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Abstract

The naïve antibody/B-cell receptor (BCR) repertoires of different individuals ought to exhibit

significant functional commonality, given that most pathogens trigger an effective antibody

response to immunodominant epitopes. Sequence-based repertoire analysis has so far

offered little evidence for this phenomenon. For example, a recent study estimated the num-

ber of shared (‘public’) antibody clonotypes in circulating baseline repertoires to be around

0.02% across ten unrelated individuals. However, to engage the same epitope, antibodies

only require a similar binding site structure and the presence of key paratope interactions,

which can occur even when their sequences are dissimilar. Here, we search for evidence of

geometric similarity/convergence across human antibody repertoires. We first structurally

profile naïve (‘baseline’) antibody diversity using snapshots from 41 unrelated individuals,

predicting all modellable distinct structures within each repertoire. This analysis uncovers a

high (much greater than random) degree of structural commonality. For instance, around

3% of distinct structures are common to the ten most diverse individual samples (‘Public

Baseline’ structures). Our approach is the first computational method to find levels of BCR

commonality commensurate with epitope immunodominance and could therefore be har-

nessed to find more genetically distant antibodies with same-epitope complementarity. We

then apply the same structural profiling approach to repertoire snapshots from three individ-

uals before and after flu vaccination, detecting a convergent structural drift indicative of rec-

ognising similar epitopes (‘Public Response’ structures). We show that Antibody Model

Libraries derived from Public Baseline and Public Response structures represent a powerful

geometric basis set of low-immunogenicity candidates exploitable for general or target-

focused therapeutic antibody screening.

Author summary

It is commonly thought that most people’s adaptive immune systems can recognise the

same endemic pathogens, many of which invade our bodies daily. However, existing
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methods of antibody repertoire comparison (which focus on genetic relatedness) only

predict a tiny number of functionally equivalent antibodies in the resting state repertoires

of different individuals. Here, we propose a novel approach that predicts the structural

diversity of antibody binding sites within a repertoire sequence dataset. This orthogonal

methodology can be applied to pool together antibodies from different genetic lineages

with topological potential to bind to the same pathogen surface, and that may be function-

ally equivalent if they share a sufficiently similar surface interaction profile. Our method-

ology finds that a much greater than random set of binding site geometries exist across

resting-state repertoires and can detect binding site geometric convergence in response to

vaccination, both of which are consistent with underlying functional commonality

between individuals. We further show that knowledge of these geometries could be useful

in therapeutic antibody drug discovery, through rational screening library design. Differ-

ent repertoire sequencing datasets could be interrogated to achieve a more general set of

topologies compatible with many pathogens or a tailored set bespoke to a single pathogen.

Introduction

A key component of the human immune system is the antibody/B-cell receptor (BCR) reper-

toire, a diverse array of immunoglobulins tasked with identifying pathogens and initiating the

adaptive immune response. Broad pathogenic recognition is achieved through enormous vari-

able domain sequence diversity, with an estimated 1010 unique heavy variable domains (VH)

circulating at any one time from a theoretical set of 1012 (or 1016-1018 full antibodies if light

variable domain (VL) combinations are considered [1]).

On antigenic exposure, ‘baseline’ (resting-state) antibodies with sufficiently complementary

binding sites to an antigen surface epitope are positively selected. The corresponding parent B

cells subsequently migrate to the marginal zone of the lymph nodes, where intentional muta-

tions are introduced to their sequence and only the highest-affinity binders survive in the com-

petition for cognate T-helper cells [2].

Therefore, sequencing antibody repertoires before and during an immune response (e.g.

vaccination) can reveal how different people respond to the same antigenic challenge, and can

both improve our understanding of immunology and inform future vaccine or therapeutic

design [3–5]. Similarly, comparing the repertoires of healthy individuals against immunosup-

pressed (e.g. HIV) patients may also make known the origins of increased disease susceptibility

[6–8].

However, sequencing an entire antibody repertoire is challenging; they are so large that

conventional sequencing techniques, such as Sanger sequencing, do not capture enough of the

diversity to be informative. Instead, high-throughput immunoglobulin gene sequencing (Ig-

seq) technologies (e.g. Illumina MiSeq) are used. These methods create snapshots that are typi-

cally on the order of 106-107 VH and/or VL (unpaired) chains, up to a recent upper bound of

around 109 [1, 9, 10]. Single-cell sequencing methods, capable of preserving VH-VL chain

pairings, are now emerging, however their current throughput yields datasets that are too

small to study entire repertoire diversity [11–13].

Since most publicly-available Ig-seq data covers only the VH domain, the vast majority of

whole-repertoire analysis has been performed over this region alone. The primary analytical

method is currently ‘clonotyping’ [14–16]. Clonotyping is a computational technique used to

sort sequencing datasets into sets of functionally similar chains based on sequence features,

and can be performed in several ways. The most common implementation groups sequences
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with the same predicted V and J gene transcript origins and above a certain percentage Com-

plementarity-Determining Region H3 (CDRH3) sequence identity.

Such sequence-based approaches have contributed significantly to our knowledge of core

immunology. For example, to estimate the true level of sequence similarity that exists across

individuals, Briney et al. performed deep sequencing and clonotyping of the circulating base-

line VH repertoires of ten volunteers [1]. They found that just 0.022% of observed clonotypes

were ‘public’ (seen in everyone) and a similar study by Soto et al. found just*1% of clono-

types were public across three unrelated individuals. In a complementary approach, Greiff

et al. trained a Support Vector Machine on public and private clonal sequences to identify

their high-dimensional features, proving that they have distinct immunogenomic properties

[17].

Clonotyping can also be used to detect antigen-specific immunoglobulins, through the

identification of expanded clones after vaccination, or those present in unusually high propor-

tions in individuals immune to certain diseases. Explorations of expanded lineages have

yielded high-affinity antibodies and T cells against numerous pharmacologically interesting

antigens, such as HIV proteins [6], cluster of differentiation proteins [18], botulinum neuro-

toxin serotype A [19], proteins implicated in type-1 diabetes [20], and many more.

However, clonotyping is only likely to identify a small subset of the true number of func-

tionally equivalent antibodies. This is because it assumes that antibodies require a similar

genetic background and high CDRH3 sequence identity to achieve complementarity to the

same epitope. In reality, similar binding site structures and paratopes can be achieved from dif-

ferent genetic origins [21, 22] and with surprisingly low CDRH3 sequence identity [23] (con-

versely, false positives can arise where antibodies with high CDRH3 sequence identity and the

same genetic origins adopt markedly different binding site topologies [23]). It is also the case

that not every epitope is naturally suited to CDRH3-dominated binding, instead preferring

broader engagement by multiple CDRs [24], putting less selection pressure on CDRH3

sequence identity.

It is difficult to reliably identify these hidden functionally equivalent antibodies within a

clonotyping framework, as simply reducing the CDRH3 sequence identity threshold value

lowers confidence in paratope residue similarity and increases the risk of grouping antibodies

with fundamentally different binding site topologies. An alternative approach to relaxing the

clustering criterion would be to initially ignore CDRH3 residue similarity, and instead to

group antibodies with similar three-dimensional structures, as binders to a given epitope are

likely to adopt a similar geometry. Geometrically-similar antibodies with sufficiently similar

residue interaction profiles could then be capable of recapitulating key binding interactions at

equivalent topological locations.

Experimental structure determination (e.g. by X-ray crystallography) remains too slow to

solve representative portions of antibody repertoires [25]. However, structural annotation

approaches are now fast enough to geometrically characterise the individual CDRs of millions

of sequences a day with increasing accuracy [26, 27]. So far, these analyses have focused (con-

sistency) solely on the VH chain, and none have considered the impact of VL on binding site

configuration. This can most accurately be captured through variable domain (Fv) modelling,

and recent developments have afforded homology approaches with sufficient throughput to

analyse meaningful portions of the repertoire [28, 29]. For example, we developed a prototype

structural profiling method that creates representative Fv model libraries from large repertoire

snapshots, with applications in developability issue prediction [30].

In this paper, we further refine this repertoire structural profiler, and apply it to cluster anti-

body repertoires based on predicted binding site topology. We first analyse 41 naïve antibody

repertoires from unrelated individuals, and find that the same representative (‘distinct’)
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binding site structures are predicted to appear across many individuals (‘Public Baseline’ struc-

tures). We also show, through the construction of ‘Random Repertoires’, that this level of

structural sharing is far greater than would be expected by chance. Our data therefore repre-

sents the first supporting computational evidence that considerably more functional common-

ality than suggested by clonotyping could exist in the baseline repertoires of different people.

