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ABSTRACT: A highly enantioselective one-pot synthesis of
functionalized triflones, bearing a quaternary stereocenter, has
been developed, exploiting the Michael reaction of α-(trifluor-
omethylsulfonyl) aryl acetic acid esters with N-acryloyl-1H-
pyrazole catalyzed by commercially available Takemoto’s catalyst,
followed by nucleophilic acyl substitution with alcohols. Prelimi-
nary investigations highlighted the attractive potential of the
triflinate anion as the leaving group for stereocontrolled postfunctionalizations.

Chiral nonracemic sulfones are a class of compounds of
great importance in different areas, from organic

synthesis, medicinal chemistry to material science. In
particular, those bearing the sulfone group directly connected
to the stereogenic center are endowed with different biological
activities, such as antifungal agents (Agelasidine A),1 β-
lactamase inhibitors (tazobactan),2 and γ-secretase inhibitor.3

The sulfonyl group is an accredited bioisoster of the carbonyl
group and a strong H-bonding acceptor able to increase the
interactions with the biological targets.4 Moreover, sulfones are
highly useful synthetic building blocks amenable of different
transformations.5

The asymmetric synthesis of sulfones, having this group
directly attached to the stereogenic center is a challenging
task,6 which has been mainly accomplished via metal-catalyzed
substitution,7 hydrosulfonylation,8 hydrogenation,9 and con-
jugate addition.10 However, most of the protocols so far
developed are focused on the generation of optically enriched
secondary sulfones. In comparison, the stereoselective
preparation of aryl and alkyl sulfones featuring a quaternary
stereocenter is largely underdeveloped.6,7,10c In this context,
scant examples have been reported on the stereoselective
preparation of either secondary and tertiary triflones (Scheme
1). Nakamura and Toru illustrated an interesting asymmetric
reaction of nBuLi generated α-carbanion of benzyl trifluor-
omethylsulfone with aldehydes in the presence of 30 mol % of
bis(oxazoline) ligands (Scheme 1a).11 The products were
obtained in good to high diastereo- and enantioselectivity.
Raabe and Gais, developed a five-step sequence from

optically enriched secondary alcohols as the reagent to obtain
secondary triflones, mantaining the level of enantioselectivity.12

The latter were then alkylated, under controlled conditions,
to provide triflones with an all-carbon quaternary stereocenter
in comparable ee values (Scheme 1b). We recently developed a
one-pot α-trifluoromethylthiolation of readily available N-acyl

pyrazoles, followed by oxidation to access α-trifluoromethan-
sulfonyl aryl acetic acid esters.13a The process has been also
improved under continuous flow conditions, starting from
carboxylic acids.14 The triflyl group is the strongest neutral
electron-withdrawing group,15 showing mild lipophilicity. This
prompted its introduction onto molecular scaffolds, as it affects
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Scheme 1. Approaches to Optically Enriched Triflones
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the activity of fluorinated drugs16 and more in general the
properties of the materials.17 As illustrated in Scheme 1, the
asymmetric synthesis of tertiary triflones remains an elusive
goal, where catalytic approaches still have to be developed.18

Having in hand a viable route to trifluoromethansulfonyl aryl
acetic acid esters, we envisaged that they might serve as
suitable pronucleophiles15c,d to employ in Michael reactions
under mild organocatalytic conditions. Herein, we report a first
catalytic and highly enantioselective preparation of triflones,
featuring a quaternary stereocenter. Michael reaction of
trifluoromethansulfonyl aryl acetic acid esters with N-
acryloyl-1H-pyrazole has been mediated by Takemoto’s
catalyst, followed by nucleophilic acyl substitution with
alcohols in one pot. The final bis-ester triflones also
demonstrated to be useful compounds for interesting
postfunctionalizations.
At the ouset of the study, methyl vinyl ketone was reacted

with compound 1a, using readily available bifunctional
organocatalysts at 20 mol % loading, in toluene at room
temperature (Table 1). Pleasingly, quinidine (QD) catalyzed
the conjugate addition, providing product 3a in 82% yield and
20% ee (entry 1). This result prompted us to use Cinchona

