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Delaissé J-M, Marchi FA and
Rogatto SR (2022) Interplay Between

Immune and Cancer-Associated
Fibroblasts: A Path to Target

Metalloproteinases in Penile Cancer.
Front. Oncol. 12:935093.

doi: 10.3389/fonc.2022.935093

ORIGINAL RESEARCH
published: 19 July 2022

doi: 10.3389/fonc.2022.935093
Interplay Between Immune and
Cancer-Associated Fibroblasts: A
Path to Target Metalloproteinases in
Penile Cancer
Sarah Santiloni Cury1,2,3†, Hellen Kuasne1,4,5†, Jeferson dos Santos Souza3,
Juan Jose Moyano Muñoz5,6, Jeyson Pereira da Silva5, Ademar Lopes7,
Cristovam Scapulatempo-Neto8,9, Eliney Ferreira Faria8,10, Jean-Marie Delaissé11,12,
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Extracellular matrix (ECM) remodeling and inflammation have been reported in penile
carcinomas (PeCa). However, the cell types and cellular crosstalk involved in PeCa are
unexplored. We aimed to characterize the complexity of cells and pathways involved in the
tumor microenvironment (TME) in PeCa and propose target molecules associated with the
TME. We first investigated the prognostic impact of cell types with a secretory profile to
identify drug targets that modulate TME-enriched cells. The secretome analysis using the
PeCa transcriptome revealed the enrichment of inflammation and extracellular matrix
pathways. Twenty-three secreted factors were upregulated, mainly collagens and matrix
metalloproteinases (MMPs). The deregulation of collagens and MMPs was confirmed by
Quantitative reverse transcription - polymerase chain reaction (RT-qPCR). Further, the
deconvolution method (digital cytometry) of the bulk samples revealed a high proportion of
macrophages and dendritic cells (DCs) and B cells. Increased DCs and B cells were
associated with better survival. A high proportion of cancer-associated fibroblasts (CAFs)
was observed in low-survival patients. Patients with increased CAFs had decreased
immune cell proportions. The treatment with the MMP inhibitor GM6001 in CAF cells
derived from PeCa resulted in altered cell viability. We reported a crosstalk between
immune cells and CAFs, and the proportion of these cell populations was associated with
prognosis. We demonstrate that a drug targeting MMPs modulates CAFs, expanding the
therapeutic options of PeCa.
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INTRODUCTION

Penile cancer (PeCa) represents 0.2% of all cancers diagnosed
worldwide (1). However, poor and developing countries have a
high incidence of the disease (2–4). Partial penectomy is
frequently used for localized carcinomas (5). The disease could
be aggressive, metastatic, and mutilating, mainly due to the delay
in seeking treatment (6). Despite all efforts to improve the
therapeutic strategies, the survival rates of PeCa patients
remained almost unchanged over the past years (7).

Molecular and functional studies have revealed an important
role of cells composing the tumor microenvironment (TME) in
PeCa. The presence and distribution of immune checkpoint
molecules or immune cell components were shown to be a
potential predictor of clinical outcomes [reviewed in Aydin
et al. (8)]. However, the immune fraction of TME alone is
insufficient to predict treatment response and survival (8).
Cancer-associated fibroblasts (CAFs) are a key component of
the TME, playing a critical role in the extracellular matrix (ECM)
deposition and remodeling. Moreover, CAFs have been
implicated in the modulation of the immune system by
establishing an immunosuppressive stroma, which can
promote resistance to immune-based therapies (9). Although a
limited number of transcriptome analyses in PeCa has been
reported (7), the enrichment of pathways associated with ECM
organization was described in patients with lymph node (LN)
metastasis (10).

Immunotherapeutic drugs inhibit the immune checkpoint
genes such as programmed cell death 1 (PD-1) and its ligand
(PD-L1) (11). Cocks et al. (2016) identified PD-L1 expression in
approximately 40% of PeCa patients, who may benefit from
immunotherapies (12). Immunotherapy was further supported
by studies that found that most patients presented advanced
cancer (12, 13). The remaining 60% of PeCa patients have limited
therapeutic options, including organ amputation and standard-
of-care chemotherapies. In these cases, the immunotherapy
response could be enhanced using a combinatorial treatment
with TME-modulating drugs (14). Targetable molecular
mechanisms that modulate CAFs are suggested to increase the
cytotoxic T-cell level in the tumor, contributing to an increased
immunotherapy response (15). Despite efforts to characterize the
immune environment in PeCa (8, 13, 16, 17), there is a lack of in-
depth knowledge on how the immune cells and CAFs
simultaneously affect tumor progression.

