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ABSTRACT

Objective: The study sought to explore the use of deep learning techniques to measure the semantic related-

ness between Unified Medical Language System (UMLS) concepts.

Materials and Methods: Concept sentence embeddings were generated for UMLS concepts by applying the

word embedding models BioWordVec and various flavors of BERT to concept sentences formed by concatenat-

ing UMLS terms. Graph embeddings were generated by the graph convolutional networks and 4 knowledge

graph embedding models, using graphs built from UMLS hierarchical relations. Semantic relatedness was mea-

sured by the cosine between the concepts’ embedding vectors. Performance was compared with 2 traditional

path-based (shortest path and Leacock-Chodorow) measurements and the publicly available concept embed-

dings, cui2vec, generated from large biomedical corpora. The concept sentence embeddings were also evalu-

ated on a word sense disambiguation (WSD) task. Reference standards used included the semantic relatedness

and semantic similarity datasets from the University of Minnesota, concept pairs generated from the Standard-

ized MedDRA Queries and the MeSH (Medical Subject Headings) WSD corpus.

Results: Sentence embeddings generated by BioWordVec outperformed all other methods used individually in

semantic relatedness measurements. Graph convolutional network graph embedding uniformly outperformed

path-based measurements and was better than some word embeddings for the Standardized MedDRA Queries

dataset. When used together, combined word and graph embedding achieved the best performance in all data-

sets. For WSD, the enhanced versions of BERT outperformed BioWordVec.

Conclusions: Word and graph embedding techniques can be used to harness terms and relations in the UMLS

to measure semantic relatedness between concepts. Concept sentence embedding outperforms path-based

measurements and cui2vec, and can be further enhanced by combining with graph embedding.
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INTRODUCTION

Semantic relatedness refers to the notion of whether 2 concepts are

closely related in meaning. The concepts do not need to be the same

type of concepts (ie, belong to the same semantic type) to be consid-

ered related. For example, “heart,” an anatomic entity is closely re-

lated to “heart failure,” a disorder. Studies using human judges have

shown that there is considerable agreement on semantic relatedness

of most concept pairs.1 Automated measurement of semantic relat-

edness has become an important tool in multiple areas including in-

formation retrieval, text mining, and natural language processing
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(NLP). Some examples are information retrieval,2 information ex-

traction,3 automatic spelling correction,4 machine translation,5 doc-

ument classification,6 and word sense disambiguation.7 Semantic

similarity is a special kind of semantic relatedness that refers to the

“likeness” between concepts. Semantic similarity usually applies to

concepts belonging to the same semantic type and can be linked by

hierarchical relationships within a taxonomy or similar artifacts.1

In the biomedical domain, measurement of semantic relatedness

can generally be divided into knowledge-based and distributional

methods.1 Knowledge-based methods rely on existing knowledge

sources such as dictionaries and taxonomies. The most common

approaches involve path finding measures based on hierarchical

relationships.8 Distributional methods rely on the distribution of

concepts in a corpus to compute relatedness. Based on the distribu-

tional hypothesis, concepts that are related are more clustered in

their distributional space compared with unrelated concepts.9 Cor-

pora used generally come from clinical documents or the scientific

literature. Knowledge-based and distributional methods have their

strengths and weaknesses. Knowledge-based methods are generally

more practical to use because clinical documents may not be readily

available and the processing of large corpora is computationally ex-

pensive.6 Moreover, the results of distributional methods have been

shown to vary according to the corpora used, which may be a prob-

lem for standardization and benchmarking.10,11

The Unified Medical Language System (UMLS) is a commonly

used knowledge source in semantic relatedness measurement.12

UMLS is a medical terminology resource developed by the U.S. Na-

tional Library of Medicine that incorporates hundreds of biomedical

vocabularies.13 The vast collection of terms and their relations in the

UMLS provides a rich source of material to support various semantic

relatedness measurements. Traditionally, most of these methods focus

on the relations more than the terms. With the advent of deep learn-

ing, new methods have emerged such as word embedding and graph

embedding, which can be leveraged to exploit both the terms and rela-

tions in the UMLS for semantic relatedness measurement. In this

study, we use publicly available word embedding models to generate

concept sentence embeddings based on the UMLS terms. Instead of

the traditional path counting approach, we apply graph embedding

models to learn the context of the UMLS relations. We compare our

results to some published path-based semantic related measurements

and corpus-based concept embeddings. As far as we know, this is the

first study that combines word and graph embedding to measure se-

mantic relatedness, using the UMLS as the sole knowledge source.

