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Abstract Mosquito-borne diseases contribute significantly
to the global disease burden. High-profile elimination cam-
paigns are currently underway for many parasites, e.g.,
Plasmodium spp., the causal agent of malaria. Sustain-
ing momentum near the end of elimination programs is
often difficult to achieve and consequently quantitative
tools that enable monitoring the effectiveness of elimination
activities after the initial reduction of cases has occurred
are needed. Documenting progress in vector-borne disease
elimination is a potentially important application for the
theory of critical transitions. Non-parametric approaches
that are independent of model-fitting would advance infec-
tious disease forecasting significantly. In this paper, we
consider compartmental Ross-McDonald models that are
slowly forced through a critical transition through gradually
deployed control measures. We derive expressions for the
behavior of candidate indicators, including the autocorrela-
tion coefficient, variance, and coefficient of variation in the
number of human cases during the approach to elimination.
We conducted a simulation study to test the performance
of each summary statistic as an early warning system of
mosquito-borne disease elimination. Variance and coeffi-
cient of variation were highly predictive of elimination but
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autocorrelation performed poorly as an indicator in some
control contexts. Our results suggest that tipping points
(bifurcations) in mosquito-borne infectious disease systems
may be foreshadowed by characteristic temporal patterns of
disease prevalence.
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Introduction

Vector-borne diseases constitute approximately 17 % of
the estimated worldwide infectious disease burden (World
Health Organization 2014). Mosquito-borne infections, in
particular, contribute substantially to this burden, causing
millions of deaths and hundreds of millions of cases annu-
ally (World Health Organization 2013). Mosquito-borne
pathogen elimination remains a high priority on the global
public health agenda, with elimination campaigns under-
way for malaria, onchocerciasis, and lymphatic filariasis
(Hopkins 2013). The introduction of insecticides such as
DDT in the mid twentieth century led to the implementa-
tion of global eradication campaigns for many of the most
deleterious mosquito-borne diseases, including malaria,
dengue virus, and yellow fever virus. These campaigns
were partially successful in that diseases were eliminated
in some countries and effectively controlled in others. For
example, malaria was eliminated in 79 countries between
1945 and 2010 (Chiyaka et al. 2013) and the reduction of
Aedes aegypti led to the near elimination of dengue and
yellow fever in the Americas (Gratz 1999; Gubler 1998).
However, the incidence of mosquito-borne infections has
resurged since the 1970s due to a nexus of factors including
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globalization, increased global movement of people, devel-
opment of vector resistance to insecticides, changes in land
use, and loss of financial support and public health infras-
tructure for control and elimination (Institute of Medicine
(US) Forum on Microbial Threats 2008; Gubler 2010;
Mackenzie et al. 2004). Sustaining political will near the
end of elimination campaigns is often difficult to achieve
since there may be marginal return on investment (in terms
of case reductions) (Cohen et al. 2012). Government and
public health agencies require markers of progress to justify
the billions of dollars that are spent on interventions (Cohen
et al. 2010). Quantitative evaluation tools that will encour-
age governments and philanthropic organizations to choose
the optimal level of investment in control and elimination
activities after the initial reduction of cases has occurred are
needed.

Mosquito-borne disease elimination, which involves
halting transmission through interventions until no para-
sites remain (Breman et al. 2011; Klepac et al. 2013),
e.g., through vector control strategies and/or treatment of
infected individuals, corresponds to a critical transition in
the disease transmission system. Criticality occurs at the
point where the basic reproduction number, R0, the average
number of secondary infected cases arising from a single
infected case in an entirely susceptible population, is equal
to one. Tipping points in complex systems may be described
mathematically as bifurcations if the change in the external
driver variable is slow relative to the characteristic speed of
the internal variables. If control efforts are implemented suf-
ficiently slowly over time such that elimination eventually
occurs, the elimination strategy causes the system to cross
a bifurcation point. The critical transition may be antici-
pated because prior to reaching the dynamical threshold,
the system gradually loses stability (“critical slowing down”
Strogatz 1994; Scheffer et al. 2009). In continuous-time
systems, the loss of stability is measured by the dominant
eigenvalue of the linearized system. Signatures of the slow
return rate to the underlying equilibrium may be detectable
through summary statistics. Statistical patterns of critical
slowing down may be a diagnostic of the proximity to
disease elimination (e.g., O’Regan and Drake 2013). To
establish how close a disease is to elimination or emergence,
typically, a stochastic epidemic model (e.g., a compartmen-
tal model or a branching process model) is fitted to time
series data to estimate the basic reproduction number of a
disease. The disadvantage of this approach is having to spec-
ify parametric models that make strong assumptions about
the form of transmission. Additionally, the fit of stochas-
tic epidemic models to data is usually evaluated using a
goodness-of-fit criterion such as statistical likelihood, but
many models may yield near-identical fits. Detection of crit-
ical slowing down would circumvent the problem of model
structural uncertainty and improve efficiency by making use

of higher order information in time series that is not used
by other approaches that focus on trends in the mean. Meth-
ods that detect the presence of critical slowing down would
therefore capture key structural features of transmission
that are exhibited by a large family of mosquito-borne dis-
ease models. Non-parametric approaches for emergence and
elimination prediction that are independent of model-fitting
and evaluation would advance infectious disease forecasting
significantly.

In this paper, we use stochastic differential equations to
model the gradual implementation of four control activi-
ties on mosquito-borne disease elimination: the use of bed
nets that hamper the per-capita human biting rate, e.g.,
(Nyarango et al. 2006), indoor residual insectide spraying
procedures that shorten adult mosquito lifespan (Giardina
et al. 2014) or late-acting insecticides (Read et al. 2009),
the administration of drugs that reduce the human infec-
tious period (Lawpoolsri et al. 2009), and the reduction
of mosquito abundance due to administration of insecti-
cides or elimination of breeding sites through larviciding
or water drainage (Goodman et al. 1999; Tusting et al.
2013). We use the models to develop and validate leading
indicator summary statistics for documenting disease elim-
ination in mosquito-borne disease systems. We focus our
analysis on malaria but our findings are relevant to other
mosquito-borne infections such as yellow fever. Our results
indicate that critical slowing down is detectable prior to
mosquito-borne disease elimination.

Theory for elimination of vector-borne diseases

Mean field theory of Ross-Macdonald model

We consider the Ross-Macdonald model for vector-borne
disease transmission (Keeling and Rohani 2008). The Ross-
Macdonald model has a long history of use as a prototypical
model that encapsulates the key properties of mosquito-
borne pathogen transmission (Smith et al. 2012). Human
hosts and vectors (mosquitoes) are assumed to be either sus-
ceptible to disease, or infectious. Denoting the numbers of
infectious human host and infectious mosquito populations
by H(t) and M(t) respectively, the model is

Ḣ = kp

Nh

M(Nh − H) − μH

Ṁ = kq

Nh

H(Nm − M) − δM. (1)

The population size of human hosts Nh is assumed to
be constant and consequently, the number of susceptible
human hosts Sh is equal to (Nh − H), i.e.,

Nh = Sh + H.
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Similarly, mosquito abundance Nm is assumed constant and
the number of susceptible mosquitoes Sm is (Nm − M), i.e.,

Nm = Sm + M.