The transcriptome analysis of bulk tumor samples allows in
silico deconvolution using computational tools to infer cell type
proportions (18). Moreover, the tumor transcriptome profile of
the secretome (genes encoding secreted proteins) indicates which
cell is activated in the tumor and releases factors that allow
communication with other cells (19–21). These strategies are
valuable tools to identify enriched cell types within the TME and
Abbreviations: PeCa, penile cancer; CAF, cancer-associated fibroblasts; TME,
tumor microenvironment; ECM, extracellular matrix; MMPs, matrix
metalloproteinases; HPV, human papillomavirus; DEGs, differentially expressed
genes; HPA, human protein atlas; PPI, protein–protein interactions; FC, fold
change; FDR, false discovery ratio.
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their contribution to the tumor progression and response
to therapy.

Here, we explored the transcriptome from two perspectives:
1) identify enriched immune and stromal cells using an in silico
deconvolution method and 2) investigate targetable secretome
components for TME modulation in PeCa. These strategies
allowed us to characterize the TME composition of PeCa, in
which we verified an enrichment of CAFs inversely correlated
with immune cell proportion and an association with poor
survival. Once the TME was characterized, the next step was to
evaluate genes associated with ECM remodeling to identify
potential drug targets able to modulate CAFs. Among these
genes, we confirmed high expression levels of matrix
metalloproteinase (MMP) genes in PeCa samples. Using PeCa–
derived CAFs, we inhibited MMP expression and demonstrated
a low viability of the cells.
MATERIALS AND METHODS

Patients and Samples
A cohort of 63 squamous cell penile carcinomas (PeCa) usual
type, 16 adjacent normal tissues, and 13 histologically normal
glands (obtained from necropsies) from patients treated at
A.C.Camargo Cancer Center and Barretos Cancer Hospital,
São Paulo, Brazil, from 2006 to 2015 were included in the
present study (Table S1). The entire cohort of 63 patients was
distributed as described in the flowchart (Figure S1). The
Human Research Ethics Committee from both Institutions
approved the study (Protocols 1884/14 and 1030/2015,
respectively). All patients and or family members were
informed regarding the protocols and provided written
informed consent before sample collection. The study was
conducted according to the guidelines of the Declaration of
Helsinki. The human papillomavirus (HPV) genotyping was
performed using the Linear Array HPV Test Genotyping
(Roche Molecular Diagnostics, Branchburg, NJ, USA).

Transcriptomic Analysis
Transcriptomic analysis was performed in 16 PeCa compared to
six histologically normal penile glans using the GeneChip™

Human Transcriptome Array 2.0 (HTA 2.0; Affymetrix Santa
Clara, California, USA), following the manufacturer’s
recommendations. The HTA 2.0 platform (Affymetrix, USA)
was designed to interrogate >6 million probes targeting coding
and non-coding transcripts, and exon–exon splice junctions
(245,349 protein coding transcripts and 40,914 non-coding
transcripts). RNA was isolated from fresh-frozen samples using
the RNeasy mini kit (Qiagen, Valencia Germantown, Maryland,
USA). RNA integrity was verified in all samples using the Agilent
2100 Bioanalyzer RNA 6000 LabChip kit (Agilent Technologies,
Santa Clara, CA, USA). The scanning was performed using
Affymetrix GeneChip Scanner 7000 (Affymetrix/ThermoFisher
Waltham, Massachusetts, USA). The CEL files were generated by
Affymetrix® GeneChip® Command Console® (AGCC) 4.0. The
Transcriptome Analysis Console (TAC, ThermoFisher, USA,
v.4.0) was used for data normalization and differential
July 2022 | Volume 12 | Article 935093
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expression analysis. Microarray data are available on the Gene
Expression Omnibus (GEO) database (GSE196978). We also
explored the transcriptomic profile of 30 usual PeCa previously
evaluated by our group (Whole Human Genome Microarray
4x44K; Agilent Palo Alto, California, USA) (GSE57955) (22).
Two datasets were analyzed independently (human GRCh37/
hg19 annotation). The differentially expressed genes (DEGs)
from the internal dataset were selected considering |fold
change (FC)|> 2 and FDR <0.01. For the Agilent microarray
data, DEGs were selected when presenting a log2 Cy3/Cy5 mean
ratio ≥1.0 or ≤1.0 within a 99% confidence interval (CI)
(upregulated and downregulated, respectively).

Transcriptome-Based Secretome Analysis
The upregulated genes identified in PeCa samples from each
platform (Affymetrix and Agilent) were selected for secretome
analysis using The Human Protein Atlas (HPA) database
(www.proteinatlas.org) (23) with 2,943 predicted secretome
proteins. The secretome genes were visualized using
the protein–protein interaction (PPI) network with the
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) tool v.11.5 (24) (http://string-db.org/). We
considered experiments, database, co-expression, and co-
occurrence as active interaction sources. The minimum
required interaction score was 0.9 (highest confidence), and
the disconnected nodes in the network were hidden for display
simplification. The PPI p-values <0.05 were considered
significant. The visualization and data annotation of PPI
networks were constructed using Cytoscape v3.8.2.