Background
Word embedding

Word embedding is a common technique used in NLP and machine

learning. Basically, it is the process of transforming words and

phrases into vectors of real numbers. The essential requirement of

word embedding is that words with similar meaning should have a

similar representation. Most of the word embedding models are

based on the theory of distributional semantics—the meaning of

words in a text can be estimated by looking at the distribution of

words around them. Word2vec14 is a widely adopted predictive em-

bedding model that uses neural networks for learning the word em-

bedding. Because embedding of rare words could be poorly

estimated, the FastText model15 has been proposed to address this

issue by making use of subwords. This enhancement is particularly

relevant to biomedicine as many rare words can be broken down

into more commonly used subwords (eg, “deltaproteobacteria” is

made up of the subwords “delto,” “proteo,” and “bacteria”). Bio-

WordVec16 is a word embedding model based on FastText and

trained on unlabeled texts from biomedical literature combined with

information from the MeSH (Medical Subject Headings) terminol-

ogy. BioWordVec has achieved significantly better performance

than other methods in several NLP tasks.

While BioWordVec generates the same embedding for a word re-

gardless of context, contextualized word representations can generate

different word embeddings for a word depending on context. The

most recent incarnation of context sensitive embedding is BERT (Bidi-

rectional Encoder Representations from Transformers),17 a multilayer

bidirectional transformer encoder that can learn deep bidirectional

representations. BERT has shown promise in various NLP tasks. Be-

cause BERT is pretrained on general English corpora, attempts have

been made to improve its performance in biomedicine by adding bio-

Figure 1. Overview diagram of the proposed method. GCN: graph convolutional network; MSH-WSD: MeSH Word Sense Disambiguation; SMQ: Standardized

MedDRA Query; UMLS: Unified Medical Language System.
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medical texts in its training. BlueBERT from the National Center for

Biotechnology Information is one such effort that utilized PubMed

articles and clinical texts that achieved good results.18,19

Graph embedding

While deep learning effectively captures hidden patterns of Euclidean

data, there is an increasing number of applications where data are rep-

resented in the form of graphs. Motivated by convolutional neural

network (CNN), recurrent neural network, and auto-encoders from

deep learning, new generalizations and definitions of important opera-

tions have been rapidly developed over the past few years to handle

the complexity of graph data.20,21 For example, a long short-term

memory structure can be used to directly encode graph-level semantic

information.22 The topic of graph neural networks has received grow-

ing attentions recently.23,24 A number of authors generalized well-

established neural network models like CNN that apply to regular

grid structure to work on arbitrarily structured graphs.25 Kipf and

Welling26 first presented a simplified graph neural network model,

called graph convolutional networks (GCNs), which are an efficient

variant of CNN on graphs. GCNs have been an effective tool to create

node embeddings that aggregate local information in the graph neigh-

borhood for each node. GCN models can also impose the same aggre-

gation scheme when computing the convolution for each node, which

can be considered a method of regularization, and improves effi-

ciency.27 GCNs have achieved state-of-the-art results on a number of

benchmark graph datasets26,28 in various application areas, such as

social networks29 and natural language processing.30

However, most of the existing research on GCNs has focused on

learning representations of nodes in simple undirected graphs. For

more general and pervasive class of graphs, knowledge graph em-

bedding is one of the recent active research areas. Many knowledge

graph embedding approaches have been proposed. Translation-

based approaches, such as TransE31 and its variants, model relations

as translating operations on the low-dimensional embedding of the

entities. Semantic matching–based approaches, such as Holographic

Embeddings model (HolE),32 DistMult,33 and its extension in the

complex space (ComplEx),34 compute the score of each triple via

similarity-based score function.