We then implement the same pipeline on pre- and post-vaccination datasets from three unre-

lated individuals, detecting a significant increase in structural commonality, and identifying all

convergent response structures that may recognise similar epitopes (‘Public Response’ struc-

tures). We build Antibody Model Libraries (AMLs) by homology modelling a VH-VL

sequence pairing predicted to adopt each Public Baseline or Public Response structure. In silico
analysis of these AMLs suggests that they represent a powerful geometric basis set of low-

immunogenicity candidates exploitable for general or target-focused therapeutic antibody

screening.

Results

This study comprises two main investigations. Firstly, we use data from an immunoglobulin

gene sequencing (Ig-seq) study by Gidoni et al. [31] to investigate the degree of structural over-

lap in the circulating baseline repertoires of many unrelated individuals. We then use data

from a longitudinal Ig-seq flu vaccination study by Gupta et al. [5] to measure three individu-

als’ structural responses to exposure to a common antigen. Both translated Ig-seq datasets

were downloaded from the Observed Antibody Space (OAS) database [9]. For the baseline

repertoire study we retained only the 41 Gidoni volunteers with sufficient sequencing depth

(see Methods).

We used an updated version of our Repertoire Structural Profiling pipeline [30] for

improved accuracy in CDR structure and VH-VL interface orientation prediction (see Meth-

ods, S1 Text, S1–S4 Figs, and S1 Table). Briefly, Repertoire Structural Profiling takes as input

an antibody/BCR repertoire snapshot containing heavy (VH) and light (VL) chain reads. It

eliminates VH and VL chains for which not every CDR is modellable. All modellable VH and

VL chains are then sequence clustered to reduce computational complexity. Surviving cluster

centres are then paired together and the resulting Fvs that are likely to be successfully modelled

are retained. Finally, predicted modellable Fvs with the same combinations of CDR lengths are

structurally clustered based on the orientation and CDR loop templates forecast to be used

during homology modelling. Antibody Model Libraries (‘AMLs’) can then be built from these

representative Fv sequences.

Structurally profiling the baseline immune repertoire

We first investigated the structural diversity present in the 41 selected Gidoni baseline reper-

toire datasets. Separately, each dataset was fed through our Repertoire Structural Profiling

pipeline to identify the set of sequence diverse modellable VH and VL domains, then the num-

ber of predicted modellable Fvs, and finally the number of distinct structures in each dataset

(Table 1, full table available as S2 Table).

The most structurally diverse dataset was ‘S64’ (209,394 distinct structures from *6.4M

Fvs), and the least was ‘S4’ (78,588 distinct structures, from *750K Fvs). Datasets with a larger

number of modellable sequence diverse VHs tended to result in a larger number of distinct

structures. Datasets with a moderate/low number of modellable sequence diverse VHs but

very large numbers of modellable sequence diverse VLs were amongst the least structurally

diverse (e.g. ‘S95’). This is consistent with our understanding of both length and structural var-

iability in VH (particularly in CDRH3) relative to VL [32–34].

PLOS COMPUTATIONAL BIOLOGY Antibody repertoire Public Baseline and shared response structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008781 March 1, 2021 4 / 23

https://doi.org/10.1371/journal.pcbi.1008781


Expected numbers of distinct structures (via. ‘Random Repertoires’)

To contextualise the numbers of distinct structures observed for each baseline repertoire, we

generated ‘Random Repertoires’ to obtain expected numbers of distinct structures assuming

each genuine repertoire sampled randomly from modellable, accessible structure space. To

achieve this, we derived:

(a) The Modellable Repertoire Structures: a sample of over 180 million structures built from a

random combination of an orientation template, a CDR3 template, and a pair of CDR1/

CDR2 templates from the same SAbDab entry (mimicking V gene-encoded predetermina-

tion). All CDR templates used had been previously assigned by FREAD to a human CDR.

All Fv templates used had been previous assigned by interface residue comparison to a

human VH-VL pairing.

(b) The Length-Accessible Repertoire Structures for each baseline snapshot: the subset of the

Modellable Repertoire Structures with a CDR length combination observed in that

individual.

(c) A ‘Random Repertoire’ for each baseline snapshot: the appropriate Length-Accessible Rep-

ertoire Structures dataset was sampled the same number of times as that individual’s num-

ber of predicted modellable Fvs. Clustering these ‘Random Repertoires’ then provided a

reference number for the expected number of distinct structures per repertoire, given the

depth of sampling in each dataset and assuming random sampling.

To derive a set of Modellable Repertoire Structures, we took the same number of samples as

the number of Fvs derived from all baseline repertoire snapshots (183,544,740, S2 Table).

Upon structural clustering, these samples yielded *24.4M distinct structures over *39.9K

distinct combinations of CDR lengths, roughly 100x as many distinct structures as seen in any

baseline repertoire sample. However, as each repertoire snapshot typically only contained

between 2,000-3,500 different CDR length combinations, many of these 24.4M distinct struc-

tures could never be observed in the real data. Therefore, 41 ‘Length-Accessible Repertoire

Table 1. Structurally profiling the baseline repertoire snapshots [31]. A full table containing the values for all 41 baseline datasets is available in the Supporting Informa-

tion (S2 Table). In order, the columns show: the dataset label, the number of VH and VL reads within each snapshot, the number of FREAD-modellable VH and VL reads

(once clustered at 90% sequence identity), the number of predicted modellable Fvs resulting from these VH-VL pairings, and the number of distinct structures (cluster cen-

tres) identified in each dataset. Mod. = Modellable, SIC = Sequence Identity Clustered.

Dataset All VH All VL Mod. VH [90% SIC] Mod. VL [90% SIC] Predicted Mod. Fvs Distinct Structures

1 (S64) 177,603 123,934 10,087 6,779 6,420,211 209,394

2 (S57) 169,805 118,020 9,860 7,922 7,225,630 201,039

3 (S5) 159,544 139,845 8,999 8,526 6,827,419 200,708

4 (S56) 162,446 136,874 9,309 7,168 6,628,683 195,061

5 (S83) 152,299 112,733 9,048 8,076 6,170,373 193,384

6 (S67) 173,722 120,237 9,349 6,424 5,544,952 193,061

7 (S84) 164,017 138,874 8,702 8,232 5,634,598 191,617

8 (S76) 148,180 126,713 8,778 7,047 5,856,150 191,162

9 (S54) 121,993 133,921 7,581 9,066 5,074,822 181,290

10 (S89) 152,710 144,340 8,923 9,293 5,414,820 177,829

. . . . . . . . . . . . . . . . . . . . .

39 (S95) 118,576 162,377 5,412 11,748 5,901,443 91,855

40 (S17) 102,405 111,669 5,310 7,945 2,690,081 91,229

41 (S4) 100,689 128,986 4,688 1,761 745,977 78,588

https://doi.org/10.1371/journal.pcbi.1008781.t001
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Structures’ datasets were created, limiting the Modellable Repertoire Structures to the CDR

length combinations seen in each snapshot. For example, considering only the 3,468 CDR

length combinations observed in our most structurally diverse individual (‘S64’) reduced the

Modellable Repertoire Structures to a Length-Accessible Repertoire Structures dataset of

*154.5M structures. This clustered into*18.0M distinct structures (a 26.2% reduction from

the Modellable Repertoire Structures, while the number of CDR length combinations dropped

*91.3%), implying we have good structural sampling over the CDR length combinations typi-

cally seen in humans. Every Length-Accessible Repertoire Structures dataset contained a num-

ber of randomly-selected structures roughly 20-30 times larger than the number of predicted

modellable Fvs observed in the corresponding baseline repertoire.

Finally, 41 separate ‘Random Repertoires’ were created to determine the expected number

of distinct structures assuming random structural sampling and given the observed structural

sampling depth (see Methods). To do this, each individual’s Length-Accessible Repertoire

Structures were sampled randomly, without replacement, the same number of times as the

number of predicted modellable Fvs (Table 2).

Again taking ‘S64’ as an example, the 6,420,211 samples comprising ‘Random Repertoire

S64’ yielded 2,092,117 distinct structures, equating to an average of 3.07 Fvs per distinct struc-

ture, compared to 30.66 (9.99x more) Fvs per distinct structure in the genuine repertoire. This

provides strong evidence that the modellable portions of antibody repertoires occupy a highly

focused region of modellable structure space—roughly 10% of the expected number given the

sample size (Fig 1), and 1% of a theoretical maximum estimate, across the same CDR length

combinations.

