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Complement-targeting
therapeutics for ischemia-
reperfusion injury in
transplantation and the
potential for ex vivo delivery

Isabel F. Delaura1†, Qimeng Gao1†, Imran J. Anwar1,
Nader Abraham1, Riley Kahan1, Matthew G. Hartwig2

and Andrew S. Barbas1*

1Department of Surgery, Duke University School of Medicine, Durham, NC, United States, 2Division of
Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC, United States
Organ shortages and an expanding waitlist have led to increased utilization of

marginal organs. All donor organs are subject to varying degrees of IRI during

the transplant process. Extended criteria organs, including those from older

donors and organs donated after circulatory death are especially vulnerable to

ischemia-reperfusion injury (IRI). Involvement of the complement cascade in

mediating IRI has been studied extensively. Complement plays a vital role in the

propagation of IRI and subsequent recruitment of the adaptive immune

elements. Complement inhibition at various points of the pathway has been

shown to mitigate IRI and minimize future immune-mediated injury in

preclinical models. The recent introduction of ex vivo machine perfusion

platforms provides an ideal window for therapeutic interventions. Here we

review the role of complement in IRI by organ system and highlight potential

therapeutic targets for intervention during ex vivo machine preservation of

donor organs.

KEYWORDS

complement inhibitor, ischemia-reperfusion injury, ex vivo delivery, organ
transplantation, classic pathway
1 Introduction

Transplantation provides a curative treatment for end-organ pathologies; however,

its utility is limited by critical organ shortages. Over the last decade, organ waitlists have

continued to grow faster than transplants performed, with 161,758 patients awaiting

transplant in the United States in 2020 (1). Accordingly, strategies to combat the
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increasing organ shortage have focused on expanding the donor

pool to include organs from extended criteria donors, the

definition of which varies by organ type. In kidney

transplantation, extended criteria donors includes donors with

acute kidney injury (AKI) (2, 3) and those with a high Kidney

Donor Profile Index (KDPI) (4, 5). KDPI considers donor

demographics (height, weight, age, ethnicity), comorbidities

(diabetes, hypertension), laboratory parameters (creatinine,

hepatitis C serology), and other characteristics such as cause of

death and donation after circulatory death (DCD) status.

Marginal livers—those donor organs with characteristics

associated with early graft failure and worse overall outcomes

—include allografts with significant steatosis, DCD, and those

from elderly and Hepatitis C positive donors (6, 7). Extended

criteria heart donors are those older than 65, or with significant

comorbidities such as poorly controlled diabetes, renal

insufficiency, and peripheral arterial disease (8). In lung

transplantation, extended criteria donor fulfills two or more of

the following criteria: age ≥ 55, smoking history ≥ 20 pack-year,

pO2 ≤ 300, diabetes, purulence found on bronchoscopy,

bloodstream infection, and abnormal chest x-ray (9). Among

extended criteria organs, transplant using DCD organs has

substantially broadened the donor pool. DCD currently

accounts for 25% of kidney deceased organ donation (1), 10%

of liver donation (10) and 7.4% of all lung donations (11). Since

the first DCD heart transplant in the US in 2019, 3.3% of all

heart transplants in 2020 used DCD organs (12).

However, increased utilization comes at a cost of potentially

increased incidence of early graft dysfunction and compromised

long-term outcomes. Both DCD (13) and extended criteria

donor (14) kidney transplants result in a higher incidence of

graft loss and delayed graft function (DGF). DGF is further

associated with increased graft loss and acute rejection in kidney

transplant (15). In both liver (16, 17) and heart transplants (8),

marginal donors are associated with higher rates of graft loss and

recipient mortality. While inclusion of marginal organs in

transplantation may provide benefit over remaining on the

waitlist, it is associated with compromised short- and long-

term outcomes compared to standard criteria donor organs.

Marginal organs are more vulnerable to insults such as

ischemia-reperfusion injury (IRI); thus, particular attention is

paid to minimizing these insults in DCD and extended criteria

organ transplantation. One approach is to minimize cold

ischemic time (CIT), which is typically shorter in DCD

compared to DBD transplants (18). Recent improvements in

liver transplantation outcomes using elderly donors organs have

been associated with reduction in cold ischemia time as well (19).

Another strategy to minimize IRI is the delivery of therapeutic

agents targeting various pathways implicated in IRI pathogenesis,

such as the complement system, a multi-functional component of

the innate immune system. Various complement-targeting

therapeutics have recently become clinically available, offering
Frontiers in Immunology 02
an opportunity for application to organ transplantation (20).