alkaloids-derived thiourea eQNT and eQDT, which unfortu-
nately were much less effective promoters (entries 2 and 3).
Sterically hindered amine-thiourea 4 gave a small improvement
in the enantioselectivity up to 37% ee (entry 4). Takemoto’s
catalyst 5 proved to be more active, leading to 3a in 75% yield
and 55% ee, after a short reaction time (entry 5). Next, phenyl
vinyl ketone was treated with compound 1a using catalyst 5,
observing the formation of the adduct 3b with an increased
level of enantioselectivity (entry 6). Readily available amine-
thiourea 6 was then checked in the process, giving
disappointing results (entry 7), as well as the commercially
available squaramide 7, which afforded racemic 3b in only
moderate yield (entry 8). When more sterically hindered
isopropyl ester 1a′ (R1 = 4-BrC6H4) was reacted, a decreased
level of enantioselectivity was observed (entry 9). For the
purpose of improving the enantiocontrol, 1-naphthyl vinyl
ketone was employed with 1a in the presence of catalyst 5
(entry 10). However, the adduct 3d was isolated in 85% yield
and 44% ee. Activated acrylic acid derivatives were then
checked, such as the 1,1,1,3,3,3-hexafluoroisopropyl acrylate,
but it proved to be poorly reactive (entry 11). Given the utility
displayed over recent years by α,β-unsaturated N-acyl
pyrazoles in asymmetric catalysis,19 the corresponding N-
acryloyl-1H-3-phenyl pyrazole was reacted under the opti-
mized conditions (entry 12). Pleasingly, it was smoothly
converted into the corresponding adduct 3e,20 which was
isolated in 42% yield and 75% ee. The same reaction when
conducted at −20 °C afforded product 3e with improved 86%
ee (entry 13). Finally, when using N-acryloyl-1H-pyrazole as
the acceptor, adduct 3f was recovered in 50% yield20 and 89%
ee (entry 14). Reduction of the catalyst loading to 10 mol % as
well as the temperature as low as −20 °C enabled the product
to be satisfactorily obtained in high yield21 and 94% ee (entries
15 and 16).
N-Acyl pyrazoles behave as useful carboxylic acid ester

surrogates,19 due to the good leaving group ability of the
pyrazole group. Hence, we thought to develop a simple one-
pot methodology to directly obtain the bis-ester triflones 8,
treating compounds 3 with an alcohol at room temperature,
after the end of the conjugate addition step. Under the
optimized reaction conditions reported in Scheme 1, entry 16,
the scope of the one-pot process was next investigated
(Scheme 2). As illustrated in Scheme 2, triflones 1, bearing
halogens at para- and ortho-position of the phenyl ring, were
converted into the corresponding methyl esters 8a−d in
excellent yields and high enantioselectivity (82−95% ee).
Pleasingly, more sterically encumbered ortho-fluoro deriva-

tive 8d was isolated with excellent ee value (95%). Electron-
donating or -withdrawing substitution at the para-, meta-, and
ortho- positions, including the phenyl and 2-naphthyl moieties,
were well tolerated, as the products 8e−j were recovered in
good to high yields and 91−96% ee values. Only the sterically
demanding ortho-methyl derivative 8g was isolated in 40%
yield, although a 96% ee value was observed. Then, we
surveyed the suitability of other alcohols as nucleophiles in the
second step on differently substituted trifluoromethansulfonyl
phenyl acetic acid esters 1. Ethanol, n-butanol to more
sterically hindered isopropanol and allylic alcohol could be
employed, performing the esterification at 50 °C. The
corresponding triflones 8k−o, bearing single or double
substitution at the phenyl ring, have been obtained in fairly
good to high yields and ee values (83−94%).

Table 1. Reaction Optimizationa

entry cat. R2 t (h) 3 yield (%)b 3 eec

1 QD Me 2a 7 82 (3a) 20
2 eQNT Me 23 10 (3a) 5
3 eQDT Me 23 57 (3a) rac
4 4 Me 23 41 (3a) 37
5 5 Me 6 75 (3a) 55(−)
6 5 Ph 2b 16 79 (3b) 67
7 6 Ph 16 44 (3b) 37
8 7 Ph 16 23 (3b) rac
9d 5 Ph 17 76 (3c) 63
10 5 1-naphthyl 2c 17 85 (3d) 44
11 5 OCH(CF3)2 2d 25 <10 n.d.
12 5 3-Phpyrazole 2e 17 42 (3e) 75
13e 5 3-Phpyrazole 2e 40 61 (3e) 86
14 5 pyrazole 2f 17 50 (3f) 89
15f 5 pyrazole 2f 24 90 (3f) 93
16g 5 pyrazole 2f 24 95 (3f) 94

aReactions performed at 0.1 mmol scale of 1a (C 0.2 M) using 2 (1.2
equiv). bIsolated yield after chromatography. cDetermined by chiral
HPLC analysis; n.d. = not determined. Negative sign indicates
enantiomeric excess for the opposite enantiomer. dThe isopropyl ester
of compound 1a was used. eRun at −20 °C. f10 mol % of 5 was used
at 0 °C. g10 mol % of 5 was used at −20 °C.
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Finally, the pyrazole displacement with morpholine
performed at room temperature led to the corresponding
product 8p, bearing a tertiary amide group, in 92% yield and
93% ee. The practicality of the process was investigated
scaling-up reagent 1a to 1.0 mmol. Triflone 8a was isolated
maintaining a high yield and enantioselectivity. Further
experiments, carried out during the preparation of tertiary
amide 8p, allowed us to disclose a synthetically appealing
derivatization, involving triflyl group displacement (Scheme 3).
When the second step was performed using morpholine in

