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ABSTRACT The objective of this study was to determine the phenotypic patterns
of antibiotic resistance and the epidemiology of drug-resistant Campylobacter spp.
from a low-resource setting. A birth cohort of 303 patients was followed until
5 years of age. Stool samples from asymptomatic children (n � 10,008) and those
with diarrhea (n � 3,175) were cultured for Campylobacter. Disk diffusion for cipro-
floxacin (CIP), nalidixic acid (NAL), erythromycin (ERY), azithromycin (AZM), tetracy-
cline (TE), gentamicin (GM), ampicillin (AMP), amoxicillin and clavulanic acid (AMC),
ceftriaxone (CRO), chloramphenicol (C), and trimethoprim-sulfamethoxazole (TMS)
was determined. Antibiotic resistances in Campylobacter jejuni and non-C. jejuni iso-
lates from surveillance and diarrhea samples were compared, and the association
between personal macrolide exposure and subsequent occurrence of a macrolide-
resistant Campylobacter spp. was assessed. Of 917 Campylobacter isolates, 77.4% of
C. jejuni isolates and 79.8% of non-C. jejuni isolates were resistant to ciprofloxacin,
while 4.9% of C. jejuni isolates and 24.8% of non-C. jejuni isolates were not suscepti-
ble to azithromycin. Of the 303 children, 33.1% had been diagnosed with a Cam-
pylobacter strain nonsusceptible to both azithromycin and ciprofloxacin. Personal
macrolide exposure did not affect the risk of macrolide-resistant Campylobacter.
Amoxicillin and clavulanic acid (94.0%) was one of the antibiotics with the high-
est rates of susceptibility. There is a high incidence of quinolone- and macrolide-
resistant Campylobacter infections in infants under 24 months of age. Given the
lack of association between personal exposure to macrolides and a subsequent
Campylobacter infection resistant to macrolides, there is a need to evaluate the
source of multidrug-resistant (MDR) Campylobacter. This study provides compel-
ling evidence to propose amoxicillin/clavulanic acid as a treatment for campylo-
bacteriosis.
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Campylobacter is a globally disseminated Gram-negative zoonotic bacterium that is
the main cause of gastrointestinal disease in children and adults. The principal

transmission pathways of Campylobacter include fecal contamination of undercooked
meat, water, and other poultry by-products (1). In industrialized nations, Campylobacter
jejuni is the most common species of Campylobacter isolated in patients with diarrheal
disease, followed by Campylobacter coli (2–5). In low-income settings, the epidemiology
of campylobacteriosis may be distinct, and recent studies suggest that other Campy-
lobacter species such as C. hyointestinalis and C. concisus are a major cause of diarrheal
disease in pediatric populations were the disease is endemic (6–8).
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In recent years, C. jejuni and C. coli resistance to antibiotics has increased throughout
the world (9–12). Specifically, high levels of resistance to fluoroquinolones and mac-
rolides in C. jejuni and C. coli isolates, as well as emerging resistance to aminoglycosides,
have been reported in human and animal isolates (11–14). Although Campylobacter-
associated diarrhea is generally a self-limiting disease and antibiotic treatment is not
commonly advised (15), for patients with severe symptoms, dysentery, and compro-
mised immunological systems and pregnant women, treatment is warranted (16).
Fluoroquinolones, specifically, ciprofloxacin, were once considered the main treatment
option (16). However, due to high levels of resistance to this drug, macrolides, namely,
azithromycin, are the currently recommended first line of treatment for regular citizens
and deployed military personnel as stated by the Infectious Disease Society of America,
American College of Gastroenterology, and the U.S. military (16–21). Nonetheless, the
recent emergence of macrolide resistance is beginning to threaten this treatment
option (11, 22, 23).