Functional enrichment analysis was performed using the
Enrichr tool (https://maayanlab.cloud/Enrichr/) (25) by
accessing the libraries Gene Ontology (GO) biological process,
GO Cellular Component, GO Molecular Function, Kyoto
Encyclopedia of Genes and Genomes (KEGG), MSigDB
Hallmark, Reactome, and Wiki Pathways. The terms were
enriched with adjusted p-values <0.001. Ingenuity Pathway
Analysis (IPA) software was used to identify molecules that
potentially target the secretome genes.

Gene Expression Analysis by Real-Time
Quantitative Polymerase Chain Reaction
The gene expression levels of matrix metalloproteinase (MMP)
genes (MMP1, MMP3, MMP7, MMP9, MMP10, MMP12, and
MMP13) and collagens (COL1A2, COL3A1, COL4A1, COL5A2,
COL10A1, COL11A1, and COL24A1) were investigated in 47 PeCa
aiming to confirm the transcriptomic results. Primer sets were
designed using Primer-Blast software (http://www.ncbi.nlm.nih.
gov/tools/primer-blast/) (Table S2). Total RNA was converted
into complementary DNA (cDNA), and the amplification was
carried out as previously described (10). We used GUSB as
reference transcript (26). The relative quantification of mRNA
expression was evaluated using the 2−DDCTmethod (27). Data were
analyzed statistically using Graphpad Prism 5.0 (GraphPad
Software Inc., La Jolla, CA, USA). The Mann–Whitney U test
was used to compare normal vs. cancer groups. P-values < 0.05
were considered significant.
Frontiers in Oncology | www.frontiersin.org 3
Immune Score Classification
The transcriptome deconvolution analysis was performed in the
internal set of samples to evaluate the prevalence of immune
infiltrating cells. The digital cytometry analysis was conducted using
the CIBERSORTx tool (https://cibersortx.stanford.edu/) to impute
the immune cell fractions of 22 cell types (LM22 matrix signature)
from the bulk RNA-seq data (28). We applied the default settings of
CIBERSORTx and batch correction to minimize the impact of cross-
platform variation. The immune scores (CIBERSORTx) were used to
classify the PeCa samples as “immune hot” high immune cells
infiltration and “immune cold” low immune cells infiltration (29).
The immune score cut-offs for macrophages, DCs, and B cells
associated with survival were also determined (EasyROC v. 1.3.1,
http://www.biosoft.hacettepe.edu.tr/easyROC/) (30).

Cancer-Associated Fibroblast Score
The EPIC (http://epic.gfellerlab.org/) tool was used to estimate
the fraction of CAFs and explore the changes in the matrix
components of PeCa and normal tissues (internal set) (31). EPIC
establishes reference gene expression profiles for major tumor-
invasive immune cell types (CD4+ T, CD8+ T, B, natural killer,
and macrophages) and further deduces the reference spectra of
CAFs and endothelial cells (32).

The digital cytometry analysis (CIBERSORTx tool) was
applied to impute the CAF proportion in PeCa samples using
the CAF expression signature from single-cell RNA-seq data
from head and neck squamous cell carcinomas (HNSCC) (33).
First, the CAF signature matrix and CAF fractions were imputed
in PeCa (default settings and batch correction). We used the CAF
signature derived from HNSCC due to the absence of single-cell
resolution data in PeCa samples. The criteria to select HNSCC as
a reference for CAFs were based on similarities shared by these
tumors, including that both are derived from epithelial cells, they
are classified as squamous cell carcinomas (34), and HPV is an
etiological factor–associated disease (35). In addition to CAFs
from HNSCC (36), a consensus list of canonical CAF markers of
human cancers was obtained (9, 37–39). The expression
signature of CAF markers was compared with CAF
classification using digital cytometry to confirm the reliability
of the CAF signature in PeCa.

Cancer-Associated Fibroblasts Derived
From Penile Cancer Cells
In a previous study, we established three cells derived from PeCa
(Cell4, Cell5, and Cell6) that were molecularly and
morphologically characterized as CAFs (40). The morphology
of CAF in PeCa was evaluated by immunofluorescence using
Texas Red: actin/phalloidin (Thermo Fisher Scientific, Waltham,
MA, USA), FITC (fluorescein isothiocyanate): tubulin (Thermo
Fisher Scientific, Waltham, MA, USA), and DAPI (4′,6-
diamidino-2-phenylindole): nucleus (Vector Laboratories,
Burlingame, CA, USA) as described by Kuasne et al. (40).