MATERIALS AND METHODS

Generation of concept embeddings
Word embedding

For word embedding models, we used BioWordVec and 2 publicly

available flavors of BERT, BERT-Large (BERT-L) and BlueBERT-

Large (BlueBERT-L). Because BERT allowed users to enhance it by

training with additional corpora, we created a third flavor,

BlueBERT-LE, by enhancing BlueBERT-L by the concept definitions

in the UMLS. We used the 2019AB version of the UMLS and

extracted 283 491 English definitions from the MRDEF table. Over-

all, only 5.66% of UMLS concepts had definitions. We performed

sentence segmentation on the definitions with the NLP toolkit spaCy

(http://spacy.io). We then used the script provided by the BERT devel-

opers to enhance BlueBERT-L using the same vocabulary, sequence

length, and other configurations provided by Devlin et al.17 The script

performed “masked language model” and “next sentence prediction”

on the UMLS definition corpus. It masked out 15% of the words in

the input, ran the entire sequence through a deep bidirectional trans-

former encoder, and then predicted only the masked words. It also

trained the model to learn relationships between sentences using the

actual next sentence that came after a sentence (a positive example),

or just a random sentence from the corpus (a negative example). Note

that the UMLS definitions were only used to enhance BlueBERT-L

and not in the direct generation of the concept embeddings.

One common way of using BERT is to couple it with a fine-

tuning step using training data for a specific task. However, it is also

possible to use BERT alone to generate contextualized word embed-

dings without additional training data, which is how we used BERT

in this study. To get the individual vectors for each token in a sen-

tence, a pooling operation is needed to combine some of the layer

vectors. Using appropriate pooling strategy (sum, mean, concatena-

tion, etc.) and layers (last 4 hidden layer, last hidden layer, all layers,

etc.) to derive a fixed sized embedding can yield results not far be-

hind BERT with task specific fine-tuning.17

Table 1. Performance of the different measures on UMNSRS-Relat-

edness dataset

Semantic relatedness measurement Spearman correlation

Shortest path 0.3093

Leacock-Chodorow 0.3093

cui2vec 0.4603

BERT-L 0.3120

BlueBERT_L 0.3707

BlueBERT-LE 0.3838

BioWordVec 0.5770

Graph Embedding (GCN) 0.3461

Graph Embedding (TransE) 0.1232

Graph Embedding (HolE) 0.3287

Graph Embedding (DistMult) 0.3205

Graph Embedding (CompIEx) 0.1965

BlueBERT_LEþGraph Embeddings 0.4095

BioWordVecþGraph Embeddings (GCN) 0.5904a

Cui2vecþBlueBERT-LE 0.3691

Cui2vecþGraph Embeddings (GCN) 0.4048

GCN: graph convolutional network.
aBest performing method.

Table 2. Performance of the different measures on UMNSRS-Simi-

larity dataset

Semantic similarity measurement Spearman correlation

Shortest path 0.3538

Leacock-Chodorow 0.3538

cui2vec 0.5411

BERT-L 0.3454

BlueBERT_L 0.4021

BlueBERT-LE 0.4169

BioWordVec 0.6182

Graph Embedding (GCN) 0.4037

Graph Embedding (TransE) 0.1883

Graph Embedding (HolE) 0.3949

Graph Embedding (DistMult) 0.3716

Graph Embedding (CompIEx) 0.3238

BlueBERT_LEþGraph Embeddings 0.4326

BioWordVEcþGraph Embeddings (GCN) 0.6288a

Cui2vecþBlueBERT-LE 0.5235

Cui2vecþGraph Embeddings (GCN) 0.5434

GCN: graph convolutional network.
aBest performing method.
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For each UMLS concept, we generated a “concept sentence”

made up of the concept’s English preferred term, followed by other

English terms, excluding duplicate words and terms that were case

or word order variants of the preferred term. Two special tokens

were inserted—the classifier token [CLS] at the beginning, and the

word “means” between the preferred term and other terms. For in-

stance, the concept sentence for CUI: C0162275 is “[CLS] Ketonu-

ria means Excess of ketones present in urine Acetonuria (finding)

