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Active tuberculosis remains the leading cause of death among the HIV-1 seropositive  

individuals. Although significant success has been achieved in bringing down the num-  

ber of HIV/AIDS-related mortality and morbidity following implementation of highly active  

anti-retroviral therapy (HAART). Yet, co-infection of Mycobacterium tuberculosis (Mtb) has  

posed severe clinical and preventive challenges in our efforts to eradicate the virus from the  

body. Both HIV-1 and Mtb commonly infect macrophages and trigger production of host  

inflammatory mediators that subsequently regulate the immune response and disease
 

 
pathogenesis.These inflammatory mediators can impose beneficial or detrimental effects

 
on each pathogen and eventually on host. Among these, inflammatory C–C chemokines

 
play a central role in HIV-1 and Mtb pathogenesis. However, their role in lung-specific

 
mechanisms of HIV-1 and Mtb interaction are poorly understood. In this review we high-  
light current view on the role of C–C chemokines, more precisely CCL2, on HIV-1: Mtb  
interaction, potential mechanisms of action and adverse clinical consequences in a setting  

HIV-1/Mtb co-infection. Targeting common chemokine regulators of HIV-1/Mtb pathogen-  

esis can be an attractive and potential anti-inflammatory intervention in HIV/AIDS-related  

comorbidities.  
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INTRODUCTION
According to United Nations Program on HIV/AIDS (1)
nearly 14 million individuals are living with HIV-1/ Mycobac-
terium tuberculosis (Mtb) co-infection (http://www.unaids.org/
documents/20101123_GlobalReport_Chap2_em.pdf ), estimating
around 26% of HIV/AIDS-related deaths each year (2). The host
immune response elicited against these pathogens can impose
beneficial or detrimental effects on each other and the host.
HIV/AIDS is characterized by severe immune dysfunction asso-
ciated with marked reduction in CD4+ T cell counts and high
plasma HIV-1 viral load. Under such immune-deficient condition
HIV-1+ individuals become susceptible to infection by oppor-
tunistic pathogens, including Mtb. Pathologically, both HIV-1 and
Mtb infect alveolar macrophages in a setting of pulmonary co-
infection. Seminal contributions have been made in past decades
to understand the role of host derived soluble factors in HIV-1 and
Mtb mono-infections (3–8), while lesser is known in HIV-1/Mtb
co-infection setting. Nonetheless, clinical data has supported the
production of some of the common soluble factors induced by
these pathogens. For example production of pro-inflammatory
mediators like IFN-γ, TNF-α, and CCL2 (MCP-1) by both HIV-1
and Mtb contribute significantly in disease control.

Chemokines are small molecular weight proteins involved in
immuno-regulatory and inflammatory functions (9, 10). Based
on their N-terminal cysteine residues they are categorized into:
C–, C–C, C–X–C, and C–X3–C sub-families (10, 11). However,

based on function additional classification has also been suggested
into homeostatic or inflammatory chemokines (9). For example,
homeostatic C–C chemokines such as CCL19 and CCL21 con-
trol homing of CCR7+ dendritic cells (DCs) and lymphocytes
in the secondary lymphoid organs for optimal immune reac-
tions (11). While inflammatory chemokines, CCL3 (MIP-1α),
CCL3 (MIP-1β), CCL5 (RANTES), CXCL8 (IL-8), CXCL9 (MIG),
CXCL10 (IP-10), and CXCL11 (I-TAC) participate in inflamma-
tion, autoimmune disorders, and malignancies (12–16). The pro-
inflammatory chemokine CCL2 is linked to a number of human
acute and chronic viral infections including HIV-1 (3, 17, 18).
In addition to HIV-1+ individuals, a higher CCL2 levels are also
detected in the broncho alveolar lavage (BAL) fluid of pulmonary
TB patients (19) and pleural fluid of both HIV-1 infected and un-
infected patients (20). Thus induction of CCL2 by both pathogens
is an interesting aspect that needs to be addressed in a setting of
HIV-1/Mtb co-infection.