Parameters of the model and the expression for the basic
reproduction number, R0 are listed in Table 1. The model
has two equilibria, the disease-free equilibrium (0, 0) and
the endemic equilibrium

(H ∗,M∗) =
(

Nh(k2Nmpq − Nhδμ)

(kq(kNmp + Nhμ))
,
k2Nmpq − Nhδμ

(kp(kq + δ))

)
. (2)

When R0 > 1, the endemic equilibrium is stable and the
disease-free equilibrium is unstable. When R0 < 1, the
stabilities of the equilibria are switched. Mathematically, a

transcritical bifurcation, whereby the disease-free equilib-
rium and endemic equilibrium meet and exchange stability,
occurs at the point where the basic reproduction number is
equal to one (Keeling and Rohani 2008). Transcritical bifur-
cation diagrams corresponding to various control measures
are shown in Fig. 1. Interventions due to the biting rate and
mosquito abundance modify the endemic equilbrium differ-
ently than those that affect the per-capita mosquito mortality
rate and per-capita human host recovery rate. The concave
down trend in Figs. 1a, b suggests that successful pathogen
extinction may only occur at the very end of elimination
campaigns that focus on either of reduction of mosquito
abundance or mosquito biting rates.

Control strategies for mosquito-borne diseases include
bed net use, application of insecticides or modification of

Table 1 Variables and parameters of the time-varying Ross-Macdonald models

Variable Expression Value

Number of infectious humans H

Number of infectious mosquitoes M

Per-capita human recovery rate μ 0.01 day−1 (Smith and McKenzie 2004)

Per-capita mosquito mortality rate δ 0.1 day−1 (Smith and McKenzie 2004)

Human population size Nh 1000

Per-capita mosquito biting rate k 0.3 day−1 (Smith and McKenzie 2004)

Transmission efficiency from mosquitoes to humans p 0.5 (Smith and McKenzie 2004)

Transmission efficiency from humans to mosquitoes q 0.5 (Smith and McKenzie 2004)

Mosquito population size Nm 10000

Basic reproduction number R0 = k2pqNm

δμNh

Time critical point is reached t∗

Critical biting rate k∗ = √
(Nhδμ)/(pqNm)

Critical mosquito population size N∗
m = (Nhδμ)/(pqk2)

Critical recovery rate μ∗ = (k2pqNm)/(Nhδ)

Critical mortality rate δ∗ = (k2pqNm)/(Nhμ)

Value of biting rate prior to application of control measures k0 0.3 day−1

Rate of change in biting rate k1 0.0001 day−1

Mosquito population size prior to application of control measures Nm0 10000

Rate of change of mosquito population size Nm1 1 day−1

Mosquito mortality rate prior to application of control measures δ0 0.1 day−1

Rate of change of mosquito mortality rate δ1 0.0025 day−1

Value of human recovery rate prior to application of control measuresμ0 0.01 day−1

Rate of change of recovery rate μ1 0.001 day−1

Time-varying biting rate k(t) =
{

k0 − k1t, t < t∗

k∗ t ≥ t∗
t∗ = 2800 days

Time-varying mosquito population size Nm(t) =
{

Nm0 − Nm1t, t < t∗

N∗
m t ≥ t∗

t∗ = 9956 days

Time-varying mortality rate δ(t) =
{

δ0 + δ1t, t < t∗

δ∗ t ≥ t∗
t∗ = 8960 days

Time-varying recovery rate μ(t) =
{

μ0 + μ1t, t < t∗

μ∗ t ≥ t∗
t∗ = 2240 days

Environmental noise strength σ 0.05
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Fig. 1 Bifurcation diagrams for
the Ross-Macdonald model. The
stable equilibrium branches of
the transcritical bifurcation
(ε → 0 mean field theory) as a
function of each parameter
affected by control activities
(per-capita biting rate, mosquito
population abundance,
per-capita recovery rate and
per-capita mortality rate) are
shown. Bifurcation diagrams
were plotted using the
parameters given in Table 1
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breeding habitat, and prompt administration of drug treat-
ment. Control activities rolled out over long time scales
relative to disease transmission cause disease prevalence
to slowly decline, eventually pushing the transmission sys-
tem over the tipping point to elimination (Fig. 2). For
example, the rate of bed net use among children across

four districts in Kenya steadily increased from 7 % in
2004–2005 to 67 % in 2006–2007 (Noor et al. 2007). To
represent the implementation of control strategies over long
time frames, we assume model parameters affected by con-
trol measures may be written as time-varying functions
(Table 1). For example, if the per-capita biting rate k of

Fig. 2 Stochastic simulations of
the Ross-Mcdonald system
approaching elimination due to
slow declines in a per-capita
biting rate, b mosquito
population size, and slow
increases in c per-capita
recovery rate d per-capita
mosquito mortality rate. The
dashed vertical line indicates
the critical threshold for
extinction of the pathogen in the
deterministic system. The time
to parasite extinction is longer in
the fast-slow stochastic systems
than in the corresponding
deterministic systems
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mosquitoes decreases at rate k1 due to gradual increases
in bed net usage, we write down the Ross-Macdonald
equations as a fast-slow system (e.g., Kuehn 2011),

Ḣ = kp

NH

M(NH − H) − μH (3)

Ṁ = kq

NH

H(NM − M) − δM,

k̇ = εf (t, H, M), (4)

where ε is a parameter that denotes the speed of evolution
of the biting rate (assumed to be gradual, i.e., 0 < ε << 1)
and the function f describes the change in biting rate. The
biting rate evolves over time to its critical value k∗ (achieved
at R0 = 1 at time t = t∗) according to

k(t) =
{

k0 − k1t, t < t∗
k∗ t ≥ t∗

and consequently, the change in biting rate is slow rela-
tive to the time scale of transmission since |k̇| = k1 <<

k∗ < k0. We use similar systems of equations to model
the reduction of the duration of the infectious period
(1/μ(t)), the reduction of mosquito population numbers
(Nm(t)), and the increase of per-capita mosquito mortal-
ity rate (δ(t)) over time t through control applications
(Table 1).

Stochastic description of Ross-Macdonald model

We assume population fluctuations are due to demographic
and environmental stochasticity. All individuals of each type
(humans, mosquitoes) have identical attributes, in that per-
capita transmission and recovery rates for all human hosts
are the same for all individuals and per-capita transmis-
sion and mortality rates are the same for all mosquito hosts.
The human population size is assumed constant and equal

to Nh (constant and equal to Nm for the mosquito popu-
lation). Individuals may transition from being susceptible
to being infectious. Table 2 shows the transition probabil-
ity fluxes into and out of the infectious populations (H, M).
We use the diffusion approximation outlined in Allen (2003)
to derive stochastic differential equations that incorporate
demographic stochasticity and time-varying control mea-
sures. In Appendix A, we provide the derivation of the
equations.

