predicted below the threshold of 1.0 Å with values of
RMSDheavy atoms of 0.74 and 0.92 Å, respectively. In addition
to the advantage of Moloc being able to handle large-sized
macrocycles, we noticed a limitation of Moloc in the
complexity of the functional groupsexpressed in terms of
degree of branching. An example of this limit is shown in
Figure 8D. The measured RMSDheavy atoms of (−)-rhizopodin
(PDB: 2VYP), a potent actin-binding anticancer molecule,64

decreases from 6.444 to 1.49 Å upon pruning the lateral
substituents. This evidence can be explained by the ability of

Prime to randomly cleave the macrocycle and reconnect the
two generated semiloops.

Intramolecular Interactions. The ideal software is
required to predict intramolecular interactions as it is generally
appreciated that they play a pivotal role in defining both overall
shape of a molecule65 and the stabilization of the functional
groups by masking or exposing them to the external
environment.66 This change regulates the passive membrane
permeability of macrocycles which adopt a globular shape
while passing through the lipidic environment of the

Figure 7. Examples of macrocycles having a flexibility of 20−29-atom backbone and their dataset identifier (A−D). The atoms of the
crystallographic structure to which the lower RMSD conformer has been aligned are colored in gray, whereas those of the conformer predicted
using Moloc are in green.

Figure 8. Examples of macrocycles indicated by their dataset identifier (A−D). The atoms of the crystallographic structure to which the lower
RMSD conformer has been aligned are colored in gray, whereas those of the conformer predicted using Moloc are in green.
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membrane and adopt a stretched conformation in the cytosol/
extracellular environment.45 Knowledge of the chameleonic
properties of macrocycles has recently expanded far beyond
the historical case of ciclosporin A.67,68

As exemplified by the crystal structures of cyclosporin A in
chloroform (CSD ID P212121) and in the protein bound form
(PDB ID: 2X2C69), the conformational change is followed by
the formation of new intramolecular hydrogen bonds,
underlying their role in the dynamics of binding. As can be
seen in Figure 9A, the crystal structure of CUQYUI, the 24-
atoms backbone of the non-cross-linked cyclopeptide has 4
internal hydrogen bonds (between N15 and O2, N16 and O2,
and O6 and N11 as well as one transannular interaction
between N12 and O10).
Moloc successfully predicted three of these internal

hydrogen bonds with an RMSDheavy atoms of 1.365 Å and,
most notably, matched the lowest global minimum among the
38 local minima, with a potential energy of 5.33 kcal/mol.
3WNF-ACE (Figure 9B) is a 20-atom backbone hexacyclic
peptide whose binding affinity for HIV-1 integrase was
measured in the low millimolar range by surface plasmon
resonance and HSQC-NMR while the binding mode with the
target was confirmed by X-ray crystallography.70 Visual
inspection of the cocrystal structure revealed the presence of
two internal hydrogen bonds between N35 and O13, and N10

and O38 and two transannular interactions, between O34 and
N27, and O2 and N10. Moloc was able to predict three of
these four interactions with reasonable accuracy
(RMSDheavy atom = 1.945 Å) and a local minimum with a
potential energy of 11.13 kcal/mol. YIWHOB01 (Figure 9C)
is a 30-atom backbone non-cross-linked artificial macrocycle
used as a charge transfer system in the field of supramolecular
chemistry.71 Visual inspection of the CSD structure revealed
the presence of a π-stacking interaction between the pyridine
and phenyl rings. Again, Moloc predicted the conformation
with the bipyridinium units being parallel to the phenyl ring
with an RMSDheavy atom of 1.642 Å and a potential energy of
9.846 kcal/mol, despite minor deviations at the dioxoaryl
moiety.

User-Defined Energy Threshold for Improved Accu-
racy and Diversity. In a standard Moloc conformational job,
the structures are only kept if their energy is less than 10 kcal/
mol above the lowest-energy conformation. Such an energetic
cutoff is typical for many other conformational software.
However, Prime sets the cutoff to 100 kcal/mol. Thus, we have
quantified the diversity and the accuracy at 100 kcal/mol and
chose 4MNW and 4KEL, two cyclopeptides, cross-linked
macrocycles with 42-atom backbone. Based on our data (Table
S6), no improvement over the diversity was observed
independently from the chosen threshold because the number