Published statistics on antibiotic resistance in Campylobacter isolates are limited by
the number of isolates analyzed. The vast majority of data comes from studies involving
a few dozen isolates, and only a few studies report data on more than one hundred
isolates, which includes data from countries such as Thailand (24, 25), South Korea (26),
China (27), Japan (28), Tanzania (29), Peru (12, 30), Sweden (31, 32), Finland (33), and
Poland (34, 35).

Two global multicenter studies identified Campylobacter as a pathogen with one of
the highest attributable burdens of pathogenic diarrhea among children under 2 or
5 years of age (36, 37). Specifically, the results from the Etiology, Risk Factors, and
Interactions of Enteric Infections and Malnutrition and the Consequences for Child
Health (MAL-ED) cohort in Iquitos, Peru, show that the highest incidence of diarrhea in
children under 12 months of age is attributed to Campylobacter infections. Among
children under 2 years of age, Campylobacter is the second leading diarrhea-causing
pathogen (36). In this same setting in a separate cohort of children 0 to 5 years of age,
symptomatic and asymptomatic Campylobacter infections were associated with re-
duced weight over a 3-month period, and severe symptomatic infections were asso-
ciated with reduced linear growth (38). A reanalysis of the Global Enteric Multicenter
Study (GEMS) case-control study found Campylobacter among the top 6 pathogens
with the highest attributable burden to diarrhea. Thus, there is compelling evidence of
disease burden attributable to Campylobacter infections in pediatric populations of
low-resource settings. However, neither of these studies have reported (to date)
antibiotic resistance patterns of the Campylobacter isolates obtained.

The majority of human observational studies reporting antibiotic resistance in
Campylobacter have been conducted in high-income settings, and only a limited
number of longitudinal studies have assessed antibiotic resistance in Campylobacter
species isolates from children. Therefore, there is a need to present evidence on the
burden of antibiotic-resistant Campylobacter on pediatric populations. Characterizing
the patterns and epidemiology of antibiotic-resistant Campylobacter in a low-resource
tropical area is also of critical importance for guiding clinical management, as routine
antimicrobial resistance (AMR) testing is not done in most settings where the disease
is endemic, as well as for guiding clinical antibiotic stewardship and regulating veter-
inary antibiotic usage in both low- and high-income settings. As 18% of culture-
confirmed cases of Campylobacter within the United States are associated with inter-
national travel, the importance of characterizing drug-resistant Campylobacter
infections in developing areas of the world (39) is relevant to U.S. and European
populations as well as the populations from which the data are derived. Finally, we
evaluate the effect of azithromycin and erythromycin administration for therapeutic
purposes on the risk of acquisition of macrolide-resistant Campylobacter strains.

RESULTS

A total of 303 children were enrolled between 2009 and 2012 and followed until
5 years of age. From these, 242 children (79.9%) had tested positive for Campylobacter
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spp. by culture (8). Between March 2010 and February 2016, 10,008 surveillance fecal
samples, 3,174 diarrhea samples, and 22 samples of undetermined status were sub-
mitted for stool culture (N � 13,204). Nine-hundred seventeen Campylobacter species
isolates were cultured: 664 were from surveillance (asymptomatic) samples and 252
were from diarrheal samples, translating into an isolation rate of 6.6% among surveil-
lance fecal samples and 7.9% among diarrhea samples. One Campylobacter strain was
isolated from a sample of undetermined status. C. jejuni was identified in 596 samples
(65.0%), of which 169 (28.4.0%) correspond to diarrheal samples. Non-C. jejuni isolates
were identified in 321 samples (35.0%), of which 83 (25.9%) corresponded to diarrheal
samples (Table 1). Throughout the follow-up period, 26.6% of children had only 1
isolate of Campylobacter cultured, and 53.3% of children had between 2 and 4 isolates
identified.