We performed chemosensitivity assays using GM6001
(Merck Life Science, Hellerup, Denmark), a broad-spectrum
MMP inhibitor (MMP-1, MMP-2, MMP-3, MMP-7, MMP-8,
MMP-9, MMP-12, MMP-14, and MMP-26). Briefly, PeCa cells
July 2022 | Volume 12 | Article 935093
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were seeded in a 96-well plate at a density of 1 × 105 cells/ml and
incubated at 37°C in a complete medium composed of 3:1
keratinocyte serum-free medium–DMEM/F12 (Dulbecco’s
modified Eagle medium/nutrient mixture F-12) (GIBCO,
Carlsbad, CA, USA) supplemented following the previously
described protocol (40). Treatment with GM6001 was
administered after 24 h in concentrations of 0, 1, 3, 10, and 20
mM, and six replicates were used for each concentration.
Following 24 h of treatment incubation, 100 ml of MTT (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
reagent solution (0.5 mg/ml) was added to each well and
incubated for 3 h at 37°C. After removing the MTT solution,
180 ml of DMSO (dimethyl sulfoxide) was added to solubilize the
violet formazan crystals. The plates were incubated for 15 min at
37°C, and the absorbance readings were performed at 560 nm
with a reference of 690 nm using the Biotek Synergy HT
microplate reader (Agilent, Santa Clara, CA, USA).

Data Representation and Statistical
Analyses
Heatmaps were created using the web tool Morpheus (https://
software.broadinstitute.org/morpheus). GraphPad Prism®

(GraphPad Software, v5.0, 2008, USA) was used for statistical
analysis. Log-rank (Mantel–Cox)–Gehan–Breslow–Wilcoxon
Tests were used for survival analysis.
RESULTS

The patients included in this study showed similar clinical and
histopathological characteristics, such as mean age, alcohol
consumption, tobacco usage, HPV status, TNM stage, and
perineural and angiolymphatic invasion (Table S1).

We identified 2,199 and 1,050 upregulated genes in PeCa
compared with normal tissues in our internal and validation
datasets, respectively, of which 161 and 189, respectively, were
predicted to encode secreted proteins. The PPI analysis of the
secretome genes revealed functions associated with ECM and
inflammation (Figures 1A, B). Seventeen terms with the highest
combined score were mainly associated with inflammatory
response and ECM regulation in both PeCa datasets (Table S3;
Figure 1C). Despite enriching similar pathways and ontologies,
only 23 secretory genes (encoding inflammatory cytokines/
chemokines and ECM molecules) were upregulated in internal
and validation datasets (Table 1). These findings suggested that
PeCa cells directly interact with the immune system and the stroma.

Tumor Microenvironment Immune
Composition of Penile Cancer
Based on the significance of inflammation-associated pathways
and the immune system–related genes in the PeCa secretome
(Figure 1; Table 1), we first identified enriched immune cells
within the TME using an in silico deconvolution by applying
digital cytometry. PeCa samples presented a higher proportion of
dendritic cells (DCs), macrophages, and B cells, while normal
Frontiers in Oncology | www.frontiersin.org 4
samples presented a high number of monocytes, NK cells, and
mast cells (Figure 2A). We identified a set of PeCa patients with
high scores of CD8 T cells, macrophages, and DCs and higher
mean immune score (immune hot; Figure 2B). Although not
significant, immune-cold patients had a trend to present shorter
overall survival (Figure 2C). Since we found an increased
proportion of macrophages, DCs, and B cells in PeCa
compared to normal samples and differential scores among the
tumor samples, we next investigated the association of these cells
with overall survival. The best score cutoff for macrophage, DC,
and B cells was calculated using the easyROC tool (30). The
optimal immune score cutoff generated was 0.023 for
macrophages, 0.059 for DCs, and 0.093 for B cells. Values
above these cutoffs were considered as high. Patients with
higher DC and B cell scores also had a trend toward higher
overall survival (Figures 2C, D).

Cancer-Associated Fibroblast Profile
Since we identified enriched pathways associated with ECM
organization, the next step was to assess the presence of CAFs
possibly involved in the synthesis of ECM remodeling factors.
We also investigated a potential interplay between immune cells
and CAFs. The CAF score (EPIC tool) in tumor samples was
higher and statistically significant (p<0.0001) compared to
normal tissues (Figure 3A). To deconvolute the CAFs from
PeCa and normal samples (CIBERSORTx), we used a gene
signature of CAFs derived from the HNSCC single-cell RNA-
seq study (33). We found higher scores of CAFs in PeCa
compared to normal samples (Figure 3B). Next, we analyzed
the gene expression levels of 31 canonical CAF markers (ACTA2,
S100A4, VIM, DES, FAP, PDGFRB, CAV1, MME, GPR77, TNC,
GLI1, HOXB6, LRRC15, Ly6c1, ISLR, PDGFRA, PDPN, MFAP5,
COL11A1, ITGA11, NG2, POSTN, COL1A1, CDH2, FN1, CD44,
CD90, CD163, LOXL2, EDARADD, and WNT2) (9, 36–39).
Interestingly, this signature was able to cluster PeCa
(Figure 3C). Based on the CAF scores and gene expression, we
noted a heterogeneous profile, where 31% of PeCa samples
(PA41T, PE27T, PA42T, PA13T, and PE17T) presented a low
expression of CAF markers (Figure 3C). We also found that
cases with higher CAF scores and an increased expression of
CAF markers presented low overall survival (Figure 3E). The
PeCa samples from the validation dataset showed a cluster
composed of 18 patients presenting a higher expression of
CAF markers (beige cluster), while 12 patients (40%) showed
low expression (orange cluster) (Figure 3D). Moreover, a
potential association of CAF signature expression with survival
was confirmed (Figure 3F).