‘Public Baseline’ structures in unrelated individuals

We next investigated whether structural commonality exists between baseline repertoire snap-

shots. This phenomenon would be statistically extremely unlikely by chance, given the focused

structural sampling observed in each repertoire. To do this, we performed structural clustering

on pairs of repertoire snapshots, looking for evidence of structural overlap (i.e. distinct struc-

tures assigned to a predicted modellable Fv seen in both datasets, see Methods and Fig 2).

Repertoire snapshots were ordered by their internal structural diversity (‘S64’ first, through

to ‘S4’). The 209,394 distinct structures of S64 act as a reference set of cluster centres. The

7,225,630 Fvs from snapshot S57 were then compared to these S64 cluster centres. Structures

Table 2. Public structure analysis across the ten most structurally diverse baseline repertoire snapshots. A table tracking the public structures across all datasets is

available as S3 Table. A statistical estimate for the number of public structures was derived by randomly sub-sampling each Random Repertoire to the yield the same num-

ber of distinct structures (DSs) as its equivalent baseline repertoire snapshot. The ‘Public Baseline’ Antibody Model Library was derived from the 27,389 shared structures

up to volunteer S89.

# Repertoires Added Fvs Added Cumulative DSs Public DSs (% Public) Expected Public DSs (% Public)

1 (S64) 6,420,211 209,394 209,394 209,394

2 (+S57) 7,225,630 340,915 100,824 (29.57%) 12,307 (3.10%)

3 (+S5) 6,827,419 445,045 71,743 (16.12%) 1,600 (0.28%)

4 (+S56) 6,628,683 527,668 58,043 (11.00%) 322 (0.06%)

5 (+S83) 6,170,373 604,124 48,703 (8.06%) 86 (< 0.01%)

6 (+S67) 5,544,952 670,833 42,277 (6.30%) 31 (< 0.01%)

7 (+S84) 5,624,598 734,374 37,151 (5.06%) 17 (< 0.01%)

8 (+S76) 5,856,150 793,831 33,572 (4.23%) 9 (< 0.01%)

9 (+S54) 5,074,822 846,670 30,474 (3.60%) 6 (< 0.01%)

10 (+S89) 5,414,820 896,328 27,389 (3.06%) 4 (< 0.01%)

https://doi.org/10.1371/journal.pcbi.1008781.t002
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present in both S57 and S64 were termed public across two individuals, while S64 and S57 dis-

tinct structures unique to their own dataset were termed private. Next, the 6,827,419 Fvs from

S5 were compared to all public and private distinct structures observed in S64 and S57. We

again evaluated the number of public structures, this time present in all three datasets. We

Fig 1. Comparing genuine repertoire snapshots to synthetic ‘Random Repertoires’ (RRs). Each dot represents a distinct structure mapped onto a two-

dimensional representation of ‘Length-Accessible Repertoire Structure’ space. The genuine repertoire snapshots of all three individuals (red = repertoire 1,

blue = repertoire 2, green = repertoire 3) exhibit focused structural sampling, covering*10% of the space as the corresponding RRs. Overlap analysis

shows a high proportion of genuine repertoire distinct structures can characterise an Fv in all three individuals (‘public structures’, represented by black

circles). When the same overlap analysis is performed on the equivalent ‘Random Repertoires’, far fewer public structures are observed.

https://doi.org/10.1371/journal.pcbi.1008781.g001

Fig 2. Structural overlap analysis. Datasets are arranged in order of their internal structural diversity (most diverse first). Distinct baseline structures

from individual 1 are clustered sequentially with all other repertoire snapshots. Distinct structures present in every tested dataset are classed as ‘public

structures’, whereas those that are absent in at least one individual are termed ‘private structures’.

https://doi.org/10.1371/journal.pcbi.1008781.g002
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repeated this analysis for all remaining baseline repertoire snapshots (first ten results in

Table 2, all 41 results in S3 Table).

To date, all in silico analysis of antibody repertoires has suggested that this number should

drop rapidly towards 0. For example, a recent clonotype analysis of the baseline circulating

repertoire estimated that only around 0.022% of clonotypes were public across ten unrelated

individuals [31]. However, using our methodology, we found that the number of public dis-

tinct structures decreased at a far slower rate, still totalling 27,389 structures after ten unrelated

individuals (Table 2). This represents 3.06% of all distinct structures observed up to that point,

over 100 times the number of public clonotypes found by Briney et al. in their much deeper

repertoire samples. Clonotyping our baseline snapshots, even at the lower 80% CDRH3

sequence identity threshold used by Soto et al. [35], revealed< 0.01% public clones after five

individuals (S4 Table).

To provide a statistical estimate for how many distinct structures would be expected to be

shared across these ten baseline repertoires, the Random Repertoire distinct structures were

subsampled to match the corresponding number of baseline repertoire distinct structures (see

Methods). In contrast to the genuine repertoires, the Random Repertoires overlapped sparsely,

reaching� 0.01% public structures by just the fifth volunteer (Table 2).

We also tracked the cumulative number of public and private structures over all 41 baseline

repertoire snapshots (S5 Table). Even after the first few most diverse datasets, the deviation

from an expected number of distinct structures (given the same ratio of distinct structures:

modellable Fvs observed in S64) is quite substantial. This suggests that we might not expect

much deviation from our observed fraction of public baseline distinct structures upon deeper

repertoire sampling.

Finally, we tested whether the observed proportion of ‘Public Baseline’ structures would

have been significantly different if the experiment had been run using an earlier FREAD data-

base. We repeated Repertoire Structural Profiling for the two most structurally diverse datasets

S64 and S57 removing any modellable Fv pairing whose best predicted template for any region

was released by the PDB in 2018 or later. As expected, the number of predicted modellable Fv

distinct structures in each sample fell from 209,394 and 201,039 to 186,677 and 179,763 respec-

tively (a fall of around 10%). We then performed structural overlap analysis on these sets of

distinct structures, finding a total of 305,948 distinct structures across both datasets, of which

87,920 were public to both S64 and S57. This degree of structural sharing (28.7%) is compara-

ble to the degree observed with access to the entire FREAD database (29.6%).

The existence of so many ‘Public Baseline’ structures would be statistically extremely

unlikely without the presence of underlying selection pressures promoting certain binding site

topologies. Clonotyping, which conditions on sequence identity alone, has thus far been

unable to detect significant similarities in the baseline repertoires of many individuals, even on

much deeper sequencing samples. However, same-epitope complementarity ought to be gov-

erned by both structural and paratopic similarity, which may not correspond with conserva-

tion of gene transcript origin or high CDRH3 sequence identity. By relaxing the sequence

identity criteria and instead focusing solely on geometric similarity, Repertoire Structural Pro-

filing is the first computational method to provide supporting evidence for the levels of base-

line antibody functional commonality implied by epitope immunodominance.

Characterising the ‘Public Baseline’ structures

CDR3 length usages. We compared the North-defined [32] CDRH3, CDRL3 and

CDRH3+CDRL3 distributions of the S64 Fv sequences assigned to a ‘Public Baseline’

structure against those assigned to a ‘Private Baseline’ structure (S5 Fig). The CDRL3 and
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CDRH3+CDRL3 length usages demonstrate that ‘Public Baseline’ structures are not an artefact

of using shorter CDR3 loops with more limited conformations. In fact, we find that modell-

ability bias is likely to be overstating the proportion of ‘Public Baseline’ distinct structures with

longer CDRH3 loop lengths. The structural space available to long CDRH3 (20+) loops is

enormous, and we have relatively poor template structural coverage. As a result, if an Fv con-

taining a long CDRH3 loop is considered modellable, it is more likely to be assigned to a struc-

tural template further away from its true structure, thus artificially inflating the numbers of

long CDRH3s that look structurally similar. These longer CDR length ‘Public Baseline’ struc-

tures should therefore be treated with caution and, as more templates of longer CDRH3 loops

emerge improving CDRH3 modellability, we would expect their numbers to decrease to the

public:private ratios seen at more moderate CDRH3 lengths.