Concurrently, ex vivo machine perfusion technology has been

developed for organ preservation and evaluation. This platform

may be utilized for the delivery of various therapeutics. In this

review, we first outline the role of complement in IRI, and

highlight the current evidence evaluating complement

inhibition as preventative therapy for IRI. We also review the

advantages of and available literature on ex vivo delivery of

complement inhibition during donor organ preservation. The

review focuses predominantly on kidney transplant, given that

most studies have been performed in kidney transplant; however,

we will highlight studies performed in other organs as well as

important differences in complement inhibition across

organ systems.
2 The role of complement system
in IRI

2.1 Overview of the complement system

Complement is a key driver of IRI pathogenesis (21, 22). In

brief, the complement system may be activated through three

initial pathways: classical via binding of C1q to the Fc region of

antibody, lectin via recognition of mannose-binding lectins

(MBL) and activation of MASP proteases, or alternative via C3

hydrolysis (Figure 1). All three initial pathways converge on the

formation of a C3 convertase and the common pathway.

Anaphylatoxins and split products C3a and C5a serve several

purposes, including inflammatory mediation and neutrophil

chemotaxis. Split product C5b begins the terminal pathway by

complexing with proteins C6-9, forming the membrane attack

complex (MAC), which facilitates cell lysis. Under normal

homeostasis, the complement system is strictly regulated to

prevent unwanted tissue damage. Soluble proteins, such as C1

esterase inhibitor (C1 INH), Factor I and H, Clusterin and

vitronectin, and membrane-bound proteins, such as

membrane cofactor protein (CD46), Decay-accelerating factor

(CD55), CD59 and complement receptor I, regulate various

steps of the three complement pathways, inhibiting further

propagation of the cascade when activated (23–25).
2.2 Complement activation in
deceased donors

From an organ transplantation perspective, the disturbance

of such a delicate balance occurs immediately following brain

death in organ donors. Systemically, increased levels of C5a (26–

28) and C5b-9 were found in the serum of deceased donors,

compared to living donors. Upon reperfusion, there appears to

be a transient release of C5b-9 detected in recipient serum (29).
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At the organ level, most complement proteins are synthesized in

the liver, while kidney and lung are two of the few organs capable

of synthesizing complement locally. Exploring the differences in

gene expression profiles between living and deceased donors,

Naesens et al. found significant over-expression of many

complement components, including C1q, C1s, C1r, C2, C4

and Factor B, a finding later confirmed using microarray

technique by Damman et al. (30). In a syngeneic rat kidney

transplant model, local C3 deposition on endothelium and

glomeruli was found one hour post reperfusion and persisted

until posttransplant day 5 in DBD transplant but not living

donor kidneys (31). Additionally, higher renal C3 gene

expression was observed in DBD rats compared to living

donors (32).

The etiology of complement activation in deceased donors is

thought to be related to the release of endogenous damage-

associated molecular pattern molecules (DAMPs) and sterile

inflammation (33). Although most studies have examined

complement activation in standard DBD donors, intuitively,

the degree of inflammation and thus complement activation

may be more profound in DCD and extended criteria donors.

Accordingly, comparisons of transcriptional profiles and

histology have shown increased activation of inflammatory

chemokines, complement, and coagulation in DCD and

extended criteria kidneys, compared to standard criteria

donors (34, 35).
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2.3 Complement activation during
ischemia and reperfusion

IRI is inevitable to a degree in the process of organ

transplantation, which may be further exacerbated depending

on procurement method and storage. The underlying pathways

driving IRI are numerous and affect many cellular components:

initial ischemia leads to hypoxia, ATP depletion, and subsequent

tissue necrosis. Injury is worsened during reperfusion through

the production of ROS (36, 37). IRI injury results in the release

of DAMPs, which in turn activate complement, perpetuating an

ongoing inflammatory cycle. The particulars of complement

modulation and pathogenesis of IRI vary widely depending on

organ system (21, 38–40).

It is well established that complement mediates renal IRI.

Mice lacking common pathway components such as C3 or C5,

or C6 knockout mice unable to assemble membrane attack

complex are protected from IRI (41). While the involvement

of the classical pathway in IRI pathogenesis is well described

(42), recent studies indicated an essential role for both lectin and

alternative pathways. In murine models, mice deficient in Factor

B (alternative pathway) (43), collectin-11 or Mannan-binding

lectin (lectin pathway) (44, 45) were protected from renal IRI.