Environmental variations, e.g., in temperature, are
important determinants of mosquito dynamics, driving
fluctuations in mosquito abundance and influencing
mosquito life histories and behaviors, e.g., (Rogers et al.
2002; Paaijmans et al. 2009; Paaijmans et al. 2013). Fur-
thermore, there may be variability in individual adherence
to drug treatment (e.g., Langton et al, 2015). We modify
the equations obtained from the diffusion approximation to
include the effects of environmental stochasticity in con-
trol activities (see Appendix A for details). We assume the
stochastic process obtained from the diffusion approxima-
tion is perturbed by an additional environmental noise term
that scales with the mean level of the rate impacted by a
control activity at time t . Specifically, in a small time inter-
val �t , we assume each time-varying control measure g(t)

is subject to environmental stochasticity as follows,

g(t)�t = (g0 + g1t)�t + ση
√

�t, (5)

where η is a normal random variate with mean zero and
unit variance and σ denotes the strength of the environmen-
tal noise. Equation 5 replaces the appropriate parameter in
the drift term obtained through the diffusion approximation
(A.1 in Appendix A), to represent an environmental pertur-
bation to each process. For example, assuming per-capita
biting rate is gradually reduced through control efforts, the

Table 2 Transition probability fluxes for Ross-Macdonald model. Numbers of infectious humans and populations are denoted by X = (H, M)T .
The vector �X = (�Xi) = (H(t + �t) − H(t),M(t + �t) − M(t))T denotes change in state, i = 1, 2, . . . , 5

Event i Change in population sizes (�Xi) Transition probability pi

Infection of susceptible humans (H, M) → (H + 1, M)

(
1

0

)
p1 = k(t)pM(Nh−H)

Nh
�t

Recovery of infectious humans (H, M) → (H − 1, M)

(
−1

0

)
p2 = μ(t)H�t

Infection of susceptible mosquitoes (H, M) → (H, M + 1)

(
0

1

)
p3 = k(t)qH(Nm(t)−M)

Nh
�t

Death of infectious mosquitoes (H, M) → (H, M − 1)

(
0

−1

)
p4 = δ(t)M�t

No change (H, M) → (H, M)

(
0

0

)
1 −

4∑
i=1

pi

Transitions are presented in their most general form by expressing parameters that may be influenced by control measures as functions of time
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change in the human host and mosquito populations in a
small time interval [t, t + �t) is

H(t + �t) = H(t) +
(

k(t)p

Nh

M(t)(Nh − H(t))

)
�t

+
√

k(t)p

Nh

M(t)(Nh − H(t)) + μH(t)η1
√

�t

+ σ
M(t)p(Nh − H(t))

Nh

η3
√

�t

M(t+�t) = M(t)+
(
k(t)q

Nh

H(t)(Nm−M(t))−δM(t)

)
�t

+
√

k(t)q

Nh

H(t)(Nm − M(t)) + δM(t)η2
√

�t

+ σ
H(t)q(Nm − M(t))

Nh

η3
√

�t, (6)

where ηi are normally distributed random variables with
mean zero and variance of unity. Letting �t → 0, and
assuming existence and uniqueness of the stochastic integral
(Allen 2003), then ηi

√
�t → 0 and the system of equa-

tions converges in the mean square sense to a system of Ito
stochastic differential equations,

dH =
(

k(t)p

Nh

M(Nh − H) − μH

)
dt

+
√

k(t)p

Nh

M(Nh − H) + μHdW1 + σ
Mp(Nh − H)

Nh

dW3

dM = (
k(t)q

Nh

H(Nm − M) − δM)dt

+
√

k(t)q

Nh

H(Nm − M) + δMdW2 + σ
Hq(Nm − M)

Nh

dW3.

(7)

The systems of stochastic differential equations in Table
3 corresponding to each control activity were derived in

the same way (Appendix A). Simulations of each model
approaching elimination are illustrated in Fig. 2.

Leading indicators of elimination

To calculate leading indicators of disease elimination, we
need to analyze the properties of the time-varying Ross-
Macdonald system, in the neighborhood of the equilibrium
point that would be present in the ε → 0 limit (e.g.,
O’Regan and Drake 2013; Kuehn 2011). In the stochastic
system, the equilibrium is a quasi-stationary state. Quantify-
ing the behavior of the deviations from the equilibrium point
can be achieved by deriving a locally linear approximate
description of the probability distribution that is the solution
of the forward Kolmogorov equation (A.6). Since the Ross-
Macdonald system does not exhibit long transients and the
time-varying functions represent non-stationary processes
that are changing gradually through time, linearization of
the drift and diffusion terms of the equations in Table 3
gives reasonable information for the qualitative behavior of
fluctuations about the quasi-stationary state.

Solutions of the linearized forward Kolmogorov equation
(A.7) have the same probability distribution as the system
of the stochastic differential equations (A.8). In Appendix
A, we apply the Fourier transform to these equations to
derive the power spectrum of the fluctuations in human
cases. Finally, the leading indicator statistics (variance,
autocorrelation coefficient, and the coefficient of variation)
are obtained from integration of the power spectrum. The
expressions for the leading indicators are found in Table 4
and are expressed in terms of the eigenvalues of the Jacobian
matrix of the system linearized at the endemic equilibrium.
In Appendix B, we show that the endemic equilibrium of
system (1) is always a stable node if the parameters of the
model are positive. Consequently, we present the expres-
sions for the statistics in terms of the real and distinct dom-
inant and subdominant eigenvalues, λ1 and λ2, respectively.

Table 3 Time-varying Ross-Macdonald equations with demographic and environmental stochasticity

Biting rate dH = (
k(t)p
Nh

M(Nh − H) − μH)dt +
√

k(t)p
Nh

M(Nh − H) + μHdW1 + σ
Mp(Nh−H)

Nh
dW3

dM = (
k(t)q
Nh

H(Nm − M) − δM)dt +
√

k(t)q
Nh

H(Nm − M) + δMdW2 + σ
Hq(Nm−M)

Nh
dW3

Mosquito population size dH = (
kp
Nh

M(Nh − H) − μH)dt +
√

kp
Nh

M(Nh − H) + μHdW1

dM = (
kq
Nh

H(Nm(t) − M) − δM)dt +
√

kq
Nh

H(Nm − M) + δMdW2 + σ
kHq
Nh

dW3

Recovery rate dH = (
kp
Nh

M(Nh − H) − μ(t)H)dt +
√

kp
Nh

M(Nh − H) + μ(t)HdW1 + σHdW3

dM = (
kq
Nh

H(Nm − M) − δM)dt +
√

kq
Nh

H(Nm − M) + δMdW2

Mortality rate dH = (
kp
Nh

M(Nh − H) − μH)dt +
√

kp
Nh

M(Nh − H) + μHdW1

dM = (
kq
Nh

H(Nm − M) − δ(t)M)dt +
√

kq
Nh

H(Nm − M) + δ(t)MdW2 + σMdW3

Five hundred simulations of each set of equations were performed. Terms under square roots represent the G11 and G22 entries in the diffusion
matrix G(t) (A.5), whereas terms that scale with the environmental noise strength σ are the Gi3 entries
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Table 4 Analytical
expressions for quasi-stationary
statistics about the endemic
infectious human quasi-steady
state H ∗ expressed in terms of
the eigenvalues

Power spectrum SI (ω)
2(αH + D11ω

2)

(ω2 − λ1λ2)2 + (λ1 + λ2)2ω2

Autocorrelation
1

π

∫ ∞

0
SI (ω) cos(ωτ)dω

Variance σ 2 αH + λ1λ2D11

2λ1λ2(−λ1 − λ2)

Coefficient of variation
(αH + λ1λ2D11)

1
2√

2λ1λ2(−λ1 − λ2)H ∗

The equilibrium of the Ross-Macdonald model, (H ∗, M∗), is a stable node (Appendix B) and thus the Jaco-
bian matrix has two real, negative, distinct eigenvalues, λ1 and λ2. Variables for each model are described
in Tables 1, 5, and 6. The expressions for the power spectrum are multiplied by 2 because they are evaluated
over the frequency domain [0, ∞). No closed-form expression for the lag-τ autocorrelation is known and so
it must be evaluated numerically

Changes in these summary statistics as the bifurcation point
is approached are indicators of critical slowing down.