Germline proximity and usages. We also investigated whether S64 Fv sequences assigned

to ‘Public Baseline’ distinct structures were more proximal to germline than those assigned to

‘Private Baseline’ structures (S6 Fig, see Methods). The germline proximity of both ‘Public’

and ‘Private’ Fvs to their closest IGHV and IG[K/L]V genes is very similar, indicating that

‘Public Baseline’ structures are not solely an artefact of human V gene biases. Finally, we con-

sidered the constituent paired V genes across the ‘Public Baseline’ structures. As our pairing

algorithm only predicts modellable Fv pairings based on PDB structures, we compared our

IGHV/IG[K/L]V pairing frequencies with those observed in DeKosky et al.’s study of over

2000 natively-paired antibodies (S7 Fig) [11]. our ‘Public Baseline’ gene pairing frequencies

were very similar to DeKosky et al.’s native sample, with the IGHV1/IGKV1-4, IGHV1/

IGLV1-3, IGHV3/IGKV1, IGHV3/IGKV3, and IGHV3/IGLV1-4 pairings the most abundant.

CDR template usages. We investigated the number of different structural templates that

were assigned to each CDR in a ‘Public Baseline’ distinct structure (S6 Table). As expected, the

lowest median number of different templates per distinct structure was recorded for the

CDRH3 loop (2 templates/structure), consistent with the large structural variation within the

region driving the definition of distinct binding site structures. Collectively, the light chain

CDRs recorded considerably more FREAD templates per structure (median of 20 templates/

structure) than the heavy chain CDRs (median of 9 templates/structure). We have supplied the

sets of FREAD templates assigned to each CDR of each distinct structure to facilitate further

structural characterisations of distinct structures of interest.

Building and characterising a ‘Public Baseline’ antibody model library

We used ABodyBuilder [28] to construct an Antibody Model Library (AML) based on the

27,389 ‘S64’ pairings predicted to adopt a ‘Public Baseline’ structure (as defined by the ten

most structurally diverse repertoire snapshots). Some Fvs failed to be entirely homology mod-

elled. For example, occasionally the CDRH3 template clashes irreparably with the CDRL3 tem-

plate during construction of the full Fv model, necessitating ab initio treatment. Overall,

23,700 (86.53%) of 27,389 pairings were entirely homology modelled and comprise our ‘Public

Baseline AML’.

Proximity to therapeutics. Predicted structures shared between many individuals might

represent good starting points for therapeutic development. Their widespread nature could

point to their binding versatility, and also to broad immune system tolerance across many

individuals, lowering the risk of drug immunogenicity. To test whether our ‘Public Baseline’

AML contains antibody geometries proximal to known therapeutics, we mined Thera-SAbDab

[36] for all 100% sequence identical structures of WHO-recognised therapeutics, selecting one

per therapeutic (see Methods). Of the 66 therapeutics with known structures that had at least

one antibody in our ‘Public Baseline AML’ with 6 identical CDR lengths, all had a structural
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partner in the AML within a Cα Fv RMSD of 1.84Å, and 37 (56.1%) had a structural partner

within 1.00Å Fv RMSD. Eleven therapeutic structures lay within 0.75Å Fv RMSD of a ‘Public

Baseline’ AML structure (S7 Table); these therapeutics spanned a wide range of targets and

were primarily successful or promising drugs (4 approved, 5 active in Phase III, 1 active in

Phase II, and 2 discontinued).

This result demonstrates that the antibody models within our ‘Public Baseline AML’, with-

out any explicit design, can display high levels of geometric similarity to known therapeutics.

To show that similar binding site residue profiles can also be found by Repertoire Structural

Profiling, we examined ‘Public Baseline’ distinct structure ‘H14012+L14649’ as a case study

(Fig 3).

This structure lies within 0.64Å of the therapeutic Ustekinumab (S7 Table). Examining the

backbone-aligned structures shows this difference lies in slightly different CDR loop structures

assigned to the CDRH2, CDRH3, and CDRL3 loops (Fig 3A). We then examined all 4,911 Fv

sequences assigned to this distinct structure across the ten individuals (S64 through S89), look-

ing for the closest CDR sequence identity matches to Ustekinumab. The most similar of the

155 sequence-unique VH sequences assigned to this distinct structure is shown in Fig 3B.

While both the Ustekinumab and ‘Public Baseline’ VH sequences most closely aligned to the

same V and J genes (IGHV5-51/IGHJ4), the CDRH3 sequences are only 66% sequence identi-

cal, and so would not have been assigned to the same VH clonotype (the typical minimum

threshold is 80% identity as used in Soto et al. [35]). This VH was observed coupled both with

the VL sequence shown in Fig 3B and with the VL sequence shown in Fig 3C. The VL in Fig

3B is more identical across the three CDRs (22/26, 85%), while the one in Fig 3C is closer in

CDRL3 identity but considerably less so in CDRL2 identity. Both these VLs derive from differ-

ent IGKV germlines to the Ustekinumab VL (Ustekinumab: IGKV1D-16, Fig 3B VL: IGHV1-

9, Fig 3C VL: IGKV3-15). Overall, the Fv described in Fig 3B is 75% sequence identical to

Ustekinumab across all 6 CDRs.

This level of sequence and structural similarity between clinical-stage therapeutic antibod-

ies and a representive of the ‘Public Baseline’ structural repertoire suggests that Repertoire

Structural Profiling could prove an effective tool for designing general screening libraries con-

taining promising drug leads.

VH sequence profiling the ‘H14012+L14649’ distinct structure. We performed clono-

typing (80% sequence identity threshold [35]) on the 155 sequence non-redundant VH chains

to determine the diversity of heavy chain clonotypes mapped to the ‘H14012+L14649’ Public

Baseline structure. The VH sequences clustered into 141 distinct clonotypes, whose germline

gene combinations as assigned by ANARCI [37] are shown in S8 Table. As clonotyping condi-

tions on antibodies having the same V and J gene identities, it would never pool these VHs

into a single category. Twelve of the 141 clonotypes have multiple occupancy (S9 Table). Three

clonotypes were found across multiple individuals:

V5-51+ARPYGSGSYSDY+J4: seen in S64, S54, and S76

V5-51+ARQGYGDYVTDY+J4: seen in S67 and S76

V5-51+ARMGARPGYFDY+J4: seen in S89 and S76

This shows how Repertoire Structural Profiling could be used in conjunction with clono-

typing to add geometric support to convergent clones being functionally equivalent. Recently

published methods that can predict paratope similarity across all six CDRs [22, 38] may be

able to find considerably more antibodies within each distinct structure cluster with similar

enough interaction profiles to be functionally equivalent. To facilitate future investigations
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Fig 3. (A) Alignment of the solved Ustekinumab crystal structure (3hmw) and the closest Public Baseline AML structure (H14012

+L14649). (B) Comparison of the Ustekinumab Fv sequence and a Gidoni et al. naïve Fv sequence assigned by Repertoire Structural

Profiling to the H14012+L14649 Public Baseline structure. The North-defined CDR regions of each chain are highlighted in bold.

(C) An alternative VL sequence coupled to the same Gidoni VH sequence. This sequence has a more sequence similar CDRL3 but a

less similar CDRL2.

https://doi.org/10.1371/journal.pcbi.1008781.g003
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into this area, we supply the Fv sequences across all ten individuals assigned to each ‘Public

Baseline’ distinct structure.

Structurally profiling a flu vaccine response

Clonotyping is commonly used in antibody drug discovery to identify ‘expanded clones’—

novel genetic lineages present after vaccination/infection but that were absent, or low concen-

tration, beforehand [14]. Often these expanded lineages are seen across many different indi-

viduals after vaccination, implying particular pathogenic epitopes are ‘immunodominant’—

more susceptible to immune recognition [39–41]. Here, we applied Repertoire Structural Pro-

filing to investigate whether we could identify an analogous public structural response to

vaccination.

To this end, we used a longitudinal 2009 seasonal flu vaccination study by Gupta et al. [5],

in which three unrelated individuals (‘V1-3’) were sequenced at many time-points before and

after vaccination. Sequences were again downloaded from the OAS database, yielding ‘Before

Vaccination’ and ‘After Vaccination’ datasets for each individual, according to the protocol

described in the Methods. Using the same repertoire structural profiling protocol as above, we

calculated the number of distinct structures observed in each individual before and after vacci-

nation (S10 Table).

To obtain an estimate for the degree of structural commonality pre- and post-vaccination,

we again used a greedy clustering approach to evaluate the structural overlap between the

‘Before Vaccination’ datasets, and between the ‘After Vaccination’ datasets, separately (Fig 4A

and 4B). The first dataset in each overlap assessment was the most structurally diverse (i.e. the

‘V3’ individual before vaccination, and ‘V1’ after vaccination).