The prevalence of phenotypic resistance for all antibiotics tested is presented in
Table 2. The most effective oral antibiotic was amoxicillin and clavulanic acid. The
highest levels of resistance were recorded for ciprofloxacin: 77.4% of C. jejuni isolates
and 79.8% of non-C. jejuni isolates. Azithromycin resistance was detected in only 4.9%
of C. jejuni isolates and in 24.8% of non-C. jejuni isolates. All azithromycin-resistant
isolates were also ciprofloxacin resistant with the exception of 1 C. jejuni and 1 non-C.
jejuni isolate. Other striking patterns include tetracycline resistance in 55.8% of C. jejuni
isolates and in 49.0% of non-C. jejuni isolates, as well as gentamicin resistance in 15.8%
of non-C. jejuni isolates. No significant longitudinal trends in antibiotic resistance and
multidrug resistance were observed throughout the 5-year study period. Multidrug
resistance (defined as phenotypic nonsusceptibility to 3 or more classes of antibiotics)
was observed in 56.8% (335/590) of C. jejuni isolates and 59.1% (176/298) of non-C.
jejuni isolates. Concomitant phenotypic resistance to ciprofloxacin and azithromycin
was observed in 24.5% (75/298) of non-C. jejuni isolates and in 4.8% (28/588) of C. jejuni
isolates. Concomitant resistance to ciprofloxacin, azithromycin, and gentamicin was
observed in 13.8% (41/298) of non-C. jejuni isolates and in 0.8% (5/596) of C. jejuni
isolates (Fig. 1).

Of the 303 children enrolled and followed up, a total of 80 (33.1%) were found to

TABLE 1 Types of fecal samples associated with Campylobacter species

Speciesa

% (n) of samples

Total (n)Diarrhea Surveillance

C. jejuni 28.4 (169) 71.5 (426) 596b

Non-C. jejuni 25.9 (83) 74.1 (238) 321
aIn 917 stool samples from which Campylobacter was isolated, non-jejuni isolates accounted for 35% of the
total number of Campylobacter isolates.

bOne C. jejuni isolate was not determined as diarrhea or surveillance.

TABLE 2 Phenotypic antibiotic susceptibility of Campylobacter jejuni and non-Campylobacter jejuni isolates

Antibiotic

C. jejuni isolates Non-C. jejuni isolates

% (n)a

Total (N)

% (n)

Total (N)R I S R I S

CIP 77.4 (455) 1.7 (10) 20.9 (123) 588 79.8 (237) 1.1 (3) 19.2 (57) 297
NAL 64.9 (383) 35.1 (207) 590 80.1 (237) 19.9 (59) 296
ERY 5.3 (31) 0.2 (1) 94.6 (556) 588 25.2 (75) 74.8 (223) 298
AZM 4.9 (29) 0.2 (1) 94.9 (558) 588 24.8 (74) 75.2 (224) 298
TE 55.8 (328) 44.2 (250) 588 49 (146) 51 (152) 298
AMP 46.8 (276) 3.9 (23) 49.3 (291) 590 50.7 (151) 8.7 (26) 40.6 (121) 298
AMC 0.7 (4) 0.3 (2) 98.9 (584) 590 1 (3) 5.0 (15) 94.0 (280) 298
C 0.2 (1) 99.8 (589) 590 0.3 (1) 0.3 (1) 99.3 (296) 298
CRO 44.7 (263) 28.7 (169) 26.7 (157) 589 55.0 (164) 22.1 (66) 22.8 (68) 298
GM 1 (6) 0.2 (1) 98.8 (581) 589 15.8 (47) 0.3 (1) 83.9 (250) 298
TMS 85.2 (501) 1.7 (10) 13.1 (77) 588 80.9 (241) 3.4 (10) 15.8 (47) 298
aR, resistant; I, intermediate; S, susceptible.
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have a Campylobacter strain nonsusceptible to both azithromycin and ciprofloxacin.
Additionally, 26 (8.6%) had a diarrhea episode due to an azithromycin-resistant isolate,
of which all strains where also resistant to ciprofloxacin, with the exception of one.
Ciprofloxacin resistance was far more common than azithromycin resistance: 232
(76.6%) children ever diagnosed with a resistant ciprofloxacin isolate and 41.6% of
children had a diarrhea episode due to a ciprofloxacin-resistant Campylobacter spp.