The most striking feature of Mtb infection is the forma-
tion of granuloma, a highly organized cellular structure com-
posed of macrophages, T cells, NK cells, B-cells, neutrophils, and
DCs. Functionally granuloma restricts the Mtb bacilli within this
specialized microenvironment. Several hypotheses are drawn to
describe the mechanism by which HIV-1 increases the risk of
TB reactivation. Some of the potential mechanisms include (1)
persistent HIV-1 replication in the lung causes immune dys-
function (20). (2) HIV-1 induced CD4+ T cell apoptosis and
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subsequent granuloma disruption (21). (3) Depletion of Mtb-
specific CD4+ T cells by HIV-1 increases the risk of latent TB
reactivation (22, 23). Most of the previous studies pertaining to
host derived soluble factors in HIV-1/Mtb co-infection highlighted
the cytokines with limited information on chemokines. Since
the chemokine biology itself is a large area and to discuss
the relevance of each chemokine sub-families is beyond the
scope of current review. Thus, we focus on most relevant C–C
chemokines associated with each pathogen and in a setting of
HIV-1/Mtb-co-infection.

CHEMOKINES IN HIV-1 PATHOGENESIS AND DISEASE
PROGRESSION
HIV-1 induced inflammatory chemokines exhibit dual function.
For example, C–C chemokine CCL3, CCL4, CCL5, and C–X–C
chemokine CXCL12 (SDF-1α) function to block the entry of R5
and R4 HIV-1 strains (24–26) thereby preventing HIV-1 replica-
tion. While another C–C family member, CCL2 has been suggested
to support HIV-1 replication (3, 17, 18). The most compelling evi-
dence in support of chemokines in HIV-1 pathogenesis is exhibited
by the individuals homozygous for 32 bp-CCR5 deletion confer-
ring resistance toward HIV-1 (27) and recently reported stem cell
transplant study from individual with 32 bp-CCR5 deletion to
HIV-1 infected patient showing a long-term HIV-1 control (28).
Thus early production of above suppressive chemokines in the
lymph nodes can benefit host by restricting HIV-1 dissemination
(29). This unique feature of HIV-1 suppressive chemokines made
the basis of developing CCR5 antagonist Maraviroc, which has
now progressed to clinical practice (30).

CCL2, is a strong chemo-attractant of CCR2+ mono-
cytes/macrophages and CD4+T cells (9, 10). In human peripheral
blood, CCL2 is mainly produced by circulating monocytes, in par-
ticular by the CD14+ CD16+ inflammatory monocyte subsets
of HIV-1 patients (3, 31). Clinical data including ours showed
an elevated CCL2 levels in the serum and cerebrospinal fluid
(CSF) and that significantly correlates with plasma viral load of
HIV-1 patients (3, 18, 32–34). Further we showed a selective up-
regulation CCL2 mRNA and serum CCL2 by HIV-1 viremic than
aviremic patients (3), suggesting differential CCL2 response by
host depends on the status of HIV-1 replication. This observation
was further strengthened in a case study where a highly viremic
HIV-1+ patient who received a short-term prednisolone treat-
ment for severe uveitis, displayed a drastic viral load reduction
paralleled with declined CCL2 expression (35). Another evidence
supporting the association of viremia with CCL2 production is
recently reported in the CSF specimens of “Elite controllers” (EC)
(36). ECs are a rare group of HIV-1+ individuals with persis-
tently suppressed viral load (37). Strikingly, both EC and HIV-
negative individuals show lower level of serum CCL2 compared
to HIV-1+ individuals. Based on our own and others findings
a hypothetical model on impact of CCL2 in HIV-1 pathogene-
sis is described elsewhere (4, 17). This explains (1) recruitment
of HIV-1 permissive monocytes/macrophages and CD4+ T cells
at the site of infection for new rounds of replication (feed-
back loop model), (2) induction of HIV-1 co-receptor CXCR4
by CCL2 (38), (3) CCL2-mediated polarization of helper T cell
(Th0) toward Th2 phenotype (39), (4) IL-4 induction CXCR4

expression on resting CD4 T cells (40), and (5) enhanced HIV-
1 progeny release by CCL2 (34). Thus, a selective inhibition of
CCL2 could provide an attractive anti-inflammatory intervention
in HIV/AIDS.