Conversely, RAG-1 knockout animals deficient in Ig remained

susceptible to IRI (46). Lastly, although the liver synthesizes the

majority of circulating complement, complement proteins
FIGURE 1

Overview of the complement system and therapeutic targets. The complement system is comprised of soluble, membrane bound, and regulatory
proteins, and may be activated via three distinct pathways: classical, lectin, and alternative. These pathways converge on the common pathway
with the formation of a C3 convertase which splits C3 into C3a and C3b. C3b complexes to the C3 convertases to form a C5 convertase, which
splits C5 and triggers assembly of the MAC, making up the terminal pathway. Complement functions include cell lysis via MAC insertion into cell
membranes and chemotaxis and inflammation regulated by split proteins C3a and C5a. Therapeutics targeting several complement components
have been developed, including C1 INH which inactivates C1s, C1r and MASP-1 and -2, thus preventing spontaneous activation of the classical
and lectin pathways. Sutimlimab is an anti-C1s mAb approved for cold agglutinin disease. sCR1, and versions of this molecule such as mirococept
inhibit C3 and C5 convertases, among other functions. Multiple C3 targeting therapeutics have been developed, such as compstatin and C3
siRNA. C5 and C5aR have been targeted by drugs such as eculizumab (anti-C5 mAb), C5aR antagonist, and C5aR siRNA.
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locally synthesized in the kidney plays an important role in

injury. In a mouse kidney transplant model, Pratt et al. showed

that donor allografts unable to synthesize C3 experienced

reduced allograft rejection when transplanted into recipients

with intact complement production; however, transplant of a

wild-type kidney into C3 knockout mice did not see the same

benefit (47). In human studies, donor C3 allotype was found to

influence clinical kidney transplant outcomes (48).

In cardiac IRI models, injury is correlated with C3d

deposition, and mouse studies have shown decreased tissue

injury, troponin I levels, and immune cell infiltration with C3

knockout (49). In contrast to renal IRI, the classical pathway

appears to be the prominent driver of myocardial IRI, with

higher rates of IgM and C4d deposition in DBD hearts (49, 50).

The liver is unique as it is the primary location of complement

synthesis and contains the largest collection of phagocytic cells in

body. Liver tissue also expresses multiple complement receptors

such as CR1, CR3, CR4, and C5aR, as well as CR immunoglobulin

(51). Complement activation plays a key role in mediating hepatic

IRI, as C6-knockout mice produce lower levels of pro-inflammatory

cytokines, resulting in improved liver function and less IRI (52).

Interestingly, complement activation products C3a and C5a are also

key in liver regeneration. In a mouse 70% partial hepatectomy

model, C3- and C5-deficient mice succumb to liver failure, a

phenotype rescued by the reconstitution of effector molecules C3a

and C5a (53, 54). As a result, the use of complement inhibition for

prevention and treatment of hepatic IRI must be carried out

thoughtfully so as not to compromise liver regeneration.

Complement activation in lung IRI has been recognized and

linked to primary graft dysfunction (PGD). Various complement

inhibitors have been tested in this setting in both animal models

and human studies (55). Shah et al. observed an increase in plasma

C5a and C4a in patients with PGD (56) and Westall et al.

described significant C3d and C4d staining associated with PGD

(57). It is likely all three complement pathways are involved in

pulmonary IRI, as increased complement products from all three

pathways were found in BAL from patients with PGD compared

to those without (58). Like the kidney, the lung is capable of

synthesizing complement locally: type II epithelial cells synthesize

and secrete complement proteins C2, C3, C4, C5 and factor B (59).

Overall, complement pathways behave differentially across

different organ systems in the pathogenesis of IRI, posing unique

challenges for complement blockade-based therapeutics.
3 Systemic complement blockade
for IRI

3.1 Pre-clinical models

3.1.1 Kidney
The complexity of the complement system offers many

therapeutic targets, which fall into three broad categories:
Frontiers in Immunology 04
complement cascade proteins, complement receptors, and

complement regulatory proteins that naturally counter

complement activation. Many have targeted the common

pathway of the complement cascade. In two earlier studies,

Zheng et al. used small interfering RNA (siRNA) to silence

complement proteins—namely C3 and C5aR—in a murine renal

IRI model. Their initial study demonstrated successful C3 and

caspase 3 silencing when siRNA was delivered 48 hours prior to

the induction of ischemia. Upregulation of C3 was seen only in

controls, while the treatment group had lower BUN and

creatinine and prolonged mouse survival. Histological exam

showed decreased tubular infarction, immune cell infiltration,

and necrosis in mice treated with a combination of C3 and

caspase 3 siRNA, as well as an 87% reduction in total injury area

(60). They went on to test C5aR inhibition using the same RNA

interference approach, demonstrating less injury with C5aR

inhibition compared to controls (61). Another approach to

C5aR antagonism—the use of an acetate salt compound—

resulted in improved clinical renal function in a rat model of

renal IRI. TNF-alpha was decreased in treated animals, and

biopsies showed decreased severity of tubular injury. In

comparison to C5 blockade, C5aR antagonism did not result

in inhibition of MAC assembly, as demonstrated by comparable

hemolytic assay results in the treatment and control groups (62).