Again, a significant number of public distinct structures were observed in ‘V1’, ‘V2’, and

‘V3’ (‘Public Before Vaccination’ structures, 17.78% (236,792/1,444,597) of all ‘Before Vaccina-

tion’ distinct structures). This indicates that the identification of ‘Public Baseline’ structures in

the previous section was unlikely due to serendipitous Ig-seq amplification bias. Interestingly,

17.78% is a similar percentage of sharing as that seen after three baseline snapshots (16.12%;

Fig 4. Venn diagrams showing the structural overlap between each individual’s A: ‘Before Vaccination’ dataset, B: ‘After Vaccination’ dataset, and C:

‘Pure After Vaccination’ dataset (distinct structures arising only after vaccination). Total distinct structures: Before Vaccination—1,444,597; After

Vaccination—1,823,628; Pure After Vaccination—1,419,904. V1-V3 = Volunteer 1-3.

https://doi.org/10.1371/journal.pcbi.1008781.g004
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71,743/445,045). For context, the proportion of all clonotypes that were public before vaccina-

tion was just 0.03% (Soto et al. definition [35], S11 Table).

The degree of structural sharing appears to increase after vaccination, with 19.23%

(350,710/1,823,648) public structures across the three volunteers. This is consistent with a

degree of repertoire structural convergence driven by exposure to the same pathogenic epi-

topes and with an increase in the proportion of public clonotypes after vaccination to 0.13%

(S11 Table).

To derive these convergent structures, the structural overlap between each individual’s

‘Before Vaccination’ and ‘After Vaccination’ datasets was measured, only retaining ‘After Vac-

cination’ pairings that could not be clustered into the same individual’s ‘Before Vaccination’

distinct structures. ‘V1’ remained the most structurally diverse dataset, with 628,072 ‘Pure

After Vaccination’ distinct structures. The overlap between these ‘Pure After Vaccination’

pairings (Fig 4C) was then compared. This yielded a mixed picture of convergent and private

vaccination response structures—27.7% (393,187/1,419,904) of distinct structures were shared

with at least one other individual, and 6.18% (87,793/1,419,904) were shared across all three

individuals—which we term ‘Public Response’ structures.

There are two potential causes of overlap in the ‘Pure After’ vaccination set. One is a genu-

ine common structural response to vaccination, while the other is that the initial baseline rep-

ertoire was under-sampled—i.e. the overlap reflects residual shared baseline structures. As a

second test for baseline deviation, beyond absence before vaccination, we compared how

many of the 27,389 ‘Public Baseline’ distinct structures were within 1Å of a ‘Public Before Vac-

cination’ binding site, versus the number within 1Å of a ‘Public Response’ Structure binding

site. We observed that 80.0% (21,922/27,389) of ‘Public Baseline’ structures were within 1Å of

a ‘Public Before Vaccination’ structure, compared to just 24.2% (6,621/27,389) proximal to a

‘Public Response’ structure. This provides further evidence that a proportion of these conver-

gent ‘Public Response’ structures reside in a distinct region of structural space and could har-

bour epitope-specific binding geometries. We have built a ‘Public Response AML’ based on

these 87,793 shared structures, with 74,181 Fvs (84.4%) entirely homology modelled.

Discussion

In this work, we have structurally profiled antibody repertoires to capture new insights into

the baseline and antigen-responding immune system, and to create novel libraries of public

antibody structures that could be exploited for immunotherapeutic discovery.

All of the structural analysis in this paper is limited to the antibody chains that are currently

predicted to be modellable, and so there remain regions of natural structural space uninvesti-

gated and, once these become characterisable, the currently observed proportion of public

structures may become diluted. Despite this, we show that antibody repertoires tend only to

explore highly focused regions of currently-modellable structural space (*10% of the diversity

expected if templates were explored randomly across the same combinations of CDR lengths).

Coupled with our experiment blinding Repertoire Structural Profiling to the most recent

year’s templates, this suggests that a large portion of structural commonality will remain across

the currently unmodellable regions of structural space (although we do expect the number of

‘Public Baseline’ structures with long CDRH3 loops to fall, as modellability may be increasing

this figure).

The enormous sequence diversity exhibited across baseline antibody repertoires has long

appeared to run contrary to the observation of baseline functional commonality—how are

repertoires with such low clonal overlap able to respond in a timely manner to infection, usu-

ally to the same epitopes? Here we have shown that, at least from a structural perspective, there

PLOS COMPUTATIONAL BIOLOGY Antibody repertoire Public Baseline and shared response structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008781 March 1, 2021 13 / 23

https://doi.org/10.1371/journal.pcbi.1008781


is considerable opportunity for functional commonality across the circulating resting-state

repertoires of unrelated individuals (*3% of observed distinct structures are public across 10

individuals). The theoretical chemical diversity that could be displayed on each of these scaf-

folds is large, so many of these grouped binding sites will not be complementary to the same

antigen epitope. However, there is good reason to believe that a certain proportion are, as geo-

metric similarity is a likely prerequisite of functional commonality, and our structural cluster-

ing approach offers a route to detecting and analysing these antibodies. We note that some

edge cases remain in our analysis. It may be possible to identify structurally similar binding

sites that use loops of different lengths through analysis of the resulting AMLs, but they are not

readily detectable during this implementation of the clustering protocol. Antibodies that can

use different CDRs to fit the same epitope via an alternative binding mode are also currently

undetectable using our framework.

Once grouped into public structures, Fvs can then be probed using an array of methods

designed to measure binding residue similarity to identify the subset likely to have common

functionality. For example, finding convergent clonotypes within the public baseline structures

may bolster confidence in their functionally convergent role. Alternatively, methods that do

not condition on predicted antibody genetic origin, such as paratyping [22] or Ab-Ligity [38],

could identify more genetically divergent antibodies capable of binding the same epitope. The

public geometries themselves could also be harnessed in vaccinology, such as identifying an

epitope targetable by a ‘Public Baseline’ structure which may lead to a more reliable and con-

vergent response.

We hypothesise that human ‘Public Baseline’ structures are more likely to display low levels

of human immunogenicity and be versatile binders. Building full three-dimensional variable

domain models of these distinct structures (an Antibody Model Library) produced geometries

that were very close to several approved and late-stage active therapeutic antibodies targeting

diverse antigens. To chemically elaborate this ‘Public Baseline’ structural basis set, an in silico
or phage display library on the order of 106-107 sequence-unique human antibodies could be

created from the many different Fv sequences predicted to adopt each public distinct structure.

Mutations are likely required to optimise the affinity of a ‘Public Baseline’ antibody against a

chosen epitope. If performed randomly, these mutations could negate the benefits of using nat-

ural antibody leads. However, tools such as Hu-mAb can distinguish human sequences from

those of other organisms to extremely high accuracy [42]. Integrating these algorithms into

affinity maturation pipelines to restrict mutations to those that do not decrease sequence

humanness should help to preserve the low immunogenicity of ‘Public Baseline’ lead

antibodies.

Target-focused screening libraries against immunodominant epitopes are commonly

derived through sequence analysis of longitudinal Ig-seq studies that track the immune

response of many individuals to the same antigen. We show that when our methodology is

applied to a longitudinal flu vaccination case study, we detect a higher level of structural con-

vergence, commensurate with response to similar epitopes on the same antigen. We can also

derive a large number of ‘Public Response’ structures, with divergent structural characteristics

from the baseline repertoire. These could contain useful binding site structures exploitable for

antigen-specific library design, and the related antibodies may require less engineering than

‘Public Baseline’ candidates to achieve therapeutic levels of affinity.

Whilst ever we must artificially pair VH/VL sequencing datasets, we cannot conclusively

prove that multiple individuals raised the same Fv binding site geometry in response to vacci-

nation. This could soon be rectified with the advent of single-cell sequencing studies investi-

gating vaccine response dynamics [43]. Repertoire Structural Profiling could readily be
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applied to such data by skipping the combinatorial pairing step, which would be expected to

improve both speed and accuracy.

There are also inevitable biases in structurally profiling human antibody repertoire data to

suggest antibody leads for drug discovery. One such biased property is CDRH3 length: very

short CDRH3 lengths will be under-sampled through their sparsity in natural human

sequences [30], while very long CDRH3 lengths will be under-sampled because they are more

difficult to homology model accurately. While inherent immunogenicity should be diminished

by virtue of using naturally-expressed sequences, other developability issues are still possible,

as not every human antibody has the biophysical properties ideal for large-scale manufacture

and long-term storage [30].