CHEMOKINES IN M. TUBERCULOSIS INFECTION
It is well established now that Mtb infection can occur through-
out the course of HIV-1 infection (2) and that eventually
results in diagnostic and preventive challenges. The protective
immunity against Mtb is mainly driven by CD4+ T cells and
macrophages, supported by a network of inflammatory cytokines
and chemokines. Among these IFN-γ and TNF-α are the two
major cytokines conferring protective immunity against Mtb (41).
TNF-α, in addition to macrophage activation also induces secre-
tion of several C–C and C–X–C chemokines including CCL2 (42,
43). Availability of animal models including mice, guinea pig, and
non-human primate (NHP) have immensely contributed to our
understanding of inflammatory reactions in Mtb infection (21).
For example in murine model of Mtb infection, secretion of C–X–
C chemokines, CXCL3, and CXCL5 (44) lead to influx of CXCR2+
neutrophils and NK cells while CXCL13 (45) recruits follicular
helper (Tfh) CXCR5+ T cell into lung to provide immune protec-
tion against TB (46). Similarly, chemokine CCL5 tends to play an
important role in T cell priming by recruiting lymphocytes into
the lung, thereby helping in controlling murine Mtb infection.
Recent study on BAL samples of HIV-1/Mtb co-infected patients
showed a significant correlation of viremia with CCL5 and its
receptor CCR5 (47) suggesting persistent HIV-1 replication in the
lung drives activation of local T cells as evident by high expression
of CCR5 in HIV/latent Mtb co-infection.

Owing to its strong chemotactic and pro-inflammatory proper-
ties, CCL2 has been shown to participate in granuloma formation
(48) and to certain extent protection against Mtb (49). While
other Mtb-induced C–C chemokine CCL3, CCL4, and CCL5 has
been described to inhibit bacilli growth (50). Among the C–X–C
chemokine, CXCL8 (IL-8), is reported to be the most important
soluble factor which got elevated and recruits monocytes and lym-
phocytes in the lung of TB patients (51). Looking closely on CCL2
role in Mtb infection, studies have described induction of CCL2
by both the BCG and Mtb in in vitro as well as in BCG vacci-
nated individuals in vivo (52). Interestingly, a high CCL2 level was
found to be associated with disease severity of TB patients (52).
In addition to pathogen and induced soluble factors, host genetic
make-up is considered as key factor in determining the Mtb infec-
tion susceptibility and progression to active TB. Recent population
genetics studies have described the association of CCL2 polymor-
phism and TB disease. For example individuals with CCL2-2518G
allele show significant association with risk of developing active
TB in Asian and Hispanic population (53).

POTENTIAL IMPACT OF Mtb-INDUCED CCL2 IN HIV-1
PATHOGENESIS
Previous studies have described the exploitation of lung and
pleura-specific cellular environment by HIV-1 for replication
and subsequent induction of inflammatory mediators such as
CCL2 (19). In pulmonary TB infection, bacilli enter the lung
via respiratory pathway which are subsequently encountered and
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phagocytosed by alveolar macrophages and DC (20). During
this event activated macrophages secrete TNF-α to control Mtb
bacilli growth (54). It is should be noted that TNF-α is also
known to activate HIV-1 replication (55), that means the detri-
mental effects of one pathogen proving beneficial to the other.
Nevertheless, Mtb has been shown to induce HIV-1 replica-
tion in acutely and chronically infected macrophages or T cells
(56) as well as in alveolar macrophages and lymphocytes of
HIV-1 infected individuals (57, 58). These effects are clinically
displayed as high viral load in the plasma of HIV-1/Mtb co-
infected (59, 60) as well as in BAL (61) of TB patients, suggesting
Mtb could support HIV-1 replication by manipulating the lung
microenvironment.

A hypothetical model based on available data can be is sum-
marized (Figure 1). Firstly recruitment of HIV-1 permissive
CCR2+ monocytes/macrophages and CD4+ T cells (20) by

CCL2 released from Mtb-infected alveolar macrophages (55, 62)
increases the risk of HIV-1 infection. Secondly, CCL2-mediated
activation of HIV-LTR (long-terminal repeats) as shown in
infected macrophages and CD4+T cells (63) also results in induc-
tion of pro-inflammatory genes such as TNF-α, CCL2, and IL-6
(59, 60), that mean CCL2–CCR2 axis has dual effects on HIV-1
infected cells by inducing HIV-LTR and pro-inflammatory genes.
Studies have also shown, activation of latent HIV-1 by Mtb-
purified protein derivatives (PPD) in the alveolar macrophages
of infected patients (64). Thus, one can argue that both CCL2 and
bacilli can affect the HIV-1 replication in HIV-1/Mtb co-infection
scenario (Figure 1). A number of studies have described Mtb-
derived products to trans-activate HIV-LTR coupled with pro-
inflammatory genes expression upon recognition by cell surface
molecules (Figure 1). This event is regulated by several innate
molecular signaling pathways (6) including MAPKinases, NFkB,