A significantly negative correlation was found between the CAF
score with the mean immune score (the mean score of all immune
cell types calculated for each sample) (Figure 3G; Table S4).

Genes Related to Extracellular Matrix Are
Associated With Penile Cancer
Development and Poor Outcome Features
The secretome of two datasets showed the enrichment of
ontologies and pathways associated with ECM organization
July 2022 | Volume 12 | Article 935093
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and degradation. Considering the interaction between collagen
and MMPs (41), we evaluated their expression pattern on PeCa
according to the CAF score and compared them to normal
tissues. Our interest was also confirming the altered expression
of these genes, and if confirmed, we investigated whether ECM
proteins are targetable for TME modulation in PeCa.MMP1 was
the only metallopeptidase with significantly increased expression
levels in PeCa with a high CAF score (validation set). However,
most MMPs tended to increase expression in high CAF scores in
Frontiers in Oncology | www.frontiersin.org 5
PeCa (Figure 4A). A high expression of COL11A1, COL1A2,
COL5A2, and COL10A1 was detected in PeCa samples with high
CAF scores (validation set, Figure 4C). Using RT-qPCR in a
larger set of cases, we found that all MMPs tested presented
increased expression in PeCa (Figure 4B). In addition, COL10A1
showed significantly increased expression, and COL24A1 showed
down expression in PeCa compared to normal samples
(Figure 4D). A significantly increased COL11A1 expression
was found in patients with LN involvement (RT-qPCR)
A

B

C

FIGURE 1 | Secretome profile of penile cancer (PeCa) (A) Protein–protein interactions (PPIs) of secretome genes upregulated in PeCa from the internal dataset
(Affymetrix). (B) PPIs of secretome genes upregulated in PeCa from the validation dataset (Agilent). Network generated by STRING (Search Tool for the Retrieval of
Interacting Genes/Proteins) using the highest confidence interaction score (0.9). Colored circles indicate the associated ontology; genes associated with the immune
system and extracellular matrix (ECM) are highlighted in blue and pink, respectively. Edges represent interaction. (C) Heat-scatter plot of the combined score for the
enriched pathways and ontologies. Top categories selected from enrichment analysis of secretome genes from PeCa samples. The intensity of the color in the
dotplot indicates the enrichment significance by the combined score. Significant adjusted p-value was found in all included terms. Gene set names are colored
according to the Gene Ontology (GO) biological process (light blue), GO cellular component (dark blue), GO molecular function (light green), Kyoto Encyclopedia of
Genes and Genomes (KEGG, dark green), MSigDB Hallmark (pink), Reactome (red), and Wiki Pathways (orange).
July 2022 | Volume 12 | Article 935093
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and presented a trend toward significance in microarray
datasets (Figure 4E).

Cancer-Associated Fibroblasts Derived
From Penile Cancer Cells Are Sensitive to
Matrix Metalloproteinase Inhibitor
Considering the global alteration of MMPs in PeCa and their
potential to promote an immunosuppressive TME by remodeling
it (42), we investigated the expression of CAF markers in PeCa-
derived cells previously published by our group (40). The
expression profile of Cell1 (healthy individual) was distinct from
cells with fibroblast-like morphology (Cell4, Cell5, and Cell6,
Figure 5B), which presented a high expression of CAF markers
(Figure 5A). The expression levels of MMPs and collagen genes
revealed two distinct clusters (all three CAF cell lines versus Cell1).
Overall, MMPs were overexpressed (especially in Cell6), while
collagens were down expressed in CAFs compared to Cell1
(Figure 5C). Corroborating our previous results (10), MMP1
was highly overexpressed in PeCa samples (Affymetrix dataset).
This gene was also overexpressed in Cell6, while MMP7 and
MMP9 presented increased expression in Cell4 (Figure 5C).

We evaluated a compound that potentially inhibits the enzymatic
activity of secreted proteins identified in our analysis, especially the
MMPs (IPA software) (Figure 5D). Although a modest effect was
observed when CAF cells were treated with a broad MMP inhibitor
(GM6001), the concentration of ~10 mM of GM6001 promoted
decreased cell viability in CAFs compared to Cell1 (Figure 5E).

DISCUSSION

In this study, we explored the transcriptome data of PeCa
samples to evaluate the interplay between cells within the TME
Frontiers in Oncology | www.frontiersin.org 6
and its relevance to disease outcomes. We identified an
enrichment of immune and stromal cells and an association
with survival. A second and complementary approach was based
on investigating targetable MMPs for TME modulation in PeCa.