Ketoacidurias Ketonaciduria Ketonurias Acetonurias.” The 3 BERT

models were then applied to the concept sentence. We combined the

embedding of the [CLS] token and the average embedding of each

word in the preferred term to generate the concept sentence embed-

ding. We used BioWordVec to generate word embeddings for each

word in the concept sentence and took the average of all embeddings

as the concept sentence embedding. There were 2 variations of Bio-

WordVec (with window sizes of 2 and 20, respectively), suitable for

either intrinsic or extrinsic tasks, and we used them accordingly (see

Evaluation). In the set of UMLS concepts that we used in our evalua-

tion, the number of tokens in the concept sentences ranged from 3

to 526, with an average of 69 tokens. There was an upper limit of

512 tokens for the BERT processor, and a small fraction (0.17%) of

the concept sentences needed to be truncated.

Graph embedding

We used the GCN and 4 knowledge graph embedding approaches

(TransE, HolE, DistMult, and CompIEx) to generate the graph

embeddings. We represented the UMLS as graphs with concepts as

nodes and relations as edges. We only used the hierarchical (parent-

child) relations from SNOMED CT (Standardized Nomenclature

for Medicine Clinical Terms) and MedDRA (Medical Dictionary for

Regulatory Activities). We picked SNOMED CT and MedDRA be-

cause SNOMED CT was the most comprehensive clinical terminol-

ogy in the UMLS and MedDRA was the source of the terms in one

of our reference standards for evaluation. For MedDRA, we also in-

cluded the “classified_as” relations. The “classified_as” relations in

MedDRA were not, strictly speaking, parent-child relations. They

represented the narrow-to-broad relationship between the lower

level terms and preferred terms in MedDRA. We extracted hierar-

chical relations from SNOMED CT and MedDRA from the

Figure 2. Receiver-operating characteristic curves of the different knowledge-based measures on the Standardized MedDRA Query dataset. AUC: area under the

curve; GCN: graph convolutional network.

Table 3. Performance of the word embedding models in the MSH-

WSD dataset

Embedding method Accuracy

BERT-L 0.753

BlueBERT_L 0.796

BlueBERT-LE 0.805

BioWordVec 0.784

Majority sense (baseline) 0.549

MSH-WSD: MeSH Word Sense Disambiguation.
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MRREL table. The resulting graph contained 406 240 nodes and

899 151 edges.

The graph encoder conducted unsupervised learning for relation-

ships, linking a prediction with the GCN-based Variational Graph

Auto-Encoders model35 or a knowledge graph embedding model by

using the UMLS concepts and relations as input values. When a con-

cept (node) was used as input to the pretrained graph embedding

model, the model returned the relational learning representation as

the embedding vector, based on the latent learning representation cap-

tured from the training graph data. For example, after performing for-

ward propagation through the GCN, the embedding vector closely

resembled the community structure of the graph. Therefore, the dis-

tance between the embedding vectors for the concepts “Influenza”

and “Pneumonia” (which were siblings) was much smaller than the

distance between the vectors for concepts “Influenza” and

“Atherosclerosis” (separated by 5 hops). For all graph embedding

models, we used the common settings suggested in the literature: the

number of epochs was 200, the embedding dimension was 200, the

optimizer was the Adam optimizer,36 and the learning rate was 0.001.

As in Bordes et al,31 we used the margin-based pairwise ranking loss

with regard to TransE, HolE, DistMult, and CompIEx. An overview

diagram of our method is shown in Figure 1.

Evaluation
Embedding methods are generally evaluated by intrinsic or extrinsic

tasks. Intrinsic tasks involve the measurement of semantic related-

ness between words, sentences or concepts. Extrinsic tasks involve

downstream text processing tasks such as information retrieval or

word sense disambiguation (WSD). We evaluated our embeddings

using both intrinsic (semantic relatedness between UMLS concepts)

and extrinsic tasks (WSD), with comparison with other published

methods.