Simulations

The preceding sections present an analytical theory of lead-
ing indicators of elimination for stochastic time-varying
Ross-Macdonald models. To investigate the results of this
theory for a particular parameter set, we calculated leading
indicators of disease elimination in infectious human hosts
using the models in Table 3, assuming that (a) the mean
number of infectious individuals in the ε → 0 limit is given
by the deterministic endemic equilibrium (H ∗, M∗) (2) or
(b) by assuming it is given by the current state (H(t), M(t)

of the system approaching elimination. We selected param-
eters consistent with malaria (Smith and McKenzie 2004)
(Table 1).

To test the robustness of the theoretical predictions in
Table 4, we simulated the approach to elimination 500
times for each of the models in Table 3. For each control
scenario, the infectious time series approaching elimina-
tion were sampled at weekly intervals in each simulation,
assuming perfect detection (no underreporting). The trans-
critical bifurcation in these scenarios was approached over
a long time frame (e.g., 2800 days (400 weeks) when k1 =
1/10,000 day−1) in the fast-slow Ross-Macdonald model
approaching elimination. The length of the time series in
each simulation set depended on how long it took to reach
the critical threshold R0 = 1 in each model (400 weeks in
the changing biting rate model, 1280 weeks in the chang-
ing mosquito mortality model, 320 weeks in the changing
recovery rate model, and 1424 weeks in the changing
mosquito abundance model, respectively).

Analysis over a moving window

Our simulation study evaluates the performance of summary
statistics (lag-1 autocorrelation, variance, and coefficient of
variation) as an early warning system. Here, we describe

an algorithm to process input time series data that is inde-
pendent of a specific model. To investigate the robustness
of the changes in the early warning theoretical predictions
over a moving window, i.e., as they would be used in online
analysis of surveillance data, we used Gaussian filtering to
remove the influence of the slowly varying trend (Dakos
et al. 2008). We fitted a Gaussian kernel smoothing func-
tion with a fixed bandwidth across the infectious human host
time series up to the time that the transcritical bifurcation
was predicted (t∗). We obtained the residuals by subtract-
ing the fit from each time series. We calculated the lag-1
autocorrelation, variance, and coefficient of variation of the
residuals over a moving window half the length of each time
series. We calculated the lag-1 autocorrelation coefficient of
each replicate using the acf function in R. The coefficient
of variation was found by calculating the mean and standard
deviation of each infectious replicate. The median and 95 %
prediction intervals for each of the statistics were calculated
over the 500 replicates of each model. The prediction inter-
vals were calculated using the quantile function in R. To
quantify the association between time and the statistic for
each replicate, we used Kendall’s correlation coefficient τ ,
a non-parametric statistic of association between two quan-
tities that has values between 1 (positive correlation) and -1
(negative correlation). By repeating the calculation for each
realization of leading indicators, we generated distributions
of the temporal correlation τ for all of the simulation sets
approaching criticality.

To assess leading indicator performance, we adapted the
method described in Boettiger and Hastings (2012) to dis-
tinguish between statistics obtained from systems approach-
ing elimination from those calculated from quasi-stationary
systems. Distributions of Kendall’s τ were additionally
generated using the statistics obtained from realizations
of quasi-stationary epidemic systems (null models) that
were processed using the procedure outlined above. That
is, the null models have the same environmental noise
structure as the test models (the systems of stochastic dif-
ferential equations in Table 3) but assume k(t) = k0,
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Nm(t) = Nm0, δ(t) = δ0 and μ(t) = μ0 in each
model respectively. Null models were initialized from the
deterministic equilibrium calculated from the values of
k0, Nm0, μ0, and δ0 in Table 1 and were simulated for
the same length of time as required for the transition to
be approached in the test models (systems approaching
elimination).

From the distributions of Kendall’s τ obtained from
null and test model realizations, we calculated receiver-
operating characteristic (ROC) curves. The receiver-
operating curve plots diagnostic sensitivity (true positive
rate, y-axis) as a function of one minus diagnostic speci-
ficity (false positive rate). The false positive rate is the
integral of the distribution of the correlation coefficent
under the quasi-stationary system, to the right of a thresh-
old line, and the true positive rate is the integral of the
distribution of the correlation coefficent under the system
approaching elimination. These rates make up the curve. If

curves lie on or near a line with a constant slope of unity,
this would imply the distributions overlap completely, and
they cannot be used to distinguish between quasi-stationary
systems from those approaching criticality (Boettiger and
Hastings 2012; O’Regan and Drake 2013). The magnitude
of departure from this line is summarized by the area under
the curve, which reaches its maximum at one. If the area
under the curve is close to one, then there is near perfect
detection of sensitivity.

Underreporting

To assess the effects of underreporting on leading indica-
tor performance, we binomially sampled each time series in
each set of stationary and supercritical intervention simula-
tions with rates of detection ranging from 20 to 90 %. We
calculated the ROC curves and reported the area under the
curve for each simulation set.
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Fig. 3 To obtain predictions for how the summary statistics behave
as elimination is approached, mean leading indicators were calculated
numerically using parameter values relevant for malaria (Table 1). The
vertical dashed line in each figure indicates the threshold mosquito
population abundance and threshold per-capita biting rate at R0 = 1
respectively. a Lag-1 autocorrelation and coefficient of variation are

predicted to increase as control measures impacting per-capita bit-
ing rate are applied but variance becomes non-monotonic close to
the critical point. b Lag-1 autocorrelation, variance, and coefficient
of variation are predicted to increase as control actitivies affecting
mosquito population abundance are applied
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Results

Predictions for mean behavior of leading indicators

Leading indicators of mosquito-borne parasite elimina-
tion exhibit systematic changes as the critical point is
approached. Figure 3 shows the theoretical predictions for
the lag-1 autocorrelation, variance, and coefficient of varia-
tion when the per-capita biting rate and mosquito abundance
respectively gradually decline over time. In both cases, the
lag-1 autocorrelation, variance, and coefficient of variation
are predicted to increase as the system nears criticality.
However, the increase in variance is not sustained as the
biting rate of mosquitoes is lowered. Figure 4 shows the pre-
dictions as the per-capita recovery and mosquito mortality
rates respectively are increased. The lag-1 autocorrelation
and the coefficient of variation are both predicted to increase
as control measures are applied but the variance is pre-
dicted to decline as the infectious period shortens (Fig. 4a).
Variance is predicted to increase as the per-capita mosquito
mortality rate increases but the variance is a non-monotonic
function of mortality rate (Fig. 4b). In all cases in Figs. 3
and 4, the theoretical predictions were calculated using the
eigenvalues arising from linearizing each system about its

equilibrium because the equilibrium was sufficiently close
to the trajectory of the fast-slow systems in Table 1. Only for
the mosquito mortality rate was there a difference between
the theoretical equilibrium and the observed trajectory
(Fig. 4b).