We found that immune cells and CAFs play a critical role in
the TME by expressing and potentially secreting inflammatory
factors and ECM remodeling proteinases. We also verified that
immune cell proportions were negatively correlated with CAFs
in PeCa samples. Interestingly, patients with high CAF scores
presented lower survival rates and an increased expression of
MMPs and collagens. These results demonstrate that our
strategy to profile and deconvolute bulk tumors brings new
perspectives to understand the TME of PeCa better. These
findings also provided the rationale to test, in vitro, the MMP
inhibitor GM6001 on PeCa-derived CAFs. We observed a
higher effect of this inhibitor in penile CAFs than in
normal fibroblasts.

Extracellular components and inflammatory factors were the
main class of upregulated secreted proteins found in our internal
and validation PeCa datasets. We found 23 secretome genes
shared in these two datasets. This small overlap could be
explained by the different microarray platforms used or simply
by the intrinsic heterogeneity found in cancer samples. However,
enriched pathways and gene ontologies were mainly associated
with extracellular matrix and immune response in both datasets,
reinforcing their relevance to the disease despite the differences in
the overlapping secretome. The immune-inflammatory system
and matrix metalloproteases were previously demonstrated to be
overrepresented in PeCa compared to normal penile tissues (10,
43). In oral carcinomas, high levels of pro-inflammatory cytokines
affect the TME by increasing ECM degradation viaMMPs during
disease progression (44). Our findings suggest that interactions
TABLE 1 | Twenty-three genes encoding for secreted proteins upregulated in internal (n=16) and validation (n=30) datasets of penile cancer.

Gene Symbol Gene Name Function*

ADAMDEC1 ADAM Like Decysin 1 Immune response and metalloendopeptidase activity
CCL3 C-C motif chemokine 3 Inflammatory response
CCL4 C-C motif chemokine 4 Inflammatory response
CEMIP Cell migration–inducing and hyaluronan-binding protein Regulates epithelial–mesenchymal transition
COL7A1 Collagen alpha-1(VII) chain Extracellular matrix structure
CXCL13 C-X-C motif chemokine 13 Inflammatory response
CXCL8 C-X-C motif chemokine 8 Inflammatory response
CXCL9 C-X-C motif chemokine 9 Inflammatory response
EGFL6 Epidermal growth factor–like protein 6 Extracellular matrix organization
ESM1 Endothelial cell–specific molecule 1 Angiogenesis
FABP5 Fatty acid–binding protein 5 Lipid metabolism
GZMA Granzyme A Immune response
ICOS Inducible T-cell costimulator Immune response
LGALS9 Galectin-9 Inflammatory response
MMP1 Interstitial collagenase Extracellular matrix degradation
MMP12 Macrophage metalloelastase Extracellular matrix degradation
MMP9 Matrix metalloproteinase-9 Extracellular matrix degradation
PGLYRP4 Peptidoglycan recognition protein 4 Immune response
PI3 Elafin Immune response
PLA2G7 Platelet-activating factor acetylhydrolase Lipid metabolism
S100A7 S100-A7 Immune response
S100A8 S100-A8 Immune response
S100A9 S100-A9 Immune response
*Information retrieved from Uniprot database – UniProtKB 2021_04 (https://www.uniprot.org/, Accessed November 2021).
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between inflammation and matrix remodeling have a crucial role
in penile carcinogenesis and progression.

We found increased scores of B cells, macrophages, and DCs in
PeCa compared to normal tissues. Moreover, we described that a
subset of PeCa patients presented an immune hot phenotype
(higher scores of CD8 in T cells, DC, and mast cells). These
features are potentially associated with a better prognosis. Although
the low number of our cases precluded statistical significance, B
cells and DCs improve prognosis in cancer patients due to the
Frontiers in Oncology | www.frontiersin.org 7
antitumor activity and the potential to increase immunotherapy
response (45–48). The immune hot score classification predicts a
better prognosis in cancer patients (29). Altogether, the immune
classification of PeCa could be used as a tool to predict the outcome
and immunotherapy response, mainly because we also found a
negative correlation between immune and CAF scores in PeCa.
These results open new scenarios to test whether immunotherapy
response could be enhanced using a combinatorial treatment with
TME-modulating drugs.
A