Figure 9. Panel showing the intramolecular interactions predicted using Moloc (green sticks) for (A) CUQYUI, (B) 3WNF-ACE, and (C)
YIWHOB0 alongside with the RMSDheavy atoms calculated for the hydrogen bond weight applied in the MAB force field. Hydrogen bonds, π-
stacking, and aromatic hydrogen bonds are, respectively, colored as red, blue, and orange dotted lines while the crystal structure atoms are
represented as gray sticks.
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of unique fingerprints for 4MNW (192) and 4KEL (290)
remained unchanged. However, when the energy threshold was
increased to 100 kcal/mol, Moloc produced new conformers
with expanded globularity because the span RoG increased
from 1.179 to 1.660 Å for 4KEL and from 1.041 to 1.704 Å for
4MNW. Additionally, we observed a marginal improvement in
both the ring and the heavy atom structure accuracies: −0.42
Å/−0.23 Å (4MNW) and −0.22 Å/−0.08 Å (4KEL) at 20
kcal/mol and −0.83 Å/−0.76 Å (4MNW) and −0.25 Å/−0.39
Å (4KEL) at 100 kcal/mol (Figure S2A). As the number of
conformations for both cases exponentially increased (Figure
S2B), the global minimum energy of the most accurate
conformer of 4MNW displays an increase in the potential
energy by 6 and 15 kcal/mol, whereas for 4KEL, the equivalent
values were 8 and 5 kcal/mol (Figure S2C,D).

■ DISCUSSION
Computational screening of large virtual macrocycle libraries is
an effective way to prioritize compounds for expensive and
time-consuming synthesis in the laboratory. We have recently
described convergent and short syntheses of macrocycles using
MCR. One synthesis consisted of a short two-step assembly of
macrocycles from cyclic anhydrides, diamines, oxo components
(aldehydes and ketones), and isocyanides. Based on
commercial availability of the building blocks, a very large
chemical space is spanned: 20 (cyclic anhydrides) × 20
(diamines) × 1000 oxo components × 1000 isocyanides = 400
million macrocycles. Computational generation of conformers
for such a large chemical space requires fast and optimized
software. Therefore, in this manuscript, we have benchmarked
Moloc versus available commercial and freeware for their
performance as defined by accuracy, speed, exhaustiveness,
diversity, and SE.
Our results confirmed that Prime, MM, and MOE possess

higher accuracy in reproducing both the heavy atoms and ring
coordinates of the crystallographic macrocycle references.
According to our results, conformational sampling with
ETKDG algorithm could be improved by subsequent
minimizations steps with MMFF94s but not UFF. This finding
could be related to the existence of out-of-plane bending and
dihedral torsion parameters to planarize certain types of
delocalized trigonal N atoms applied by the MMFF94s force
field, thus providing a better match to the reference crystal
structures. However, UFF contains basic parameters for all
types of atoms on hybridization and connectivity and thereby
is able to parameterize the restricted patterns of dihedral angles
and rotatable bonds, both present in macrocycles.44 Never-
theless, these data lead us to suggest that the implementation
of minimization steps employing specific force fields after
conformational sampling of macrocycles would lead to
improvements of sampling. For instance, the OPLS-2005 in
Prime or MAB force field in Moloc represent the most accurate
commercial and open software, respectively. Such an evidence
could allow further analysis to study the effect of different force
fields to improve macrocycle sampling. On the other hand, we
show that the use of DG methods as ETKDG could be
improved to generate conformers closely related to the crystal
structures. In this sense, a modification to the ETKDG
algorithm for macrocycle sampling has been recently published
by the developer team of RDKIT and will be available in the
upcoming RDKIT release 2020.03.47 Along with a restriction
in search space for macrocycles, the new implementations in
ETKDG will include additional torsional-angle potentials to

describe small aliphatic rings and adapt the previously
developed potentials for acyclic bonds to facilitate the sampling
of macrocycles. Nevertheless, because of the novelty of this
algorithm, more testing is needed to evaluate its capability in
diverse and challenging macrocycle datasets, such as those
presented in this work.
MD was performed only under solvated conditions49 with

no major improvement in generating high-quality conformers
according to the SE value. However, other reported MD-based
approaches using different simulation conditions have reported
the importance of solvation for the generation of bioactive
conformations of macrocycles.72 An enhanced sampling
method has been reported using MD simulations that resulted
in a reliable method to reproduce the experimentally
determined structure of three macrocycles.73 Nevertheless,
the major drawback for MD-based methods relies on its low
scalability of large and diverse macrocycle datasets. As a result,
such methods can be an option when working with a limited
number of macrocyclic structures but not for virtual screening
approaches such as Prime, MM, Moloc, ETKDG, or other
software reported here.
Although CCDC conformer generator was one of the most