Semantic relatedness measurement

We used 3 reference standards of semantic relatedness. The first was

the manually annotated UMNSRS-Relatedness dataset, which con-

sisted of 587 term pairs of UMLS concepts, with their corresponding

relatedness scores manually judged by domain experts from the Uni-

versity of Minnesota Medical School.37 After excluding obsolete

concepts and concepts that were not applicable to some of the meas-

urements, there were 473 pairs of concepts in this reference stan-

dard. The second was the UMNSRS-Similarity dataset, which

consisted of 566 term pairs of UMLS concepts, with their corre-

sponding similarity scores manually judged.37 After excluding obso-

lete concepts and concepts that were not applicable to some of the

measurements, there were 480 pairs of concepts in this reference

standard.

The third reference standard was based on the Standardized

MedDRA Queries (SMQs). The SMQs were created to improve ad-

verse drug reaction signal detection by grouping together MedDRA

terms that were related to a specific adverse reaction. We used the

same method as38 and randomly selected 5000 term pairs that

Figure 3. Receiver-operating characteristic curves of the different distributional-based measures on the Standardized MedDRA Query dataset. AUC: area under

the curve.
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existed in the same SMQ category as positive examples and 5000

term pairs that existed in different SMQ categories as negative

examples. Because we used the MedDRA relationships in our graph

embeddings, which might confer unfair advantage, we also repeated

the graph embeddings without the MedDRA relationships to see the

difference.

For semantic relatedness scores, we computed the cosine be-

tween each pair of UMLS concepts’ embedding vectors in the stan-

dard way using their dot product and magnitude. We used the

concept sentence embeddings generated by BioWordVec and 3 fla-

vors of BERT, the concept graph embeddings generated by GCN,

and 4 knowledge graph embedding models individually. We also

used the combination (concatenation) of the top-performing sen-

tence and graph embeddings to see whether a combined approach

would perform better.

For comparison with our concept embeddings, we used a set

of publicly available UMLS concept embeddings called cui2vec

that was generated based on large corpora of clinical and bib-

liographical data.39 In cui2vec, the corpora were first normal-

ized against the UMLS concepts containing SNOMED CT

concepts, then the word embedding tool Word2vec was used to

generate the embeddings for the UMLS concepts. Cui2vec pro-

vided concept embeddings for 108 477 UMLS concepts that

could be recognized in the corpora. We used the cosine of cui2-

vec concept embeddings in the same way to measure semantic

relatedness.

We also compared our results with 2 traditional knowledge-based

(path-based) semantic relatedness measurements that did not involve

deep learning: the shortest path measure40 and Leacock-Chodorow

measure.41 The shortest path measure used the reciprocal of the short-

est distance between 2 UMLS concepts. The Leacock-Chodorow

method used the negative log of the shortest distance between 2

concepts divided by the depth of the path. The paths were calculated

from the same graphs used by the graph embedding models.

To compare between various semantic relatedness measure-

ments, for the UMN datasets, we calculated the Spearman correla-

tion between the semantic relatedness scores generated by the

various methods and the scores in the reference standards. For the

SMQ reference standard, we used the area under the curve (AUC)

from the receiver-operating characteristic plot.

Word sense disambiguation

We used the MeSH WSD (MSH-WSD) corpus42 as reference stan-

dard. The MSH-WSD corpus consisted of 203 ambiguous terms

(106 regular terms, 88 acronyms, 9 could be either), each term could

be associated with multiple UMLS concepts (senses). For each of

these concepts, up to 100 MEDLINE abstracts containing the am-

biguous terms were retrieved. The challenge was to find the correct

concept (sense) for each abstract.