The mean age at which a child presented with the first diarrhea episode due to a
ciprofloxacin-resistant isolate was 12 months, and the mean age was 18 months for the
first diarrhea episode due to an azithromycin-resistant isolate (P � 0.001). Among the
29 diarrhea episodes caused by azithromycin-nonsusceptible isolates, 10 were diag-
nosed during the 12 months, and all but two were diagnosed before the child was
36 months of age. Within the first 12 months of life, 57 (18.8%) children had already
experienced diarrhea caused by a ciprofloxacin-resistant isolate. This increased to 107
(35.3%) by 24 months and to 122 (39.9%) by 36 months.

Of the 303 children, on average, a child was on antibiotics for 5.6% of the days
during their first 5 years of life, of which, macrolides (azithromycin or erythromycin)
account for 1.1% of this time period. The median number of courses of macrolides a
child received was 3 (interquartile range [IQR], 1 to 5 courses), which translates to an
average of 12 days (IQR, 4 to 21 days). A child’s risk of being culture positive for a
macrolide-resistant Campylobacter was not statistically different between children with
high macrolide exposure and those with low macrolide exposure. Similar results were
found for the time to first isolation of a macrolide-resistant Campylobacter. The cumu-
lative effect of macrolide intake early in life was not statistically associated with the
odds of acquisition of a macrolide-resistant isolate.

FIG 1 Azithromycin, gentamicin, ciprofloxacin, and amoxicillin-clavulanic acid phenotypic multidrug
resistance in Campylobacter spp.
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DISCUSSION

Of 917 Campylobacter isolates obtained from children enrolled in the MAL-ED cohort
of Peru, amoxicillin and clavulanic acid was the antibiotic with the highest rate of
susceptibility. Resistance to ciprofloxacin was expressed in 77.4% of C. jejuni isolates
and in 79.8% of non-C. jejuni isolates, while resistance to azithromycin was found in
4.9% of C. jejuni isolates and in 24.8% of non-C. jejuni isolates.

Previous studies assessing antibiotic resistance in human gastroenteritis associated
with Campylobacter have found various levels of resistance. Studies in the United
Kingdom, South Korea, Israel, and Peru have demonstrated lower levels of fluoroquin-
olone resistance, ranging from 24% to 65% (2, 12, 26, 40). However, observational
studies from China (87%) and Japan (90%) report higher estimates of ciprofloxacin
resistance (41, 42). Data from the National Antimicrobial Resistance Monitoring System
(NARMS) of the United States shows that in 2015, 25.3% of C. jejuni isolates and 39.8%
of C. coli isolates were resistant to ciprofloxacin. Macrolide resistance is even more wide
ranging. We report an overall resistance of 24.8% for non-C. jejuni isolates, a higher
prevalence than was reported in a nearby region in 2010 (10.0%) (12). However, the C.
jejuni resistance to macrolides (4.9%) in our study is lower than what was previously
reported in the same region (14.9%) (12). Worldwide, macrolide resistance in human
Campylobacter species isolates varies between 0.8% in South Korea, 2.2% in the United
Kingdom, 12.5% in Thailand, 21.8% in China, and 22.2% in India (10, 26, 40–42).
Additionally, cases of Campylobacter-associated travelers’ diarrhea in U.S. military
troops show as low as 2% nonsusceptibility to azithromycin (43). NARMS data showed
azithromycin resistance in 2.7% of C. jejuni isolates and in 12.7% of C. coli isolates.
According to the 2015 NARMS report, between 2011 and 2015, erythromycin resistance
in human-associated C. coli isolates increased from 2.7% to 12.7%.