FIGURE 1 | Proposed mechanisms of reciprocal effects of
CCL2-mediated immuno-pathogenesis of HIV/Mtb co-infection. HIV-1
infection of alveolar macrophage releases CCL2 that recruits
monocytes/macrophages and CD4+T cells at the site of infection hence
increase the pool of HIV-1 permissive cells for new round of replication-the
feed-back loop model (4, 17) eventually persistence of a high viremia in the
BAL. CCL2 can acts on resting CD4+T cells to induce expression of HIV-1
co-receptor CXCR4, thereby rendering them susceptible to infection by X4
strains (38). CCL2 known to trigger differentiation of Th0 toward Th2
phenotype (39) via CCL2–CCR2 axis. Therefore, in the lung a high CCL2
creates a Th2 dominant environment that presumably suppresses
Mtb-specific Th1 response. Persistence HIV-1 replication and high viremia in
the lung impairs the macrophage and CD4+T cell effector function against
Mtb. Most importantly, the targeted apoptosis of CD4+T cells leads to
granuloma disruption leading to reactivation and dissemination of latent TB

(21). On other hand secretion of CCL2 by Mtb infection may shares the
similar effects like cellular recruitment, CXCR4 induction, and suppression of
Mtb-specific Th1 immune response very much similar to those imposed by
HIV-1. In addition to CCL2, Mtb and its cell wall constituents like
lipo-arabinomannan (LAM), phosphatidylinositol (PIM), lipomannan (LM), and
19-kD Mtb protein (56), the 38-kD glycoprotein and HSP70 recognition by
TLR4 (66) proline–proline-glutamic acid (PPE) protein Rv1168c (67, 68) by
pattern recognition receptor (PPR) and C-type lectin receptor (69) result in
secretion of pro-inflammatory cytokines and chemokines including TNF-α (5),
CCL2 (54, 70, 71), IL-1α/β (5, 72), IFN-γ (56, 73), and IL-6 (74–76) that can
trigger HIV-1 replication by activating HIV-LTR of the infected macrophages or
CD4+T cells eventually a high viremia. While the secreted inflammatory
molecules can act in autocrine manner to activate HIV-LTR. Thus, productions
of these inflammatory mediators lead to local immune reaction that
eventually enhances the severity of HIV/Mtb comorbidity.
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C/EBPs, and very recently identified NFAT5 (65). A sustained
and prolonged activation of signaling pathways and subsequent
secretion of inflammatory mediators including CCL2 may cause
chronic inflammation and that may prove fatal to HIV-1/Mtb
co-infected individuals.

HIV-INDUCED CCL2 IN LATENT TB REACTIVATION AND
PATHOGENESIS
As estimated nearly one third population of world is living with
Mtb infection and individuals with HIV/AIDS are at high risk of
developing active TB (77). Entry of Mtb bacilli into the lung, trig-
ger early immune response where DC captures Mtb and migrate
to nearby draining lymph nodes to start Mtb-specific adaptive
immune responses (78). This leads to activation, expansion, and
functional maturation of Mtb-specific CD4+ T cells that home to
the site of primary infection in lung and activates innate immune
cells such as macrophages to release IFN-γ and TNF-α to con-
trol infection (55, 79). Some of the potential mechanisms by
which HIV-1 facilitate Mtb pathogenesis are, up-regulation of Mtb
receptor on macrophages (80, 81), impaired leukocyte recruitment
(82), altered Th1/Th2 balance (83), and impaired TNF-α mediated
macrophage apoptosis (84). In fact, the greater impact of HIV-1
in Mtb disease is the reactivation of latent TB by disruption of
granuloma, a feature commonly associated with immune com-
promised conditions such as HIV/AIDS (85). Based on in vitro
and ex vivo clinical findings some of the potential pathways by
which HIV-1 induced CCL2 can contribute to TB reactivation
and associated pathology (Figure 1) include (1) HIV-1 infected
alveolar macrophages secreted CCL2 recruits CCR2+ leukocytes
including macrophages, CD4+ T cells, and NK cells to partici-
pate in immune reactions. This gives HIV-1 opportunity to infect
and replicate within these freshly recruited permissive cells result-
ing in high viremia as detected in the BAL fluid of HIV-1/Mtb
co-infected patients (7, 21, 86, 87). (2) Persistence of high HIV-
1 viremia causes macrophage dysfunction to kill Mtb (20). (3)
Entry of HIV-1 into granuloma causes CD4+ T cell apoptosis,
depletion, and disorganization of granuloma (85, 88, 89), result-
ing in Mtb dissemination associated with extra-pulmonary TB
manifestations. (4) IFN-γ producing CD4+ T cells are crucial for
Mtb control (21) thus, depletion of Mtb-specific CD4+ T cells by
HIV-1 certainly is an important factor to increase the risk of latent
TB reactivation (80, 81). (5) Given that CCL2 favors Th2 response
which is evident from CCL2−/−mice that confer resistance against
parasitic infection (22, 23) under this scenario, a higher CCL2
level in the BAL of HIV-1/Mtb patients (39) will generate a Th2
dominant environment that presumably suppresses Mtb-specific
IFN-γ mediated Th1 immunity (Figure 1). Taken together, this
hypothetical model explains the CCL2 mediated on-going lung-
specific HIV-1 and Mtb interplay and a mechanistic insight how
HIV-1 and Mtb reciprocate each other in a setting of HIV-1/Mtb
co-infection.