Nevertheless, we believe that our approach should be applicable both for designing in silico/

in vitro screening libraries and in assisting antibody functional annotation. We have made

available the ‘Public Baseline’ and ‘Public Response’ Antibody Model Libraries for further

investigation, and will continue to build and share the Antibody Model Libraries derived from

other unpaired and paired VH+VL datasets in the Observed Antibody Space database [9].

Methods

Immunoglobulin gene sequencing datasets

The cleaned and translated antibody repertoire datasets [5, 31] were downloaded directly from

the Observed Antibody Space (OAS) database [9]. For the Gidoni data [31], only individuals

for whom > 100,000 IgM VH and>100,000 VL sequences were recorded were analysed. In

our analysis of Gupta et al. [5], we used all three individuals (‘V1’ = ‘FV’, ‘V2’ = ‘GMC’, and

‘V3’ = ‘IB’). The ‘Before Vaccination’ data was defined as all VH and VL sequences recorded at

8 days, 2 days and 1 hour before vaccination. The ‘After Vaccination’ data was defined as all

VH and VL sequences recorded at 1 week, 2 weeks, 3 weeks, and 4 weeks after vaccination.

Sequences recorded 1 hour and 1 day after vaccination were discarded to avoid ambiguity. The

‘Pure After Vaccination’ data contained ‘After Vaccination’ sequences that did not fall into the

structural clusters defined by each individual’s ‘Before Vaccination’ repertoires. The seminal

work in which ‘FV’, ‘GMC’, and ‘IB’ were vaccinated is detailed in Laserson et al. [4], however

the data we use derives from Gupta et al. [5], who re-analysed each antibody repertoire snap-

shot with Illumina sequencing.

Repertoire structural profiling pipeline

The described structural profiling pipeline was optimised from the protocol reported in the

Supporting Information of Proc. Natl. Acad. Sci. (2019) 110(6):4025-4030 [30].

CDR modellability analysis. Each sequence was first numbered using ANARCI [37]

according to the IMGT numbering scheme [44], and the closest framework region (variable

domain with North-defined CDRs [32] excised) in the SAbDab [24] database (12th February

2019) was identified. In the IMGT numbering scheme, the North CDRs lie between the follow-

ing residue numbers—CDRH1: 24-40; CDRH2: 55-66; CDRH3: 105-117; CDRL1: 24-40;

CDRL2: 55-69; CDRL3: 105-117.

FREAD [45, 46] was then used to attempt to map each Ig-seq sequence to a length-matched

North CDR template. The FREAD CDR databases were timestamped to 12th February 2019,

and contained the following numbers of templates—CDRH1: 2,526; CDRH2: 2,575; CDRH3:

2,502; CDRL1: 2,355; CDRL2: 2,373; CDRL3: 2,376. Templates were not restricted only to those

with “human” PDB organism assignments for multiple reasons. Antibodies in the PDB are

highly engineered, both through point residue mutations and entire loop transplantation, mean-

ing single organism origin labels are only accurate for a small number of entries. In addition,
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internal benchmarking of FREAD [45, 46] and ABodyBuilder [28] showed that including “non-

human” templates in our FREAD loop databases (particularly the CDRH3 database) leads to

greater structural coverage and a net improvement in CDR structure prediction accuracy. All

loop templates contained the North-defined CDR loop and 5 ‘anchor residues’ before and after

the loop. Selection of CDRH3 templates was performed according to a bespoke set of Environ-

ment-Specific Substitution (ESS) score thresholds established using Ig-seq data: Lengths 5-8,

ESS� 25; Lengths 9-10, ESS� 35; Lengths 11+, ESS� 40 (see S1 Text). Each template surpass-

ing the threshold was subsequently grafted onto the corresponding framework anchor residues.

The loop template with the lowest calculated Cα anchor RMSD was selected. Any sequences for

which at least one loop could not be modelled were removed from the dataset.

Sequence clustering. The modellable chains were then sequence clustered using CD-HIT

[47] at a 90% sequence identity threshold, to reduce the number of VH-VL pairing compari-

sons to a computationally-tractable number.

Predicting modellable VH-VL orientations. The 20 most important VH-VL interface

residues for orientation prediction were derived; a sequence identity of 85% over these 20 resi-

dues resulted in an orientation RMSD of� 1.5Å* 80% of the time (see S1 Text).

All remaining VH and VL domains after sequence clustering were paired together, and

their 20 key interface residues were recorded. If the sequence identity over these residues

was� 85% to at least one of 1,129 reference Fvs, the interface was classed as modellable—oth-

erwise the VH-VL pairing was discarded. If multiple reference Fvs shared� 85% identity, the

predicted modellable VH-VL pairing inherited the orientation parameters of the Fv reference

with highest sequence identity.

Identifying distinct structures. At this stage, each predicted modellable VH-VL pairing

(Fv) has eight associated parameters: its orientation template, its six CDR templates, and a

length vector recording the combination of North CDR lengths [32] present in its binding site.

Fvs were then structurally clustered to identify ‘distinct structures’ according to the following

process. First, identically-predicted binding sites (for which the eight predicted parameters

were the same) were identified. The retained pairing was randomly chosen, except in the over-

lap studies—if one of the pairings was present as a distinct structure of the first dataset, this

pairing was selected and recorded as a shared structure across both repertoires.

Next, singleton length clusters were identified and assigned as separate distinct structures,

avoiding inaccurate RMSD comparisons between loops of differing length. The remaining

interfaces were split by their CDR length combinations, and were greedily clustered with all

other pairings sharing the same length vector as follows:

1. Select the first pairing as a distinct structure (cluster centre).

2. Select the next pairing. If the orientation RMSD to all existing cluster centre orientation

templates exceeds 1.5 Å, classify the new pairing as a distinct structure. Otherwise:

3. Calculate the RMSD between the CDR templates of the new pairing with those of all exist-

ing cluster centres using the formula:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðH1� H3;L1� L3Þ

X D2
X12
LX

PðH1� H3;L1� L3Þ

X LX

v
u
u
t

where the sum over X refers to each of the six CDRs, LX is the length of North CDRX, and

DX12
is the Cα RMSD between the CDRX in Fv 1 and Fv 2. If this value exceeds 1 Å to all

existing structural cluster centres, the pairing is assigned as a distinct structure. Otherwise

the pairing is stripped from the dataset.
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4. Return to step 2 until all pairings have been analysed.

Overlap comparison

To identify shared structures between two Ig-seq repertoire snapshots, the distinct structures

from the first snapshot were listed followed by all predicted modellable Fvs of the second rep-

ertoire snapshot, as an input file to the clustering algorithm. The greedy clustering ensured

that all distinct structures from the first dataset remained as cluster centres, and allowed for

the identification of pairings in the second dataset that were also predicted to occupy the same

structural neighbourhood.

‘Random Repertoires’

To contextualise the structural diversity displayed in human antibody repertoires, we derived

‘Random Repertoires’ (RRs) according to the following method. First, a set of Modellable Rep-

ertoire Structures (MRS) was generated. When generating a structure, one of any of 663 orien-

tation templates, 2,051 CDRH3 templates, and 2,125 CDRL3 templates previously assigned by

FREAD to a human Fv/CDR sequence were available for selection. To mirror the genetics of

the immune system (as they would be encoded on the same V gene transcript), CDR1 and

CDR2 templates were restricted to being selected from the same SAbDab structure, limiting

our choice to one of 789 CDRH1/2 templates and 912 CDRL1/2 templates, again all of which

FREAD had previously assigned to human sequences. Each of these five sets was randomly

sampled over 180 million times to create the MRS dataset. This was then filtered to create 41

Length-Accessible Repertoire Structure (LARS) datasets, containing only the combinations of

CDR lengths observed in each baseline repertoire snapshot. Finally, RRs were created by sam-

pling each LARS set the same number of times as the number of predicted modellable Fvs in

the corresponding baseline repertoire snapshot.

To obtain statistically expected values for structural overlap across individuals, the distinct

structures from ‘RR_S64’ were randomly subsampled the same number of times as the number

of distinct structures seen in ‘S64’ itself, yielding random distinct structure samples occupying

the same proportion of LARS-space. The process was repeated for each RR dataset, normalis-

ing to each respective baseline repertoire snapshot. Overlap comparison was then performed

as described above, starting from the ‘RR_S64’ distinct structures, followed by all the pairings

that fell into the selected ‘RR_S57’ distinct structures, etc.