B

D

C

FIGURE 2 | Immune profile characterization of PeCa samples using digital cytometry. (A) Heatmap representative of the immune cell score in normal and PeCa
samples calculated using CIBERSORTx. (*) significant p-values comparing tumor versus normal samples. Rows were clustered based on the Euclidean distance of
immune score values. Two clusters were generated using K-means analysis (K-means = 2). The beige and orange bars indicate the clusters of cells enriched in PeCa
samples and normal samples, respectively. (B) Heatmap representative of immune cell scores in PeCa samples calculated using CIBERSORTx. Rows and columns
were clustered based on the one minus Pearson correlation of immune score values. (C) Kaplan–Meier plot of immune hot and immune cold PeCa patients based
on Figure 2B. (D) Kaplan–Meier plot of patients presenting high and low scores of dendritic cells (DCs), B cells, and macrophages. The bets cutoffs for survival
analysis were determined by the easyROC web tool. (C, D) The Gehan–Breslow–Wilcoxon Test determined the hazard ratio (HR) with 95% confidence intervals (CIs).
ns: p-values not statistically significant.
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The CAF score is increased in PeCa compared to normal
samples, but we also found a subset of PeCa highly expressing
CAF markers with lower overall survival (internal and validation
sets). It has been established that CAF gene signatures can
distinguish between low and high CAF tumors and predict
patient survival (49, 50). The impact of CAFs on patients’
Frontiers in Oncology | www.frontiersin.org 8
survival has been reported, and their inhibition has emerged as a
promising anti-cancer therapy (51). However, the pharmaceutical
inhibition of CAFs expressing the canonical marker FAP (fibroblast
activation protein) has not been proven to be successful yet (51).
CAFs contribute to an immunosuppressive TME and targeting
CAFs, or their products have the potential to improve current
A B

C D

E F G

FIGURE 3 | CAF characterization of PeCa samples using digital cytometry. (A) Bar graph demonstrating the mean score estimated using EPIC. The statistical
significance was analyzed using Student’s t-test. *P < 0.001. (B) Bar graph demonstrating mean score estimated using CIBERSORTx. (C) Heatmap representing the
gene expression of CAF markers in the internal set of cases (Affymetrix). The top panel indicates the CAF score in normal and PeCa samples calculated using
CIBERSORTx and EPIC. Rows and columns were clustered based on the Euclidean distance of CAF marker expression. Three clusters were generated using k-
means analysis (K-means = 3). (D) Heatmap representing the gene expression of CAF markers in the validation dataset (Agilent). Rows and columns were clustered
based on Euclidean distance of CAFs marker expression. Two clusters were generated using k-means analysis (K-means = 2). (E) Kaplan–Meier plot of patients
presenting high and low scores of CAFs (Affymetrix; internal set). (F) Kaplan–Meier plot of patients presenting high and low expression of CAF markers (Agilent;
validation set). (E, F) The HR with 95% confidence intervals (CI) was determined by the Gehan–Breslow–Wilcoxon Test. ns, not statistically significant. (G) The partial
Pearson’s rank correlation (r) and p-value are given for the CAF score generated by CIBESORTx with the mean immune score also generated by CIBESORTx.
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A

E

C DB

FIGURE 4 | Expression pattern of matrix metalloproteinases and collagens in PeCa samples. (A) Box plots representative of expression levels of MMP1, MMP3, MMP9,
MMP10, MMP12, and MMP13 genes in PeCa compared to normal samples from internal [normalized-expression Robust Multi-ArrayAverage (RMA)] and validation set
(expression ratio) according to the CAF score. (B) Box plots showing the expression levels of MMP1, MMP3, MMP9, MMP10, MMP12, and MMP13 in PeCa samples
compared to normal tissues using RT-qPCR [log2fold change (2−DDCt) relative to GUSB]. The statistical difference was analyzed by the Mann–Whitney U test. (C) Box
plot representative of the expression levels of COL11A1, COL1A2, COL4A1, COL3A1, COL5A2, COL10A1, and COL24A1 genes in PeCa samples from internal
(normalized-expression RMA) and validation set (expression ratio) according to the CAF score. (D) Box plots showing the expression levels of COL11A1, COL1A2,
COL4A1, COL3A1, COL5A2, COL10A1, and COL24A1 genes in PeCa compared to normal samples using RT-qPCR [log2fold change (2−DDCt) relative to GUSB].
Statistical difference was analyzed by the Mann–Whitney U test. (E) Box plot showing the expression levels of COL11A1 in PeCa compared to normal tissues from
internal (normalized-expression RMA), validation set (expression ratio), and RT-qPCR according to lymph node (LN) metastasis. LN+: patients positive for LN metastasis;
LN-: patients negative for LN metastasis. Statistical difference was analyzed by Student’s t-test. *p-values < 0.05, **p-values < 0.01, and ***p-values < 0.001.
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A B

C D

E

FIGURE 5 | Targeted therapy in PeCa–derived CAF cells. (A) Heatmap representative of gene expression of CAF markers in PeCa–derived cells (Cell4, Cell5, and
Cell6) and normal foreskin cell line (Cell 1). Rows and columns were clustered based on the Euclidean distance of CAF marker expression. (B) Immunofluorescence
images (Texas Red: actin/phalloidin; FITC: tubulin; and DAPI: nucleus, ×10 magnification, Nikon TE2000) of CAF cells (Cell4, Cell5, and Cell6). (C) Heatmap
representative of the expression levels of MMP and collagen genes (same gene set used in the validation) in PeCa-derived cells (Cell4, Cell5, and Cell6) and Cell1.
(D) Potential target therapy for secreted genes, especially MMPs (IPA analysis). (E) Cell viability assay using an MMP inhibitor (GM6001—Pan inhibitor of MMPs) at
the indicated concentrations for 24 h to treat Cell1, Cell4, Cell5, and Cell6.
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immunotherapy approaches for cancer patients (42). Therefore, a
comprehensive understanding of CAF markers is needed, aiming
to design effective therapeutic strategies for PeCa.