IRIS ASSOCIATED COMPLICATIONS IN HIV-1/Mtb
CO-INFECTION
Although highly active anti-retroviral therapy (HAART) dramat-
ically declines the HIV/AIDS-associated morbidity and mortality

by restoring CD4 T cell counts in HIV-1 infected individuals but
an unwanted phenomena of immune reconstitution inflammatory
syndrome (IRIS) hampers the successful treatment of HIV-1/Mtb
co-infection (90, 91). There are two forms of TB-IRIS, the “para-
doxical” which occurs in patient receiving anti-TB drugs before
HAART and “unmasking” TB-IRIS in patients with initiation of
HAART without prior clinical symptoms of TB (92). Despite seri-
ous clinical efforts, the pathogenic mechanism of IRIS is largely
unknown. Some of the most widely accepted potential mecha-
nisms includes (a) the magnitude of immune restoration, (b) the
antigenic burden, and (c) the host genetic susceptibility. Moreover,
early prediction of developing either forms of IRIS may bene-
fit susceptible individuals by introducing preventive approaches.
In this regard, some of the predictive chemokine markers such
as CCL2, CXCL8, and CXCL10 have been suggested (93). Of
which, the pro-inflammatory CCL2 is argued as a strong predictor
of TB-IRIS in HIV patients after commencing HAART. Further
studies are required to understand the mechanism and identifica-
tion of a set of biomarkers to predict IRIS for improved disease
management.

CONCLUSION AND PERSPECTIVES
As a major public health issue it is critical to understand and
exploit the beneficial and detrimental effects imposed by each
pathogen on host survival in a situation of HIV-1/Mtb co-
infection. Under this complex scenario, inflammatory mediators
tend to play pivotal role in containing pathogens and disease
progression. Although Mtb-specific CD4+ T cells are critical
for controlling active TB at the same time they are prone to
attack by HIV-1 (20). Therefore, in addition to reconstitution
of CD4+ T cells by anti-retroviral and anti-TB therapy regi-
mens, strategies should be developed to reduce CCL2 expression
to contain severity of co-infection. Due to ethical limitations, a
direct study on HIV-1/Mtb co-infected individuals is not feasi-
ble, animal models could prove an alternative and valuable tool
for such studies. Efforts have been made in this regard to gener-
ate CD4+ T cell-deficient mouse model mimicking HIV/AIDS-
associated features (81) and humanized mice (94) to study HIV-1
pathogenesis and behavior within granuloma (95). Moreover,
several NHP models of HIV-1/Mtb co-infection have also been
developed (96) including new cynomolgus macaque model to
address SIV induced reactivation of latent TB (86, 97, 98). Fur-
ther studies focusing CCL2 in these animal models will allow
us to unravel the mechanism of CCL2-mediated co-infection
pathogenesis and consequences of HIV-1: Mtb interactions on
disease outcome. We hope this will lead to manipulate CCL2
as an anti-inflammatory intervention point in HIV/AIDS-related
comorbidities.
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