the presence of water (2 equiv) at 50 °C, for a prolonged
reaction time, the α-hydroxyl ester 9 was efficiently formed in
95% yield and 92% ee. This remarkable result would be
rationalized invoking SN2 displacement of the triflinate anion,
which is an excellent leaving group,22 by an in situ generated
hydroxyl anion.23 The transformation is noteworthy, being a
formal enantioselective hydroxylation at a congested α-position
of an ester. The absolute configuration of compound 9 was
determined to be S by X-ray crystallographic analysis (CCDC
No.: 2165089).

Consequently, compounds 8 were assigned as R-configured,
which was found to be consistent with DFT calculations
(Figure 1).

The transition states leading to the formation of both (R)-8a
and (S)-8a for the Michael reaction, promoted by (R,R)-
catalyst 5, were fully optimized by DFT calculation at the
M062X-631g(d,p)/PCM (toluene) level of theory using the
M062X functional.24 Different models of substrates-catalyst
coordination were investigated.25 The energetically most
affordable calculated transition states would involve the
activation model previously proposed by Papai,26 where
triflone 1a is coordinated to the thiourea group of the catalyst
and acyl pyrazole 2f to the tertiary amine group. According to
this model, TS-II leading to product (R)-8a was found to be
more stable by 1.64 kcal mol−1 than TS-I leading to product
(S)-8a, which features weaker hydrogen bonding of thiourea
with the SO2CF3 group, and, possibly, a destabilizing
interaction between SO2CF3 and one of the CF3 residues in
the catalyst. Noteworthy, remarkably good agreement between
calculated (91% ee) and experimental (93% ee in entry 15,
Table 1) ee values has been achieved.
We further applied the displacement to develop an

asymmetric one-pot Michael/SN2 displacement/esterification
to γ-butyrolactone, bearing a γ-quaternary stereocenter
(Scheme 3). The in situ generated adduct 8p was treated
with Et3N, water at 50 °C, affording the expected lactone 10 in
44% yield and 95% ee. Although the process needs to be

Scheme 2. Substrate Scope of the One-Pot Processa,b,c

aFirst step: 0.1 mmol scale of 1 (C 0.2 M) using 2f (1.5 equiv).
Second step: addition of R2OH (50 equiv), in case of morpholine (3
equiv). bIsolated yield after chromatography. cEe determined by chiral
HPLC analysis.

Scheme 3. One-Pot Derivatizations of Compounds 8
Involving Triflyl Group Displacement

Figure 1. Proposed model of stereoselection. Geometries and ΔΔG0

(kcal mol−1) of transition states related to the synthesis of enriched
triflone 8a were calculated at the M062X/6-31G(d,p)/PCM
(toluene) level of theory. Hydrogens are omitted for clarity.
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optimized, it represents an interesting and useful application of
optically active triflones 8 as intermediates toward difficult to
prepare γ-butyrolactones 10.27

Additional postfunctionalizations on representative com-
pound 8a have been performed under reductive conditions
(Scheme 4). Unexpectedly, treatment with DIBALH under

controlled conditions afforded alcohol 11 in 76% yield, without
erosion of the ee value. Reduction of the less activated methyl
ester might be likely ascribed to the congested nature of the
ethyl ester portion. Having ascertained that selective reduction
of the ester to aldehyde occurred in a shorter reaction time, a
one-pot process from reagent 1a, involving asymmetric
Michael reaction/reduction to aldehyde/Horner−Emmons
olefination, has been developed. The diversely functionalized
product 12 was recovered in satisfactory 50% overall yield and
93% ee.
In summary, we successfully develop a first enantioselective

catalytic route to triflones, featuring a quaternary stereocenter.
The asymmetric Michael reaction between α-(trifluoromethyl-
sulfonyl) aryl acetic acid esters with N-acryloyl-1H-pyrazole
was efficiently catalyzed by commercial Takemoto’s catalyst,
followed by nucleophilic acyl substitution with alcohols. The
bis-ester triflones were obtained in good to excellent yields and
high enantioselectivity in one-pot. Moreover, this work
provides useful knowledge on the application of tertiary
triflones in stereoselective organic synthesis. The utility of the
products has been demonstrated via triflone displacement and
under reductive conditions to conveniently access a variety of
attractive enantioenriched scaffolds.
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