Simulation study results

The predictions for the statistics obtained from the simula-
tions are broadly consistent with the theoretical predictions
for the mean statistics. In Figs. 5 and 6, the trends in the
median and 95 % prediction intervals for the summary
statistics (autocorrelation, variance, coefficient of variation)
as per-capita biting rate and mosquito abundance respec-
tively agree with the mean theoretical predictions (Fig. 3).
Additionally, the areas under the ROC curves are close
to 1, indicating that it is possible to distinguish between
quasi-stationary systems and systems approaching elimina-
tion due to control activities that impact mosquito behavior
and abundance. However, predictions from simulations over
a moving window obtained from reducing the infectious
period of human hosts and the lifespan of mosquitoes
respectively are not as robust (Figs. 7 and 8). As the
infectious period is shortened, theoretical predictions for
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Fig. 4 To obtain predictions for how the summary statistics behave
as elimination is approached, mean leading indicators were calcu-
lated numerically using parameter values relevant for malaria (Table
1). The vertical dashed line in each figure indicates the threshold
per-capita recovery rate and threshold per-capita mosquito mortality
rate at R0 = 1 respectively. a Lag-1 autocorrelation and coefficient
of variation are predicted to increase as control measures that affect

the human infectious period are applied but variance is predicted to
decrease. b Lag-1 autocorrelation, variance and coefficient of varia-
tion are predicted to increase as the per-capita mosquito mortality rate
increases due to control activities. Here, we compare the statistics eval-
uated at the equilibrium (H ∗, M∗) and along the fast-slow trajectory
(H(t), M(t)). We note that the variance is non-monotonic if evaluated
along the trajectory, but there is agreement further from the threshold
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Fig. 5 Simulation study results
arising from arising from
reduction in per-capita biting
rate. Note that the value of the
biting rate is continuously
changing over the 200-week
window, at a rate of
k1 = 1/10,000 day−1. Panels a,
c, and e show the median
statistics (thick lines) and 95 %
prediction intervals (shaded
regions). The dashed vertical
line marks the time of the
transcritical bifurcation. The
trends in the median statistics
agree with the mean theoretical
predictions (Fig. 3a). Panels b,
d, and f show the results of the
ROC analysis. The AUCs are
high, indicating it is possible to
distinguish between the
stationary system and one
slowly approaching elimination.
A bandwidth of 80 weeks was
selected for Gaussian filtering
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variance and coefficient of variation are robust over a mov-
ing window, but the AUC value for lag-1 autocorrelation
indicates that autocorrelation is a less accurate indicator of
elimination in this scenario. The less accurate performance

of autocorrelation as an indicator is also seen as mosquito
lifespan is shortened due to control measures. Variance is
predicted to decline as elimination is approached, matching
the theoretical prediction along the trajectory (Fig. 4b).

Fig. 6 Simulation study results
arising from reduction in
mosquito population size. Note
that the value of mosquito
abundance is continuously
changing over the 712-week
window, at a rate of
Nm1 = 1 day−1. Panels a, c,
and e show the median statistics
(thick lines) and 95 % prediction
intervals (shaded regions). The
dashed vertical line marks the
time of the transcritical
bifurcation. Theoretical
predictions for the trends in each
summary statistic are robust
over a moving window. The
AUCs are high, indicating it is
possible to distinguish between
the stationary system and one
slowly approaching elimination.
A bandwidth of 80 weeks was
selected for Gaussian filtering
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Fig. 7 Simulation study results obtained from reduction in human
infectious period. Note that the value of the recovery rate is
continuously changing over the 160-week window, at a rate of
μ1 = 1/1000 day−1. Panels a, c, and e show the median statis-
tics (thick lines) and 95 % prediction intervals (shaded regions).
The dashed vertical line marks the time of the transcritical bifurca-
tion. Theoretical predictions for trends in variance and coefficient of

variation are robust over a moving window. Panels b, c, and f show
the performance of the statistics, assessed through ROC analysis. The
AUCs are high, indicating it is possible to distinguish between the sta-
tionary system and one slowly approaching elimination but the AUC
value for the autocorrelation indicates it is less accurate in distin-
guishing between the stable system and one approaching criticality. A
bandwidth of 80 weeks was selected for Gaussian filtering

Imperfect detection results

As expected, the accuracy of the leading indicators, mea-
sured by AUC, generally increases with detection rate
(Fig. 9). The coefficient of variation appears to be the most
robust indicator under the effects of observation error while
the performance of variance and autocorrelation generally
appear to be sensitive to the effects of underreporting.

Discussion

Detecting the onset of critical transitions in infectious dis-
ease systems such as the emergence of novel pathogens and
the elimination of disease would be of tremendous value
for public health. The goal of our study was to develop a
theory of leading indicators for vector-borne infectious dis-
ease transmission systems that follow the assumptions of the
Ross-Macdonald model and that are forced through a crit-
ical transition through gradual increases in control efforts.

Our main results include analytical expressions for sum-
mary statistics for a family of time-varying Ross-Macdonald
models approaching elimination (Table 4). Numerical cal-
culations assuming time-varying control activities indicate
that trends in the observable statistics are discernible. Test-
ing the robustness of these predictions via a simulation
study suggests that critical slowing down is detectable in
human-host fluctuations of Ross-Macdonald type mosquito-
borne disease systems. These results are in broad agree-
ment with the findings that variance, autocorrelation, and
coefficient of variation were predictive of disease elimina-
tion, in supercritical SIR and SIS compartmental models
with time-varying vaccination uptake and transmission rates
respectively (O’Regan and Drake 2013).

The simulation study suggests that variance and coef-
ficient of variation perform well as leading indicators of
elimination in all control contexts, but autocorrelation per-
forms poorly if control strategies affect the removal rates of
either human host or mosquito populations, manifested as
reduction in human infectious period or mosquito lifespan
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Fig. 8 Simulation study results
obtained from reduction in
per-capita mosquito mortality
rate. Note that the value of the
mortality rate is continuously
changing over the 640-week
window, at a rate of
δ1 = 0.0025 day−1. Panels a,
c, and e show the median
statistics (thick lines) and 95 %
prediction intervals (shaded
regions). The dashed vertical
line marks the time of the
transcritical bifurcation.
Theoretical predictions
evaluated about the trajectory
(red lines in Fig. 4b) are robust
over a moving window. Panels
b, c, and f show the performance
of the statistics, assessed
through ROC analysis. The
AUCs are high, indicating it is
possible to distinguish between
the stationary system and one
slowly approaching elimination.
A bandwidth of 80 weeks was
selected for Gaussian filtering
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respectively. In contrast, if control activities influence the
transmission rate, either by reducing mosquito abundance or
per-capita biting rate, all of the statistics, including autocor-
relation, perform strongly. The poor performance of auto-
correlation is somewhat surprising, as it has been suggested

that autocorrelation may be the most robust indicator of crit-
ical transitions, at least for fold bifurcations (Dakos et al.
2012). One hypothesis for this finding is how the eigen-
values of the system change as criticality is approached.
For the numerical parameters considered here, time-varying