For each abstract, we generated the word embeddings for the

“subsentence” around the ambiguous term, with a window size of

6, using the 3 flavors of BERT and BioWordVec. For BERT, a single

Figure 4. Receiver-operating characteristic curves of the different combined-embedding measures on the Standardized MedDRA Query dataset. AUC: area under

the curve; GCN: graph convolutional network.
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embedding could be generated for the whole subsentence. For Bio-

WordVec, we took the average of the embeddings for words consti-

tuting the subsentence. To find the correct UMLS concept, we

picked the one with the highest cosine value between the subsen-

tence embedding and the UMLS concept sentence embeddings gen-

erated by the same embedding method. We did not use graph

embeddings in this task because there was no straightforward way

to generate graph embeddings from the abstracts.

RESULTS

UMNSRS-Relatedness dataset

The results are summarized in Table 1. BioWordVec outperformed

all other methods used individually. The combination of BioWord-

Vec and graph (GCN) embeddings had the best performance overall.

Cui2vec outperformed all BERT embeddings, but the combination

of cui2vec with GCN resulted in worse performance. The perfor-

mance of BlueBERT-LE was the best among the 3 flavors of contex-

tual word embedding, and it was slightly better than graph

embeddings. GCN was the best among the 5 graph embedding mod-

els, and was better than the 2 traditional path-based measurements.

UMNSRS-Similarity dataset

The results are summarized in Table 2. The Spearman correlations

were higher for all methods compared with the UMNSRS-

Relatedness dataset, but the overall trend was very similar. Unlike

the relatedness dataset, cui2vec combined with GCN was better

than cui2vec alone, but was still worse than BioWordVec. GCN per-

formed better than BlueBERT-L in the similarity dataset but was

still not as good as BlueBERT-LE.

SMQ dataset

The receiver-operating characteristic curves of the various measure-

ments are shown in Figures 2-4. The curves of the 2 path-based

measurements (purplish line in Figure 2) were overlapping

completely because they generated the same results for most data

points. Their curves were also more angular because many concept

pairs had the same score. Similar to the UMN datasets, BioWordVec

was the best performing single measurement. Unlike the UMN data-

sets, cui2vec’s performance was the worst among all methods. GCN

graph embedding outperformed the best BERT embedding (Blue-

BERT-LE), which in turn outperformed path-based measurements.

Again, combined word and graph embeddings had the best perfor-

mance overall.

Among the 10 000 randomly selected concept pairs (both posi-

tive and negative examples) used in our evaluation, only 6 pairs

were connected by parent-child relationships in MedDRA. When we

omitted MedDRA relations from the graph embeddings, the AUC of

GCN dropped slightly from 0.8029 to 0.7960, which did not affect

the overall order.

Word sense disambiguation

The accuracy scores obtained by our models using the different

word embeddings are shown in Table 3. BlueBERT-LE and

BlueBERT-L outperformed BioWordVec in the WSD task. All em-

bedding methods significantly outperformed the majority sense

baseline 0.549 for the MSH-WSD dataset, which was achieved by

assigning the most frequent concept to every instance.43

DISCUSSION

In this study, we employed the latest deep learning techniques in

word and graph embedding to generate semantic relatedness meas-

urements between UMLS concepts. Our key requirements are the

use of publicly available, off-the-shelf tools, and no additional

resources except the UMLS. The best results were obtained by com-

bined word and graph embeddings, which significantly outper-

formed some existing corpus-based concept embeddings and path-

based measurements.

Our method has several advantages. First, on the one hand, it

can be applied to all UMLS concepts because all UMLS have terms

and relations, which are used to generate the concept sentence

embeddings and graph embeddings. On the other hand, cui2vec

only covers UMLS concepts that are recognized in their corpora,

which amount to about 100 000 (2.3%) UMLS concepts. Second,

our method does not involve resources outside of the UMLS. Com-

pared with methods that rely on additional text corpora, ours is eas-

ier to implement and less demanding on processing power and time.