Antibiotic resistance of Campylobacter isolates from animal sources, most impor-
tantly, poultry, also appear to be country dependent. A study conducted in China
reported that 73.2% of C. coli isolates were erythromycin resistant, and a study from
Spain similarly reported 73.0% resistance (44, 45). Reports from Latin America are
limited. Sierra-Arguello et al. reported an overall 2% resistance to erythromycin (46).
Given that azithromycin is the currently prescribed treatment for campylobacteriosis
(16, 19, 21), our reported levels of resistance to macrolides in a pediatric population is
worrisome but not unique.

The rise in fluoroquinolone and macrolide resistance has been attributed to antibi-
otic administration for growth promotion in poultry and hog production (9, 47, 48).
However, Campylobacter antibiotic resistance in animal hosts has not been well as-
sessed in this region. Poultry production and commercialization in Iquitos includes
market vendors from concentrated animal operation facilities as well as from small
backyard production within households. Slaughtering is generally performed at home
or within the live markets, yet there is little evidence that characterizes the risk of
Campylobacter contamination and infection within the poultry industry in this region.
The use of antibiotics as growth promoters is not regulated in Peru, and over-the-
counter access to antibiotics from local vendors is common. Therefore, further studies
that characterize Campylobacter antibiotic resistance patterns in poultry and other
animal hosts are required to evaluate the zoonotic component of Campylobacter
epidemiology in this area. An incredibly common infection could potentially end up
untreatable if effective control interventions involving antibiotic stewardship in both
humans and animals are not promptly executed.

Another concern regarding the acquisition of widespread drug resistance is the
recent reports of standard periodic dosing in early childhood to decrease mortality (49).
The apparent volume of distribution is very large, 25 to 30 liter/kg, and slow release
from intracellular compartments extends the time for which the drug is available at
subinhibitory concentrations (50). The agent is principally excreted unchanged in the
feces, with an elimination half-life of 2 to 4 days. Prolonged subtherapeutic concentra-
tions and the active agent elimination route into the gastrointestinal tract both favor
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the selection of drug resistance to a greater extent than the more routine use of
antibiotics. Our analysis shows that intermittent azithromycin use for therapeutic
purposes is unlikely to have a population-level effect on the emergence of Campylo-
bacter resistance to macrolides. Therefore, we stress the need to explore macrolide use
for animal production purposes and its effect on the emergence of Campylobacter
resistance. The loss of azithromycin as a widespread feasible option for the treatment
of campylobacteriosis, as is happening here, has meaningful consequences given the
prevalence of both symptomatic disease and enteropathy associated with this infec-
tion.

Gentamicin resistance is a novel phenomenon in Campylobacter isolates (14). We
report an overall prevalence of 15.8% for non-C. jejuni isolates and 1.0% resistance for
C. jejuni isolates. This is a lower estimate than the 28.8% reported in human diarrheal
samples from China yet higher than reports from South Korea (6.6%) (26, 42). In
Belgium, gentamicin resistance in poultry isolates has increased from almost being
nonexistent in 2004 to approximately 20% by 2009 (11). Multiple phosphotransferase
(aph) genes are commonly associated with aminoglycoside resistance, and many of
them have been identified as transferable (13, 14, 51).

Multidrug resistance (MDR) was observed in 56.8% (335/590) of C. jejuni isolates and
59.1% (176/298) of non-C. jejuni isolates. This is striking given that the only previous
evidence of such higher rates came from poultry isolates in China, where 81.1% of C.
jejuni isolates and 47.7% of C. coli isolates were resistant to 3 or more antibiotics (44).
It is important to consider the definition of MDR when comparing overall susceptibility
trends across the globe. Whole-genome sequencing explorations have identified a
transferable multidrug resistance genomic island (MDRGI) which contains antibiotic
resistance determinants for quinolone and macrolides, as well as tetracycline and
aminoglycosides (52). Thus, future studies exploring molecular resistance determinants
in this species should aim to identify the prevalence of this MDRGI. Clinically relevant
MDR can be considered to be toward both ciprofloxacin and azithromycin. This was
observed in 4.8% of C. jejuni and 24.5% of non-C. jejuni isolates, a highly significant
percentage considering that this study was conducted in a pediatric population in a
remote tropical setting.