efficient software for conformer generation in terms of speed
and exhaustiveness, it suffers a low rate of conformational
sampling exploration as only one single conformer was
generated for 37 structures. The most noticeable exception
relies on 76 cases where the RMSDbackbone values were
unrealistically lower than 0.1 Å and hence equal to the
crystallographic reference. This behavior could be explained by
a bias in the sampling of entries from CSD: the CCDC
conformer generator assigns the crystallography coordinates
prior to conformation sampling. The CCDC conformer
generator uses bond lengths and valence angles taken from
CCDC Mogul and one of its best strengths consists in the use
of dynamic rotamer libraries that are automatically updated
with new data inside of CCDC.74,75 However, although CCDC
conformer generator has implemented strategies to deal with
conformer generation of rings as set preclustered templates for
isolated, fused, spiro-linked, and bridged ring systems,75 there
is no specific method regarding macrocyclic conformers yet
described. For instance, in rings for which no template is
obtainable from Mogul data, the templates are generated on
the fly using rotamer distributions for cyclic bonds.74,75 If ring
generation fails and no template structure can be generated,
the ring conformation from the 3D input structure is used.
According to our results, the conformational sampling with
CCDC conformer generator for the CSD entries, bond lengths,
and valence angles were taken from CCDC Mogul retrieving
conformers with conformations close to the crystal structures.
Thus, for the macrocycles not present in CSD database, the
conformers were generated either from an on-the-fly template
assignment or using the input coordinates. This could explain
the lowest number of conformers generated per entry and the
reduced number of unique TFs. Furthermore, the span in RoG
values from CCDC conformer generator suggests a tendency
to retain conformations with higher compaction in comparison
with any other methods for macrocycle conformational
sampling described here, thus omitting possible extended
states. Taking these results together, the restricted usage of
CCDC conformer generator within the macrocycle conforma-
tional sampling could lead to poor results in terms of
conformational space exploration or even a lack of conformers,
suggesting that this tool is useful only to generate conformers
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for small molecules or for the assignment of crystallographic
coordinates to macrocycle structures.
Overall, our analysis indicated conformator as the lowest

efficiency conformational sampling software tested in this
work. This tool showed one of the lowest exhaustiveness values
among the studied methods, just below that of MD. The
accuracy of conformator reproducing the macrocycle backbone
is also the lowest and is also one of the slowest conformational
sampling methodsgenerating structures with the lowest span
in RoG of all methods tested. Nevertheless, the authors of
conformator have tested this algorithm employing 49 different
macrocyclic structures.46 These evidences suggest that the use
of conformator could be restricted to small-to-medium
macrocycles. Further analysis and testing are needed to assess
the feasibility of conformator in generating conformers for a
dataset containing large and complex structures. Furthermore,
this software produces conformations that differ from each
other by rotation of one single bond at a time which may limit
its use to macrocycle with few rotatable bonds.
As for Moloc, we are indeed aware that reproducing the

accuracy of all heavy atoms, as our RMSDheavy atoms data
demonstrate, represents its main limitation. However, we
would like to emphasize that one of the main challenges in the
conformational analysis of macrocycles is the accuracy of ring
atoms. Based on our RMSDbackbone data, Moloc has a similar
accuracy to the negative control (MD) and MD, Moloc, and
ETKDG alone or in combination with MMFF94s, implying
that it can be used as a valid alternative to these two
methodologies to produce conformations with a similar
accuracy. Most importantly, Moloc retains good exhaustive-
ness, SE, and economy in terms of least numbers of
conformers to generate high quality conformers without
requiring 1000 or more conformers for the exhaustive
exploration of the chemical space, saving computational
resources and avoiding redundancy in the conformers
generated, suggesting this software as an acceptable alternative
to Prime, MM, and MD for sampling. One major drawback of
Moloc is that it relies on the number of symmetry elements
within the macrocycle structure needed for the sampling. This
is particularly evident in the case of POGLIH, a macrocycle
from the CSD, for which 5 days were necessary to complete
the conformational sampling. Indeed, the enumeration of
topological symmetries is intended to avoid the counting of
identical conformations that vary only by altered atom-
numbering (e.g., 180° rotation of a phenyl ring in the
structure). Such enumeration takes an (exponentially)
increasing time in accordance with the number of symmetry
elements. For POGLIH, all 8 phenyl rings can be rotated, and
methyl groups can be exchanged, as well as oxygen in the
sulfates. In addition, the whole structure has a twofold
symmetry. All in all, there are over 32,000 symmetry elements
present, meaning that the same conformation may occur
32,000 timesindicating that a threshold or restricted search
of symmetries and their calculation could improve the speed of
sampling. Another limitation of Moloc consists in sampling
macrocycles with complex side chains: this has been seen in
rhizopodin (PDB: 2VYP), a potent actin-binding anticancer
agent.64 Aiming to understand the relation between the
accuracy and the side-chain complexity, we first trimmed the
two 15-atom-branched symmetrical side chains of rhizopodin
and subsequently sampled again the macrocycle (Figure S1).
As a result, we observed an improvement of heavy atom