We showed that PeCa presented a global alteration of MMPs
and collagens, in which tumors with high CAF scores have an
increased expression of collagens. COL11A1 was associated with
LNmetastasis, corroborating with previous findings (52, 53), and
a novel prognostic biomarker of PeCa. Collagens are the most
abundant ECM component, increasing tumor tissue stiffness,
among other features (54). MMPs are essential to degrade
collagen during ECM remodeling (41). A previous study
demonstrated that MMP1 and MMP12 presented increased
expression in usual and mixed PeCa subtypes (10). Herein, we
confirmed these alterations and found an increased expression of
MMP1 in tumors with high CAF scores. Epithelial cells express
MMPs (55); thus, the inhibition of MMP must modulate the
microenvironment and malignant epithelial cells. We showed
that MMPs are highly expressed in PeCa cells and PeCa-derived
CAFs. The implication of MMPs in tumor invasion and
metastasis has prompted the development of strategies that
promote MMP inhibition (56). A high expression of
MMP1 has been related to poor outcomes and shorter overall
survival in PeCa (10). CAFs express MMPs that assist the
immunosuppression of TME, counteracting CAFs that secrete
MMPs, which have the potential to enhance the efficacy of
immunotherapies (42). Therefore, MMP inhibition is
a potential therapeutic strategy for PeCa, especially in
combination with standard-of-care therapies.

PeCa–derived cell lines were previously described as reliable
models to investigate the molecular mechanisms associated with
carcinogenesis and treatment resistance and to develop effective
treatment strategies (57). Targeting therapies enabled
personalized approaches to improve the outcome of PeCa
patients (7, 58). The genomic profiling of PeCas revealed the
potential of Epidermal Growth Factor Receptor (EGFR) target
therapy, in which tumors with EGFR amplification could be
more sensitive (59). However, the number of preclinical studies
in PeCa is still limited. Genetically engineered mouse models of
PeCa were elegantly evaluated, showing that a combined target
therapy and immunotherapy could be used in the treatment of
PeCa patients (17).

In the present study, to better investigate the behavior of CAFs
and the therapy response, we showed that the inhibition of MMPs
using a broad-spectrum MMP inhibitor presented a modest effect
in PeCa-derived CAFs (2 out of 3 cells) and no effect in normal
fibroblasts. The slight alteration on cell viability was not surprising;
the TME remodeling does not necessarily require CAFs to die but
is often associated with the modulation of CAF functions (60).
Cell4 had higher MMP inhibitor sensitivity than the other cells,
which could be explained by the high expression of MMP7 and
MMP9 (targets of GM6001). High levels of MMP7 are associated
with shorter survival in cancer patients, while the prognostic role
of MMP9 is controversial (61). Cell6 presented the higher
expression levels of MMP1 and MMP12 (direct targets of
GM6001) and showed a better response to MMP inhibition.
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Thus, the MMP modulation in the TMEs needs to be
individually evaluated in different tumor types to design suitable
MMP targeting therapies (61). Several clinical trials have tested
MMP inhibitors during the last decades, and most of these studies
failed due to the lack of efficacy and severe side effects (56). As
more selective inhibitors of MMPs are now available, MMP
targeting could be reconsidered for cancer therapy (56). Clinical
trials with newMMP inhibitors and combined therapies should be
undertaken to improve therapy efficacy for PeCa patients.
Considering that extensive degradation of ECM proteins via
MMPs promotes tumor invasion and metastasis (62), it is
crucial to remodel the ECM for the most effective treatment.
Therapeutic strategies targeting aberrant ECM components for
cancer treatment can act as an adjuvant for conventional
chemotherapy and immunotherapy (63).

Herein, we highlighted for the first time the role of CAFs and
the interplay of cells within the TME in PeCa; however, this
retrospective study also has limitations, including the small
sample size. We overcome this limitation by validating the
gene expression findings in an independent dataset. Additional
studies are necessary to validate the computational prediction of
cell proportions in the TME and its prognostic impact, such as
single-cell RNA sequencing studies. Translational research for
PeCa is still a challenge, but recent advances in PeCa patient–
derived tumor xenografts demonstrate the potential of this
model to design a personalized treatment considering the
genomic and TME profiling (64).

CONCLUSIONS

Our data highlight the interplay between cell types in the TME of
penile carcinomas. We demonstrated the complexity of the TME
and the association between immune cells and CAFs as a
prognostic factor for PeCa patients. We found a global
deregulation of collagens and MMPs and tested CAF cell lines
using an MMP inhibitor, which proved the ability to modulate
these cells. These findings pave the way for future studies to
understand the impact of TME-modulating therapies in
PeCa patients.
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