Surprisingly, amoxicillin and clavulanic acid expressed the lowest proportion of
resistance, although this has been noted in earlier studies from Spain (53). There-
fore, we propose that this antibiotic should be considered a treatment option for
Campylobacter-associated gastroenteritis when isolates are nonsusceptible against
fluoroquinolones and macrolides.

We acknowledge that disc diffusion breakpoints for antibiotics other than erythro-
mycin, ciprofloxacin, and tetracycline have not been standardized for Campylobacter.
More commonly utilized are the MIC breakpoints; yet, these were not used in this study.
Second, we did not explore the presence and diversity of antibiotic resistance genes in
these samples. Quinolone resistance has been attributed to target mutations in the
quinolone resistance-determining region (QRDR) (54–56), as well as to the presence of
the cmeABC efflux pump conferring intrinsic resistance to fluoroquinolones (57–59).
The reported mechanisms of macrolide resistance include target mutations of the 23S
rRNA genes (23, 55, 60), target mutations in ribosomal proteins (55, 61), and ribosomal
methylation encoded by the erm genes, of which the erm(B) gene is associated with
high-level resistance, mostly in C. coli (23, 55, 62, 63). In Peru, a gyrA mutation
associated with quinolone resistance and a 23S rRNA mutation associated with mac-
rolide resistance were detected within a limited sample of Campylobacter isolates from
a pediatric cohort in Lima (30, 64).

A large proportion of diarrhea episodes associated with resistant Campylobacter
against current treatment recommendations indicates that this multidrug-resistant
campylobacteriosis is highly endemic in the Peruvian Amazon. To our knowledge, no
other cohort studies report the susceptibility patterns of Campylobacter infections in a
pediatric population in low-resource settings, and this is one of the few studies
available reporting statistics on Campylobacter antibiotic resistance in more than 800

Schiaffino et al. Antimicrobial Agents and Chemotherapy

February 2019 Volume 63 Issue 2 e01911-18 aac.asm.org 6

https://aac.asm.org


isolates cultured from children. Future studies that evaluate the molecular determi-
nants of antibiotic resistance in thoroughly characterized Campylobacter species iso-
lates will shed light on the origins and dynamics of this infection in the Peruvian
Amazon.

Conclusions. Campylobacter isolates from children under 5 years of age in the
Peruvian Amazon show a higher prevalence of phenotypic resistance than other
regional and country estimates. As expected, non-C. jejuni isolates showed higher levels
of azithromycin resistance than C. jejuni isolates. Although both C. jejuni and non-C.
jejuni isolates showed a high prevalence of ciprofloxacin resistance, this phenotypic
trait is more common among C. jejuni isolates. We report for the first time in the region
moderate to increased levels of gentamicin resistance, especially among non-C. jejuni
isolates. When considering treatment options for gastroenteritis associated with Cam-
pylobacter, amoxicillin and clavulanic acid should be considered.

MATERIALS AND METHODS
Setting and study design. The MAL-ED study is a multisite, prospective, community-based cohort

study. Between 2009 and 2012, 303 newborns were enrolled within the first 17 days of life and were
followed up until 5 years of age. The study site in Peru consisted of 3 communities 15 km southeast of
Iquitos, the largest city of the Peruvian Amazon. Details of enrollment and surveillance procedures have
been published previously (65). Surveillance stool samples were collected monthly, and diarrheal
samples were collected within 48 h of a reported episode. A diarrheal episode was defined as three or
more loose stools within 24 h or one dysenteric stool. Subjects were visited 2 times weekly and a
continual symptom history was recorded, which included data on antibiotic use, generating a continual
daily history for the period of study. Further data and sample collection procedures have also been
described previously (66).