Clonotyping

Clonotyping was performed to group antibodies with the same closest V and J gene, and either

identical CDRH3 sequences, as in Briney et al. [1], or with CDRH3 sequences within 80%

sequence identity, as in Soto et al. [35].

Antibody model library construction

Antibody model libraries (AMLs) were constructed with a parallel implementation of ABody-

Builder [28], using the FREAD [45, 46] Environment Specific Substitution Scores derived

from Ig-seq benchmarking (see CDR Modellability Analysis). Some predicted modellable Fvs

are not entirely homology modellable, as loop modellability is considered on a per-chain basis

and does not take into account inter-chain loop clashes that become evident only upon full Fv

homology modeling. Fvs that required any degree of ab initio modelling to fix such issues were

trimmed out of the dataset.
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Structural comparison to antibody therapeutics

The set of 89 therapeutics with 100% sequence identical structures (as of November 2019)

were retrieved from Thera-SAbDab [36]. A single structure was chosen for each therapeutic

for the RMSD analysis; if multiple structures were available, we selected unbound structures

with the best resolution. RMSD comparisons were only made between therapeutics and AML

structures with matching combinations of CDR lengths. Fv RMSD was calculated over all Cα

atoms after alignment of backbone atoms, using an in-house script.

Supporting information

S1 Text. Supporting information methods. A description of the methodology used to bench-

mark new ESS thresholds for use on repertoire data, and for evaluating a set of 20 important

interface residues for orientation template assignment.

(PDF)

S1 Fig. ESS benchmarking. The percentage of each FREAD top-ranked CDRH3 templates

with an Environment Specific Substitution Score (ESS) within the labelled bin for (a) a typical

Ig-seq dataset, and (b) the Protein Data Bank (blinded to self). The two sets have very different

distributions; notably Ig-seq datasets rarely contain CDRH3 loops with extremely high ESS

scores to dataset templates.

(PNG)

S2 Fig. Orientation variation for identical Fvs. The distribution of orientation RMSDs

observed between Fvs of identical heavy and light chain sequence. The vast majority (92%)

have orientation RMSDs below 1.5Å
(PNG)

S3 Fig. Orientation RMSD by VH-VL interface identity. Graphs showing the orientation

RMSD observed at each interface sequence identity value for (A) all 52 interface residues and

(b) the 20 most important interface residues. The thresholds for (A) are set at 1.5Å and 82%

sequence identity, while for (B) are set at 1.5Å and 85% sequence identity. The proportions

above the sequence identity threshold and within 1.5Å orientation RMSD are 80.2% (982/

1224) and 77.8% (954/1227) respectively.

(PNG)

S4 Fig. The Repertoire Structural Profiling algorithm. Heavy (VH) and light (VL) chain

sequences from a repertoire snapshot are first analysed separately for their FREAD modellabil-

ity (unmodellable chains are crossed out). They are then clustered by sequence identity using

CD-HIT (90% threshold) for computational tractability. All VH and VL cluster centre chains

are subsequently paired, and VH-VL orientations that cannot reliably modelled are removed

(again shown by crosses). Finally, predicted modellable Fvs with identical combinations of

CDR lengths are structurally clustered to identify ‘distinct structures’.

(PNG)

S5 Fig. CDR length distributions for S64 antibodies assigned to ‘Public’ vs. ‘Private’ struc-

tures. Bar charts comparing the (A) CDRH3 lengths, (B) CDRL3 lengths, (C) Combined

CDRH3+CDRL3 lengths of S64 sequences assigned to ‘Public Baseline’ structures (blue)

against those assigned to ‘Private Baseline’ structures (orange).

(PNG)

S6 Fig. Germline distributions for S64 antibodies assigned to ‘Public’ vs. ‘Private’ struc-

tures. Histograms comparing the (A) closest IGHV germline sequence identity, and (B) closest
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IGKV/IGLV germline sequence identity of S64 sequences assigned to ‘Public Baseline’ struc-

tures (blue) against those assigned to ‘Private Baseline’ structures (orange).

(PNG)

S7 Fig. Germline family pairings in the ‘Public Baseline’ AML. A heatmap showing IGHV:

IGKV/IGLV gene family pairings across the ‘Public Baseline’ structures. The usage trends are

consistent with the natural pairings observed in DeKosky et al. [11].

(PNG)

S1 Table. VH-VL interface residues. The 52 heavy and light chain residues tending to lie in

the heavy-light chain interface. Residue numbers in bold were determined to be amongst the

five most important in the Random Forest regression model when predicting the six different

ABangle parameters.

(PNG)

S2 Table. Applying Repertoire Structural Profiling to baseline repertoire samples. Struc-

turally profiling the baseline repertoire snapshots of 41 unrelated individuals. In order, the col-

umns show: the dataset label, the number of VH and VL reads within each snapshot, the

number of FREAD-modellable VH and VL reads (once clustered at 90% sequence identity),

the number of predicted modellable Fvs resulting from these VH-VL pairings, and the number

of distinct structures (cluster centres) identified in each dataset. SIC = Sequence Identity Clus-

tered.

(PNG)

S3 Table. Evaluating the number of ‘Public Baseline’ distinct structures. Evaluating the

number of public distinct structures seen across multiple baseline repertoire snapshots. In

order, the columns show: the number of repertoires compared (in brackets the identifier of the

last dataset added), the number of predicted modellable Fvs added by the last dataset, the num-

ber of distinct structures added by the last dataset, the (cumulative) number of public and pri-

vate distinct structures across all compared repertoires, and the number of proportion of these

structures that are public. The sharp drop-off in the proportion of public structures in the final

four repertoire snapshots can be rationalised by their substantially lower internal structural

diversity (see Table 2).

(PNG)

S4 Table. Baseline repertoire shared clonotypes. Tracking the number of public clonotypes

shared across all naïve baseline datasets analysed up to that point (e.g. 358 clonotypes are pres-

ent in S64, S57, and S5 according to the Soto V3J definition).

(PNG)

S5 Table. Cumulative baseline repertoire structures identified. Tracking the total number

of public and private distinct structures seen across multiple baseline repertoire snapshots. In

order, the columns show: the number of repertoires compared (in brackets the identifier of the

last dataset added), the cumulative number of predicted modellable Fvs, the number of public

and private distinct structures seen across all compared repertoires, and the expected number

of cumulative public and private distinct structures if new distinct structures were observed at

the same rate per modellable Fv as seen in S64.

(PNG)

S6 Table. FREAD templates per ‘Public Baseline’ distinct structure. The median numbers

of unique FREAD templates assigned to each CDR within a ‘Public Baseline’ distinct structure.

(PNG)
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S7 Table. Structural comparison of ‘Public Baseline’ AML to clinical-stage therapeutics.

The eleven clinical-stage therapeutic antibodies with a solved crystal structure within 0.75Å
variable domain (Fv) root-mean-squared deviation (RMSD) of an antibody model structure

from the Public Baseline Antibody Model Library (PB AML). The first column records the Fv

identifier for the geometrically closest AML model to each of the eleven therapeutics listed in

column 2. Column 3 provides the Protein Data Bank (PDB) identifier for each chosen thera-

peutic structure (chain identifiers in brackets). The corresponding RMSD is provided in col-

umn 4; all RMSD comparisons were made between AML structures and therapeutics with an

identical combination of CDR lengths. This combination of North-defined CDR lengths is

then listed in the order H1-H2-H3-L1-L2-L3. Finally, the target for each therapeutic

antibody is recorded. PDB = Protein Data Bank; VH = variable heavy chain; VL = variable

light chain; Fv = Fragment variable region; RMSD = root-mean-squared deviation;

CDR = Complementarity-Determining Region. Antigens: CD—Cluster of Differentiation pro-

tein, NGFB—Nerve Growth Factor B, IL—interleukin, TSLP—Thymic Stromal Lymphopoie-

tin, APP—Amyloid Precursor Protein, MIF—Macrophage Migration Inhibitory Factor, IGHE

—Immunoglobulin Heavy Constant Epsilon.

(PNG)

S8 Table. Different clonotypes are mapped to the same distinct structure. The diversity of

IGHV/IGHJ gene combinations represented across the 141 VH clonotypes assigned by Reper-

toire Structural Profiling to the ‘H14012+L14649’ ‘Public Baseline’ distinct structure.