Fig. 9 Effects of imperfect
detection on leading indicator
performance for each
intervention: a Changing
mosquito abundance, b changing
biting rate, c changing recovery
rate, and d changing mosquito
mortality rate. Each time series
was binomially sampled with
detection rates ranging from 20
to 90 %. The area under the
curve (AUC) is graphed as a
function of detection rate. The
coefficient of variation (CV)
appears to be the most robust
indicator to underreporting
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control measures that result in reduction of transmission
result in eigenvalues that decline with control (albeit at dif-
ferent rates), whereas measures that reduce the removal
rate can lead to non-monotonic eigenvalues, e.g., the sub-
dominant eigenvalue exhibiting increases in magnitude,
rather than decreasing in magnitude, as might be expected
(Fig. 10). More research is needed to investigate how
dynamical changes in eigenvalues impact the summary
statistic predictions generally. Interestingly, the autocorre-
lation appears to respond earlier than the coefficient of
variation to interventions (Figs. 5, 6, 7, and 8). The speed
of the response of leading indicators to gradual parameter
changes, and determining the factors most important in
driving statistical patterns of critical slowing down, are
subjects of ongoing research.

The ROC procedure we describe here is not appropri-
ate for measuring leading indicator statistics in time series
of case reports. What is observed in practice is a single
realization (case report time series) that may lie far from
the mean model prediction due to stochastic fluctuations.
Rather, we use the theory to calculate the theoretical values
of the mean leading indicator summary statistics and com-
pare changes in them as the critical point is approached with
changes in median statistics from 500 stochastic simulations
over a moving window (“Simulations” and “Analysis over a
moving window” sections; and “Results” section). Changes
in summary statistics as the critical point is approached
are signatures of critical slowing down. Our simulation
study tests the performance of each summary statistic as an
early warning system, which we define as an information

processing system that returns a binary signal at each time
in the simulation.

Our online processing algorithm assumes that the input
data is the number of infectious individuals at time t , but
in practice, data would consist of incidence time series (the
number of new cases at time t). Incidence data will closely
agree with the number of currently infected individuals if
the incidence time series has the same resolution as the
duration of the infectious period (Ferrari et al. 2005). If the
system is quasi-stationary or moving towards elimination
sufficiently slowly, then the number of infectious individu-
als at a time equal to the infectious period should equal the
number of new cases. However, this issue becomes com-
plicated for diseases such as malaria where case reports in
elimination settings may only include very sick individu-
als that seek treatment and not those who are infected but
are not sick enough to seek treatment. Moreover, our results
in Fig. 9 suggest that the effects of imperfect detection are
not uniform across interventions. Development of theory
for detection of critical slowing down accounting for under-
reporting and the presence of unobserved processes is needed.

The Ross-MacDonald model has long been used as a
strategic model for understanding mosquito-borne infec-
tious disease (Smith et al. 2012), but has not been studied
under the realistic scenario of a slow environmental forcing.
Actual elimination requires the growth of institutions (like
hospitals, central government, land conversion like ditching,
and mosquito control networks) that are slow to develop and
need to be maintained until elimination is reached. While
many control campaigns could be considered “pulse” inter-
ventions, in that the intervention is deployed as quickly

Fig. 10 Eigenvalues obtained
from linearization about the
stable node equilibrium
corresponding to each control
activity. The red dashed vertical
line corresponds to the critical
value of each parameter where
R0 = 1. Parameter values
relevant for malaria were used
(Table 1)
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as possible, the models considered here encompass “press”
strategies (interventions that are maintained until elimi-
nation is reached). Our approach ignores integrated con-
trol measures that impact multiple components of vecto-
rial capacity simultaneously, e.g., insecticides targeted on
adult mosquitoes that affect mosquito abundance and adult
longevity. However, it would be straightforward to derive
the theoretical predictions for any such model, simply by
appropriate modification of the formulas for the eigenval-
ues. A limitation of our time-varying models is that they do
not include the extrinsic incubation period (EIP), to which
transmission can be sensitive to variation. Including a delay
in the form of an exposed mosquito class could be important
for anticipating elimination if evolution-proof control activ-
ities that affect mosquito lifespan are implemented since
sustained transmission between hosts and vectors requires
the EIP to be less than adult lifespan. Additionally, our sim-
ple model of mosquito-borne disease elimination does not
include many realistic aspects of mosquito-borne dynamics
including waiting time distributions (Smith and McKenzie
2004), temperature dependence in the gonotrophic cycle
and mosquito development time (Paaijmans et al. 2013;
Read et al. 2009), spatial location of hosts and vectors,
and spatial heterogeneity in adult and larval mosquito habi-
tats (Hollingsworth et al. 2014; Perkins et al. 2013; Reiner
et al. 2013). Future tactical models examining elimination
dynamics should include these complexities but since most
models of vector-borne diseases are of the Ross-Macdonald
type (Reiner et al. 2013), it is reasonable to develop theo-
retical predictions for summary statistics using the existing
Ross-Macdonald theory, combined with simple assumptions
of control activities applied to malaria.

In conclusion, to our knowledge, this study constitutes
the first theory for non-parametrically anticipating elimi-
nation of mosquito-borne diseases. Our analysis of Ross-
Macdonald models parameterized for malaria shows that
critical slowing down is detectable in fluctuations in human
cases for mosquito-borne parasites approaching elimina-
tion, suggesting that disease elimination may be anticipated
even in the absence of a detailed understanding of underly-
ing mechanisms. Our work suggests that online algorithms
for detecting changes in leading indicators may be achiev-
able, possibly aiding sustainment of the gains made by
elimination programs.
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A Appendix

Derivation of stochastic differential equations used
in simulations

Demographic stochasticity

To formulate a continuous stochastic host-vector model,
we begin by writing down a discrete stochastic process by
listing each event that can occur and its corresponding tran-
sition probability (Table 2). Letting X(t) = (X1, X2)

T =
(H(t), M(t))T and applying the diffusion approximation,
we calculate the expectation vector and the covariance
matrix for the change in state vector �X=(�X1, �X2)T =
(�H, �M)T . From the central limit theorem, we assume
�X = (�Xi) is normally distributed for sufficiently large
�X and for small �t . Neglecting higher order terms in �t ,
up to leading order, the expectation vector is

E(�X)=
5∑

i=1

pi�Xi =
(

k(t)p
Nh

M(Nh − H) − μ(t)H
k(t)q
Nh

H(Nm(t) − M) − δ(t)M

)
�t =μ�t.