In addition, different corpora may produce different results. Our

method is solely based on the UMLS and the results should be gener-

ally reproducible—an essential requirement for benchmarking and

comparative studies. Third, our method has uniformly good perfor-

mance across various semantic relatedness datasets. As shown in our

study, existing semantic-related measurements may vary consider-

ably in their performance based on the task at hand. The UMN

datasets consisted of many concept pairs that were not hierarchically

related in existing terminologies (eg, pallor and iron), so path-based

measurements and graph embeddings did not perform as well as our

sentence embeddings or the corpus-based cui2vec. On the other

hand, all the concepts from the SMQ dataset came from MedDRA

and belonged to the same semantic type (eg, retinoblastoma and eye

abnormalities). They were also more likely to be linked, directly or

indirectly, by hierarchical relations (not only those from MedDRA).

This explains why the path-based measurements and graph embed-

dings outperformed cui2vec and some sentence embeddings for the

SMQ dataset. The BioWordVec sentence embeddings outperformed

all others in all datasets, and could be further improved by combin-

ing with graph embedding. As an external reference, our best results

for the semantic relatedness and semantic similarity datasets were

0.59 and 0.63, respectively, which compared favorably to Pakho-

mov et al,10 who used embeddings learned from large biomedical

corpora (the best results were 0.58 and 0.62, respectively). On the

SMQ dataset, our best performance of 0.89 AUC was significantly

better than that of Bill et al (0.827).38 As for extrinsic tasks, our

word embeddings performed reasonably well in the MSH-WSD

dataset and the accuracy (0.753-0.805) was comparable to Pakho-

mov et al (accuracy 0.740-0.777).10 Contrary to semantic related-

ness, BERT outperformed BioWordVec in WSD, which was

probably attributable to the context sensitive nature of BERT.

Our study shows that graph embedding is a better way to cap-

ture relational information between concepts compared with tradi-

tional path counting. While GCN consistently outperforms path-

based measurements, the other graph embedding models are less im-

pressive. Our results also show that it is possible to combine word

and graph embeddings to enhance performance. Before graph em-

bedding, mathematical and statistical operations on graphs are gen-

erally limited, and applying machine learning methods directly to

graphs is challenging. Graph embedding transforms graphs into vec-

tors, which are easier to work with in machine learning. This also

opens up the possibility of combining graphical data with other

1544 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 10



types of data. In our study, combined word and graph embedding

uniformly outperforms other methods.

Similar to other studies, our study confirms that word embed-

ding algorithms benefit from additional training with domain spe-

cific corpus. The National Center for Biotechnology Information’s

BlueBERT-Large, which was trained on biomedical texts,

outperformed BERT-Large, which was trained on general English

corpora. Further training of BlueBERT-Large with UMLS defini-

tions yielded an additional improvement.

We acknowledge the following limitations in our study. In word

embedding, the method to generate the concept sentence was empiri-

cally decided. We have not experimented with methods to leverage

the other characteristics of UMLS terms, such as term types and the

nature of the source terminologies (eg, purpose, specific domain). In

graph embedding, we restricted our source relationships to hierar-

chical relationships from only SNOMED CT and MedDRA and did

not experiment with the inclusion of more relation types from more

sources. However, there is a limit to the graph size that most graph

embedding methods can handle. We compared our results with only

2 path-based measurements and 1 set of corpus-based concept

embeddings because they were publicly available and relatively

straightforward to implement. For reference standards, we only

picked the UMN and SMQ datasets, which were publicly available

and relatively sizeable. The lack of large-scale reference standards is

an often cited limitation in semantic relatedness research.

In the future, we plan to explore the use of additional informa-

tion carried in the UMLS, and new tools for word embedding (eg,

Clinical XLNET)44 and graph embedding (eg, graph attention auto-

encoder, adversarially regularized graph auto-encoder).45,46 In addi-

tion, we would also like to experiment with novel methods to har-

ness lexical and relational information from the UMLS (eg,

retrofitting and extended UMLS definitions).47,48

CONCLUSION

Deep learning techniques, word and graph embedding, can be lever-

aged to measure semantic relatedness between UMLS concepts. By

using public, off-the-shelf tools and no additional resources outside

the UMLS, our methods outperformed some existing path-based

measurements and corpus-based concept embeddings.
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