(PNG)

S9 Table. Multiple occupancy clonotypes assigned to the same distinct structure. The 12

multiple-occupancy VH clonotypes assigned by Repertoire Structural Profiling to the ‘H14012

+L14649’ ‘Public Baseline’ distinct structure.

(PNG)

S10 Table. Applying Repertoire Structural Profiling to baseline repertoire samples. Struc-

turally profiling the ‘Before Vaccination’ (Before) and ‘After Vaccination’ (After) repertoire

snapshots of three unrelated individuals (V1, V2, and V3). In order, the columns show: the

dataset label, the number of VH and VL reads within each snapshot, the number of FREAD-

modellable VH and VL reads (once clustered at 90% sequence identity), the number of pre-

dicted-modellable Fvs resulting from these VH-VL pairings, and the number of distinct struc-

tures (cluster centres) identified through greedy structural clustering. SIC = Sequence Identity

Clustered.

(PNG)

S11 Table. Flu vaccination repertoire shared clonotypes. Tracking the number of public clo-

notypes shared across all “Before Vaccination” (Before) datasets and all “After Vaccination”

(After) analysed up to that point (e.g. 272 clonotypes are public across V1, V2, and V3 accord-

ing to the Soto V3J definition). The Briney definition clusters CDRH3s at 100% sequence iden-

tity and same V/J genes, while the Soto Definition clusters CDRH3s at 80% sequence identity

and same V/J genes.

(PNG)
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Cell Receptor Repertoires along the B-cell Differentiation Axis in Humans and Mice. PLoS Comput Biol

2020; 16(2):e1007636. https://doi.org/10.1371/journal.pcbi.1007636 PMID: 32069281

28. Leem J, Dunbar J, Georges G, Shi J, Deane CM. ABodyBuilder: Automated antibody structure predic-

tion with data-driven accuracy estimation. mAbs. 2016; 7(8):1259–1268.

29. Schritt D, Li S, Rozewicki J, Katoh K, Yamashita K, Volkmuth W, et al. Repertoire Builder: high-through-

put structural modeling of B and T cell receptors. Mol Syst Des Eng. 2019; 4:761–768. https://doi.org/

10.1039/C9ME00020H

30. Raybould MIJ, Marks C, Krawczyk K, Taddese B, Nowak J, Lewis AP, et al. Five computational devel-

opability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci USA. 2019; 116(10):4025–

4030. https://doi.org/10.1073/pnas.1810576116 PMID: 30765520

31. Gidoni M, Snir O, Peres A, Polak P, Lindeman I, Mikocziova I, et al. Mosaic deletion patterns of the

human antibody heavy chain gene locus shown by Bayesian haplotyping. Nat Commun. 2019; 10:628.

https://doi.org/10.1038/s41467-019-08489-3 PMID: 30733445

32. North B, Lehmann A, Dunbrack RL Jr. A New Clustering of Antibody CDR Loop Conformations. J Mol

Biol. 2011; 406(2):228–256. https://doi.org/10.1016/j.jmb.2010.10.030

33. Morea V, Tramontano A, Rustici M, Chothia c, Lesk AM. Conformations of the third hypervariable region

in the VH domain of immunoglobulins. J Mol Biol. 1998; 275(2):269–294. https://doi.org/10.1006/jmbi.

1997.1442

PLOS COMPUTATIONAL BIOLOGY Antibody repertoire Public Baseline and shared response structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008781 March 1, 2021 22 / 23

https://doi.org/10.1016/j.cell.2019.11.003
https://doi.org/10.1016/j.cell.2019.11.003
http://www.ncbi.nlm.nih.gov/pubmed/31787378
https://doi.org/10.3389/fimmu.2019.00899
https://doi.org/10.1186/s13073-015-0243-2
https://doi.org/10.4049/jimmunol.1700594
http://www.ncbi.nlm.nih.gov/pubmed/28924003
https://doi.org/10.3389/fphar.2019.00847
https://doi.org/10.3389/fphar.2019.00847
http://www.ncbi.nlm.nih.gov/pubmed/31417405
https://doi.org/10.1177/1087057109343206
http://www.ncbi.nlm.nih.gov/pubmed/19726786
https://doi.org/10.4049/jimmunol.1700172
https://doi.org/10.4049/jimmunol.1700172
http://www.ncbi.nlm.nih.gov/pubmed/28566371
https://doi.org/10.1074/mcp.RA119.001633
https://doi.org/10.1074/mcp.RA119.001633
https://doi.org/10.1080/19420862.2020.1869406
https://doi.org/10.1080/19420862.2020.1869406
http://www.ncbi.nlm.nih.gov/pubmed/33427589
https://doi.org/10.3389/fimmu.2017.01753
https://doi.org/10.3389/fimmu.2017.01753
https://doi.org/10.1093/nar/gkt1043
http://www.ncbi.nlm.nih.gov/pubmed/24214988
https://doi.org/10.1080/17460441.2018.1465924
https://doi.org/10.3389/fimmu.2018.01698
http://www.ncbi.nlm.nih.gov/pubmed/30083160
https://doi.org/10.1371/journal.pcbi.1007636
http://www.ncbi.nlm.nih.gov/pubmed/32069281
https://doi.org/10.1039/C9ME00020H
https://doi.org/10.1039/C9ME00020H
https://doi.org/10.1073/pnas.1810576116
http://www.ncbi.nlm.nih.gov/pubmed/30765520
https://doi.org/10.1038/s41467-019-08489-3
http://www.ncbi.nlm.nih.gov/pubmed/30733445
https://doi.org/10.1016/j.jmb.2010.10.030
https://doi.org/10.1006/jmbi.1997.1442
https://doi.org/10.1006/jmbi.1997.1442
https://doi.org/10.1371/journal.pcbi.1008781


34. Kuroda D, Shirai H, Kobori M, Nakamura H. Structural classification of CDR-H3 revisited: a lesson in

antibody modeling. Proteins. 2008; 73(3):608–620. https://doi.org/10.1002/prot.22087

35. Soto C, Bombardi RG, Branchizio A, Kose N, Matta P, Sevy AM, et al. High frequency of shared clono-

types in human B cell receptor repertoires. Nature. 2019; 566:398–402. https://doi.org/10.1038/s41586-

019-0934-8 PMID: 30760926

36. Raybould MIJ, Marks C, Lewis AP, Shi J, Bujotzek A, Taddese B, et al. Thera-SAbDab: the Therapeutic

Structural Antibody Database. Nucleic Acids Res. 2020; 48(D1):D383–D388. https://doi.org/10.1093/

nar/gkz827 PMID: 31555805

37. Dunbar J, Deane CM. ANARCI: antigen receptor numbering and receptor classification. Bioinformatics.

2016; 32(2):298–300.

38. Wong WK, Robinson SA, Bujotzek A, Georges G, Lewis AP, Shi J, et al. Ab-Ligity: Identifying

sequence-dissimilar antibodies that bind to the same epitope. mAbs. 2021; 13(1):1873478. https://doi.

org/10.1080/19420862.2021.1873478 PMID: 33448242

39. Mordasini F, Vogt H-R, Zahno M-L, Maeschli A, Nenci C, Zanoni R, et al. Analysis of the Antibody

Response to an Immunodominant Epitope of the Envelope Glycoprotein of a Lentivirus and Its Diagnos-

tic Potential. J Clin Microbiol. 2006; 44(3):981–991. https://doi.org/10.1128/JCM.44.3.981-991.2006

PMID: 16517887

40. Mukherjee S, Tworowski D, Detroja R, Mukherjee SB, Frenkel-Morgenstern M. Immunoinformatics and

Structural Analysis for Identification of Immunodominant Epitopes in SARS-CoV-2 as Potential Vaccine

Targets. Vaccines. 2020; 8(2):290. https://doi.org/10.3390/vaccines8020290

41. Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, et al. Potent neutraliz-

ing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020; 369

(6504):643–650. https://doi.org/10.1126/science.abc5902 PMID: 32540902

42. Chin M, Marks C, Deane CM. Humanization of antibodies using a machine learning approach on large-

scale repertoire data. BioRxiv:2021.01.08.425894v1 [Preprint] 2021 [Cited 2021 Jan 20]. Available

from: https://www.biorxiv.org/content/10.1101/2021.01.08.425894v1

43. Horns F, Dekker CL, Quake SR. Memory B Cell Activation, Broad Anti-influenza Antibodies, and

Bystander Activation Revealed by Single-Cell Transcriptomics. Cell Rep. 2020; 30(3):905–913. https://

doi.org/10.1016/j.celrep.2019.12.063
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