(A.1)

Denoting the transpose of a matrix by a superscript T , the
covariance matrix is given by

E((�X)(�X)T ) =
5∑

i=1

pi(�Xi)(�Xi)T

= p1

(
1 0
0 0

)
+ p2

(
1 0
0 0

)
+ p3

(
0 0
0 1

)
+ p4

(
0 0
0 1

)

=
(

k(t)p
Nh

M(Nh − H(t)) + μ(t)H(t) 0

0 k(t)q
Nh

H(t)(Nm(t) − M(t)) + δ(t)M(t)

)
�t = M(t)�t.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Letting B(X(t), t)) = √
M(X(t), t), the probability distri-

bution of solutions to the discrete-valued continuous process
satisfies the forward Kolmogorov equation (Allen 2003),

∂


∂t
= −

2∑
i=1

∂

∂Xi

(μi(X(t), t)
(X(t), t))

+1

2

2∑
i=1

2∑
j=1

∂

∂XiXj

(Bij (X(t), t)
(X(t), t)). (A.2)

The probability distribution 
(X(t), t) is identical to the
distribution of solutions to the system of stochastic differ-
ential equations (Allen 2003),

dH = μ1(X(t), t))dt + B11(X(t), t))dW1 (A.3)

dM = μ2(X(t), t))dt + B22(X(t), t))dW2

where dWi are independent Wiener processes with mean
zero and variance dt respectively.

Environmental stochasticity

Environmental variation is included into the model (A.3) by
adding an environmental perturbation to system (A.3) that
scales with the rate that is altered by a particular control
activity. Thus, we modify the Eq. A.3 yielding,

dH = μ1(X(t), t))dt + G11(X(t), t))dW1 + G13(X(t), t))dW3

dM = μ2(X(t), t))dt + G22(X(t), t))dW2 + G23(X(t), t))dW3, (A.4)

where the diffusion matrix G(t) is given by

G(t) =
(

B11(X(t), t)) 0 G13(X(t), t))

0 B22(X(t), t)) G23(X(t), t))

)
,

(A.5)

and dW3 is a Wiener process. The entries G13 and G23

in G(t) represent environmental noise terms. Each model
in Table 3 describing a time-varying control measure and
environmental stochasticity may be written in the gen-
eral form given by Eq. A.4. For example, in the system
of stochastic differential equations with time-varying bit-

ing rate in Table 3, G11 =
√

k(t)p
Nh

M(Nh − H) + μH ,

G12 = G21 = 0, G22 =
√

k(t)q
Nh

H(Nm − M) + δM ,
G13 = σMp(Nh −H)/Nh and G23 = σHq(Nm −M)/Nh.
Solutions of system (A.4) have the same probability distri-
bution P(X(t), t) as solutions of the forward Kolmogorov
equation (Allen et al. 2008) given by

∂P (X(t), t)

∂t
= −

2∑
i=1

∂

∂Xi

(μi(X(t), t))P (X(t), t))

+1

2

2∑
i=1

2∑
j=1

∂

∂XiXj

[P(X(t), t)

3∑
l=1

(Gil(X(t), t)Gjl(X(t), t)))]. (A.6)

Finally, the dimension of system (A.4) may be reduced by
noting that the solutions of the system (A.4) have the same
probability distribution as the following system of stochastic
differential equations (Allen et al. 2008),

dH = μ1(X(t), t)dt + √
V11(X(t), t))dW ∗

1 + √
V12(X(t), t))dW ∗

2

dM = μ2(X(t), t)dt + √
V21(X(t), t))dW ∗

1 + √
V22(X(t), t))dW ∗

2 , (A.7)

where dW ∗
i are independent Wiener processes and V(t)

denotes the covariance matrix,

V(X(t), t) =
(

B11(X(t), t)) + G13(X(t), t))2 G13(X(t), t))G23(X(t), t))

G13(X(t), t))G23(X(t), t)) B22(X(t), t)) + G23(X(t), t))2

)
.

The covariance matrix V(X(t), t)) is related to G(X(t), t))

byV(X(t), t)) = G(X(t), t))G(X(t), t))T . System (A.7) is
associatedwith the following forward Kolmogorov equation,

∂P (X(t), t)

∂t
=−

2∑
i=1

∂

∂Xi

(μi(X(t), t)P (X(t), t))

+1

2

2∑
i=1

2∑
j=1

∂

∂XiXj

(Vij (X(t), t)P (X(t), t)). (A.8)

Linearization

To derive early warning signals of disease elimination, we
seek parametric expressions for the fluctuations about the
endemic equilibrium. Since the Ross-Macdonald system

does not exhibit long transients and the time-varying func-
tions representing non-stationary processes are changing
gradually through time, linearization gives reasonable infor-
mation for the behavior of fluctuations. We linearize the
functions μi(H(t), M(t), t) and Vij (H(t), M(t), t) about
the endemic equilibrium (H ∗, M∗) at time t . Letting x =
(x1, x2) = (H(t) − H ∗, M(t) − M∗) denote a perturbation
from the endemic equilibrium at time t and retaining leading
order terms from Taylor expansions of each function about
(H ∗, M∗), we obtain

μi ≈μi(H
∗, M∗, t)+ ∂μi(H

∗, M∗, t)
∂H

x1+ ∂μi(H
∗, M∗, t)

∂M
x2+. . .

≈0+
2∑

j=1

aij xj . . .
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where aij denote the partial derivatives of μi and

Vij ≈ Vij (H
∗, M∗, t) + . . .

= Dij ,

where Dij denotes the evaluation of Vij at the endemic
equilibrium. The forward Kolmogorov equation for joint
probability distribution of the deviations from equilibrium
p(x, t) is

∂p(x, t)

∂t
= −

2∑
i=1

∂

∂xi

p(x, t)

⎛
⎝ 2∑

j=1

aij xj

⎞
⎠

+1

2

2∑
i=1

2∑
j=1

∂

∂xixj

(Dij (x)p(x, t)). (A.9)

The entries of the linearization matrix A and the corre-
sponding covariance matrix D for each time-varying control
measure are expressed in Tables 5 and 6 respectively.

Derivation of leading indicators of elimination

We note that any function x(t) defined in the time interval
−T/2 ≤ t ≤ T/2 may be written in terms of its Fourier
transform x̃(ω),

x(t) = 1

2π

∫ ∞

−∞
x̃(ω) exp(iωt)dω (A.10)

where ω denotes angular frequency. Roughly (A.10)
describes a superposition of amplitudes of all the angular
frequency components of the signal x(t) and thus Fourier
transformation is a convenient means for discerning its

Table 5 Variables substitutions for the stochastic differential equa-
tions for the fluctuations about the endemic equilibrium (2) at time t

(A.12)

Variable Expression

H ∗ Nh(k(t)2Nm(t)pq−Nhδ(t)μ(t))
k(t)q(k(t)Nm(t)p+Nhμ(t))

M∗ k(t)2Nm(t)pq−Nhδ(t)μ(t)
k(t)p(k(t)q+δ(t))

a11 −k(t)pM∗/Nh − μ(t)

a12 k(t)p(Nh − H ∗)/Nh

a21 k(t)q(Nm(t) − M∗)/Nh

a22 −k(t)qH ∗/Nh − δ(t)

d a11a22 − a12a21

T −a11 − a22

αH a222D11 + a212D22 − 2D12a12a22

If the statistics were evaluated about the trajectory of the fast-slow
system, then H ∗ and M∗ in the table below are replaced with H(t)

and M(t) respectively (e.g., Fig. 4). The expressions for the Dij coef-
ficients are in Table 6. For fluctuations about an endemic equilibrium,
the value of control parameters k(t),Nm(t),μ(t) and δ(t) are constant

underlying frequencies (Nisbet and Gurney 1982). The
Fourier transform of x(t) is

x̃(ω) =
∫ T

2

− T
2

x(t) exp(−iωt)dt. (A.11)