Laboratory procedures. Diarrheal and surveillance fecal samples were placed in Cary Blair transport
medium and were processed within 12 h (8). Stools were inoculated on Campylobacter agar base
supplemented with Blaser’s supplement (Becton Dickinson, Sparks, MD) containing vancomycin, ceph-
alothin, trimethoprim, polymyxin, and amphotericin B. Plates were incubated for 48 h at 42°C at 5% O2,
10% CO2, and 85% N2. If no growth was observed, agar plates were held at least 72 h to confirm this
finding. Gram-negative colonies demonstrating typical Campylobacter morphology were assessed using
oxidase and catalase tests as well as Gram staining. Colonies with typical Campylobacter species
morphology as well as oxidase and catalase activity were further assessed using the hippurate hydrolysis
test to distinguish Campylobacter jejuni from non-C. jejuni (38). Campylobacter species were identified as
C. jejuni if positive for hippurate hydrolysis and non-C. jejuni if negative for hippurate hydrolysis. We
referred to isolates as C. jejuni or non-C. jejuni throughout the paper due to uncertainty as to whether
all non-jejuni Campylobacter truly represent C. coli.

Phenotypic antimicrobial susceptibility patterns were assessed using standard disc diffusion (Kirby-
Bauer) methods. Resistance to the following antibiotics was tested: ciprofloxacin (CIP), nalidixic acid
(NAL), erythromycin (ERY), azithromycin (AZM), tetracycline (TE), gentamicin (GM), ampicillin (AMP),
amoxicillin and clavulanic acid (AMC), ceftriaxone (CRO), chloramphenicol (C), and trimethoprim-
sulfamethoxazole (TMS). Zone diameter breakpoints (millimeters) for Campylobacter spp. validated by the
Clinical and Laboratory Standards Institute (CLSI document M45) were applied to assess ciprofloxacin,
erythromycin, azithromycin, and tetracycline resistance. CLSI zone diameter breakpoints (millimeters) for
Enterobacteriaceae were used for the remaining antibiotics for which there are no established break-
points for Campylobacter spp. Table S1 in the supplemental material displays all zone diameter break-
points.

Data management and analysis. CLSI standards were used to categorize isolates as susceptible,
resistant, or intermediate. The proportion nonsusceptible to each antibiotic was tabulated for both C.
jejuni and non-C. jejuni isolates when resistant and intermediate categories were combined. Multidrug
resistance (MDR) was defined as an isolate expressing phenotypic nonsusceptibility to three or more
classes of antibiotics (67). Cephalosporins (CRO) were not included in this classification given the intrinsic
resistance of Campylobacter spp. Pearson’s chi-square was used to test the differences in resistance to all
antibiotics between C. jejuni and non-C. jejuni isolates, as well as between surveillance and diarrhea
samples.

Macrolide exposure was analyzed as continuous time-varied exposure as well as binary exposure.
High macrolide exposure was defined as higher than the population’s median number of courses of
antibiotics (68). Risk ratios for the association between daily macrolide (AZM and ERY) exposure and the
isolation of macrolide-resistant Campylobacter were modeled using log-binomial regression fitted with
generalized linear models and robust variance estimation. Differences in the times to first detection of
a macrolide-resistant Campylobacter isolate between those with high and low macrolide exposure were
assessed by comparing cumulative incidence curves and performing log-rank tests of statistical signifi-
cance. Finally, the effects of the cumulative exposure of macrolide use early in life (number of days with
macrolide intake before 6 months and 12 months of age) and the odds of acquiring a macrolide-resistant
Campylobacter later in life (after 12 and 18 months of age) were assessed by fitting logistic regression
models. Data manipulation and statistical analysis were performed with STATA 14 (Stata Corp., College
Station, TX) and R (version 3.3.2).
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