accuracy (from 6.27 to 2.17 Å) and an increased number of
conformers (increasing from 62 to 205).
Nevertheless, several parameters allow the user a full control

of the output ensembles, making Moloc a flexible piece of
software for the molecular modeling of macrocycles. Our data
indicate that the number of ensembles can be interactively
controlled by applying either by energy thresholds (parameter
“e”) or hydrogen bound weight (parameter “h”) term in the
batch mode, allowing the enumeration of globular or flat
conformations, the identification of intramolecular hydrogen
bonds, and potentially predicting the most accurate ones in
nonpolar environments. Taken altogether, these applications of
Moloc indeed represent a “nice-to-have” tool in the molecular
modeling toolkit of permeable macrocycles. Not lastly, the user
can decide whether to apply a final energy minimization after
conformational sampling followed by the addition of hydro-
gens to heteroatoms by invoking the parameter “q1”. As a
result, Moloc returns all the energetic components calculated
by MAB per conformer produced, bonds, valence angles,
torsions, pyramidalities, 1−4 repulsion, van der Waals
interactions, hydrogen bonds, and polar repulsion. To our
knowledge, recent algorithms were published with already
built-in protocols including the maximum ensemble size,
RMSD or energy thresholds, and further constrains such as
NMR data, enforcement of the chirality, geometry check
before sampling, and application of a filter to retain the
conformers according to a certain R value of the crystal
structures.38,46,49,76 MM presents indeed the advantage of
tuning several parameters such as electrostatic treatment and
possibility to choose two different force fields (OPLS-2005 or
MMFF94s).39 In the case of open-access software, such as
ETKDG, recently, new improvements were released in order
to favor certain interactions or orientation angles.48 Addition-
ally, we would like to point out that CCDC conformer
generator as well as ETKDG and conformator are knowledge-
based systems with pre-existing rotational libraries of small-
medium rings. This implies that if a test set entry is derived
from the CSD, it will have prior information and make use of
these coordinates. Nevertheless, CSD entries were retained in
knowledge-based systems.
Finally, a possible strategy to improve the accuracy of

complex macrocycles could be the implementation of further
shape constrains accounting for the crystallographic packing
forcesbecause most of the macrocyclic crystal structures are
flattened in a high-energy level conformation.
Additional improvement of Moloc should also consider the

flexibility of the complex side chains because the current
version of the algorithm starts the identification of the first
generic shape from a polar coordinate of a circle with an
acceptable degree of accuracy and time.

■ CONCLUSIONS
In this work, we have benchmarked the shape-guided
algorithm using a dataset of 208 macrocycles from Prime
publication, carefully selected on the basis of structural
complexity (e.g., ring size, cyclopeptide/aliphatic, cross-link-
ings) and we have quantified accuracy, diversity, speed,
exhaustiveness, and SE with four conformational commercial
(Prime, MM, MOE, and MD) and five open-access (ETKDG,
MMFF94s, UFF, CCDC, and conformator) software packages.
A Python script to streamline the whole data collection of
these parameters has been written ad hoc. The results of our
benchmark are summarized in Table 4. Although Prime, MM,
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MOE, and MD remained the most accurate software tested in
this paper in reproducing macrocycle heavy atoms, Moloc
retained the same exhaustiveness. However, Moloc stood out
for the highest SE in producing an acceptable number of
conformations per entry and three-quarters of the database
were processed with high accuracy (RMSDbackbone < 1.0 Å).
Interactive control of the hydrogen bond terms allows the
enumeration of globular and flat conformers and prediction of
intramolecular interaction in a nonpolar solvent. However, the
structural accuracy of Moloc is hampered by long-branched
side chains. In that respect, side chain pruning in the batch
mode with “Mdfy”, a built-in module within Moloc, and
subsequent reattachment to the ring could be an option for
future improvement. Surprisingly, minimization with UFF and
MMFF94s managed to produce macrocycles with the most
diverse shapes in terms of RoG, suggesting these types of
software as a valid free alternative for the prediction of the
most likely shape that the macrocycles can adopt in their bulk
environment, for example, the cellular membrane or water.
Follow-up studies could include modifications to ETKDG
algorithm or the use of force field minimization in order to
predict the X-ray structure. For instance, the evaluation of
ETDKG conformational sampling was combined with OPLS-
2005 and/or MAB as minimization methods.
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RMSDbackbone (Å) 0.396 0.383 0.417 0.562 0.652 0.801 0.743 0.668 0.766 0.476
number of conformations 972 300 76 1000 67 338 1000 998 535 8
TF 707 100 48 59 67 338 1000 998 535 8
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SE 0.76 0.33 0.63 0.06 1.00 0.66 1.00 0.95 0.95 0.75
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