To quantify the fluctuations about the endemic equilib-
rium or about a solution of a fast-slow system at some
arbitrary time t , we note the following system of stochastic
differential equations is equivalent to Eq. A.9,

dx1 = a11x1(t)dt + a12x2(t)dt + √
D11dW̃1(t) + √

D12dW̃2(t)

dx2 = a21x1(t)dt + a22x2(t)dt + √
D21dW̃1(t) + √

D22dW̃2(t),

where dW̃i(t) are independent Wiener processes. For nota-
tional convenience, we express these equations as

dx1

dt
= a11x1(t) + a12x2(t) + �1(t)

dx2

dt
= a21x1(t) + a22x2(t) + �2(t), (A.12)

where �1(t) and �2(t) represent white noise processes asso-
ciated with the covariance matrix D. To analyze the system
(A.12), we take its Fourier transform, leading to

iωx̃1(ω) = a11x̃1(ω) + a12x̃2(ω) + �̃1(ω)

iωx̃2(ω) = a21x̃1(ω) + a22x̃2(ω) + �̃2(ω), (A.13)

where x̃1(ω), x̃2(ω), �̃1(ω), and �̃2(ω) are the Fourier trans-
forms of x1(t), x2(t), �1(t), and �2(t), respectively. We
note that in Table 5, we have defined the aij coefficients in
terms of time. If the aim is to calculate summary statistics
about an endemic equilibrium at time t , then these coef-
ficients are constant values. If we calculate the statistics
for the fluctuations about a solution of the fast-slow sys-
tem at some arbitrary time t , we use the values of the aij

at that time t . This is reasonable because we assume that
the control measure being taken is changing very slowly
relative to the time scale of the evolution of infectious
human hosts. Consequently, we assume these coefficients
are constant relative to the time scale that the number of
infectious hosts are changing over in an arbitrary finite time
interval.

Since we are interested in fluctuations about the infec-
tious human state, we solve (A.13) for the Fourier transform
x̃1(ω), obtaining

x̃1(ω) = (a22 − iω)�1(ω)

d − ω2 + iT ω
− a12�2(ω)

d − ω2 + iT ω
, (A.14)

where T and d are the trace and determinant of the Jacobian
matrix respectively, given in Table 5. Using (A.14), we can
establish the power spectrum of the fluctuations 〈|x̃1(ω)2|〉,

SH (ω) = (αH + D11ω
2)

(ω2 − d)2 + T 2ω2
, (A.15)
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Table 6 Variables substitutions for terms of the variance-covariance matrix of time-varying Ross-Macdonald models with demographic and
environmental noise

Coefficient Biting rate Recovery rate

D11
k(t)p
Nh

M∗(Nh − H ∗) + μ(t)H ∗ + (σ/Nh)2p2(M∗)2(Nh − H ∗)2 kp
Nh

M∗(Nh − H ∗) + μ(t)H ∗ + (σH ∗)2

D12 (σ/Nh)2pqM∗H ∗(Nh − H ∗)(Nm − M∗) 0

D21 (σ/Nh)2pqM∗H ∗(Nh − H ∗)(Nm − M∗) 0

D22
k(t)q
Nh

H ∗(Nm − M∗) + δM∗ + (σ/Nh)2q2(H ∗)2(Nm − M∗)2 kq
Nh

H ∗(Nm − M∗) + δM∗

Coefficient Mosquito population size Mortality rate

D11
kp
Nh

M∗(Nh − H ∗) + μH ∗ kp
Nh

M∗(Nh − H ∗) + μH ∗

D12 0 0

D21 0 0

D22
kq
Nh

H ∗(Nm(t) − M∗) + δM∗ + σ 2 kq
Nh

(H ∗)2 kq
Nh

H ∗(Nm − M∗) + δ(t)M∗ + (σM∗)2

If the statistics were evaluated about the trajectory of the fast-slow system, then H ∗ and M∗ in the table below are replaced with H(t) and M(t),
respectively (e.g., Fig. 4). For fluctuations about an endemic equilibrium, the value of control parameters k(t), Nm(t), μ(t) and δ(t) are constant

where αH is given in Table 5. The variance, autocorrela-
tion and coefficient of variation of the fluctuations in H(t)

around the endemic equilibrium may be obtained using
Eq. A.15 through integration, (e.g., as in (Nisbet and Gur-
ney 1982; O’Regan and Drake 2013)), see Table 4 for
expressions.

B Appendix

To establish that the endemic equilibrium of the Ross-
Macdonald equations (system (1) in the main text) is always
a stable node, and thus eigenvalues obtained from the
Jacobian matrix

A =
(

a11 a12
a21 a22

)

evaluated at the endemic equilibrium are negative, real, and
distinct, we need to establish that the trace of the Jacobian
matrix tr(A) is negative, the determinant det(A) is strictly
positive, and the radical in the eigenvalues can never be
negative, i.e., (tr(A))2 − 4 det(A) > 0. Entries of the Jaco-
bian matrix are given in Table 5. Clearly, tr(A) = a11 +
a22 = −kpM∗/Nh − μ − kqH ∗/Nh − δ is strictly negative
since k, p, q, Nh, μ, δ > 0 and the endemic equilibrium
(H ∗, M∗) is strictly positive. Next, we need to establish that
the determinant of A is strictly positive,

a11a22 − a12a21 = δkp
M∗

Nh

+ μkq
H ∗

Nh

+ μδ − k2pq
Nm

Nh

+k2pq
M∗

Nh

+ k2pqH ∗ Nm

N2
h

.

Given that R0 = k2pqNm/μδNh, we can write this expres-
sion as

kp
M∗

Nh

(δ + kq) + H ∗kq

Nh

(
μ + kpNm

Nh

)
− μδ(R0 − 1).

Rewriting H ∗ and M∗ in terms of R0 and cancelling out
terms yields the condition

μδ(R0 − 1) > 0.

Sinceμ and δ are positive constants, thenR0 > 1 is required
for the endemic equilibrium to be stable. Finally, we need
to establish that the radical in the eigenvalues can never be
negative. The condition for a stable node is

(a11 − a22)
2 + 4a12a21 > 0. (B.1)

The condition is satisfied if either (i) a12, a21 ≥ 0 or (ii)
a12, a21 ≤ 0. From the Jacobian matrix, a12 = kp(Nh −
H ∗)/Nh and a21 = kq(Nm − M∗)/Nh. Since k, p, q

and Nh are all strictly positive and the equilibrium sus-
ceptible human and mosquito host populations are always
greater than zero, then condition (B.1) is always satisfied.
Moreover, the node is not degenerate since the equilib-
rium susceptible human and mosquito host populations are
strictly positive, and thus the eigenvalues are never equal.
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