Additionally, studies have utilized complement receptor type

1 (CR1), also known as Cb/C4b receptor, which accelerates the

degradation of C3 and C5 convertases, as well as activates factor

I, leading to degradation of C3b and C4b (63). In a murine renal

IRI model, Hameed et al. demonstrated improved serum

creatinine, reduced neutrophil influx and superoxide

production in the sCR1 treatment group (64). Bongoni et al.

evaluated CSL040, a truncated version of sCR1 with greater

inhibitory activity and an extended half-life (65). When

compared to soluble human CR1 (TP10), CSL040 treatment

prior to and after ischemic insult resulted in improved renal

function, decreased incidence of tubular injury, and suppression

of circulating C3b and C5a. Interestingly, biopsies from the

CSL040 group showed decreased deposition of complement

proteins and regulators from all pathways—C3d, C4d, C9,

C1q, MBL, and Factor Bb—indicating robust complement

suppression (66).

An alternative approach is to selectively inhibit upstream

pathways. This approach is attractive as IRI in different organs

seems to activate the complement system through distinct

pathways. C1 INH blocks the classical and lectin pathways and

is approved for clinical use in hereditary angioedema. In a brain-

dead rat model, C1INH was found to reduce complement

activation induced by brain death (67). In a murine renal IRI

model, animals pre-treated with C1 INH have significantly

better renal function and better survival. Less C5a release, C3b

deposition and neutrophil/macrophage infiltration were

observed. Interestingly, reduced tissue fibrosis and TGF-b1
levels were noted 30 and 90 days following the initial ischemic
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insult (68). In a nonhuman primate kidney transplant model, C1

INH has been shown to reduce complement deposition on

biopsy and prevent DGF when delivered systemically to the

brain-dead donor only (69) or recipient only (70). Lastly, in a

porcine kidney autotransplant model, C1 INH treatment

promoted more rapid glomerular function recovery and

significantly prevented graft fibrosis in the long term (71).

3.1.2 Other organs
Complement-targeting agents have also been studied in

different organs to minimize IRI. Multiple groups have

demonstrated the utility of C1 INH in liver IRI. Lehmann

et al. showed, in a rat model, improved microvascular

perfusion and decreased leukocyte-endothelial cell interaction

on in vivo microscopy (72, 73). Heijnen et al. redemonstrated

amelioration of hepatic IRI, reporting improved liver function

and decreased circulating C4 with C1 INH treatment in a partial

hepatic IRI rat model (74). Saidi et al. again used C1 INH in a

partial IRI and 70% partial hepatectomy model, demonstrating a

decrease in levels of IL-6, a key cytokine implicated in hepatic

IRI pathogenesis. Interestingly, they also reported decreased IRI

with C1 INH treatment of both wild type and C3 knockout mice,

indicating that C1 INH does not act exclusively via blockade of

classical activation (75). Clearly, upstream regulation of

complement via C1 inhibition results in robust and

reproducible amelioration of hepatic IRI.

sCR1 has also been utilized in other organs. In a rat liver

transplant model, Chávez-Cartaya et al. reported improved

hepatic function, decreased complement activity, and reduced

C3 deposition in sCR1-treated rats (76). A similar study also

demonstrated increased perfusion, decreased leukocyte

adherence to endothelial cells, and decreased phagocytic

activity of Kupffer cells, indicating an attenuation of several

immunologic processes via complement modulation (77). In a

rat lung transplant model, sCR1 improved oxygenation and

isograft survival, and decreased circulating and deposited

complement levels (78). Additionally, the sCR1-treated rats

showed reduced neu t roph i l mig ra t i on and l ip id

peroxidation (79).

Downstream proteins have also proved effective targets in

the treatment of hepatic IRI. Kusakabe et al. targeted C5 with

anti-C5 monoclonal antibody or C5aR1 antagonist in a murine

model. Both approaches resulted in decreased platelet

aggregation in hepatic microcirculation, expression of markers

of apoptosis and necrosis, and ROS generation compared to

controls (80). Another C5aR antagonist molecule trialed by

Arumugam et al.—the same antagonist used in this group’s

renal IRI study—ameliorated hepatic IRI in both a total and

partial hepatic ischemia rat model (81). Both studies of C5aR

blockade demonstrated reduction in inflammatory cytokine and

chemokine secretion, as well as a decrease in the number of

infiltrating immune cells such as macrophages and neutrophils.
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Zhang et al. took yet another approach to targeting C5 and its

split products and succeeded using anti-C5a aptamers

conjugated to an antioxidant to treat hepatic IRI in mice (82).

As in the treatment of renal IRI, the targeting of C5, and

particularly blockade of the C5a/C5aR interaction, decreases

the severity of hepatic IRI.

While limited by the feasibility of clinical translation, cobra

venom factor (CVF) is a C3 analogue that forms a stable C3/C5

convertase resistant to complement regulatory proteins and

depletes components of the complement pathway effectively

through unopposed complement activation in vivo. Rats

pretreated with CVF had increased survival, decreased CH50

and MAC levels, circulating C5a, and reduced MAC deposition

on biopsy (83). CVF has also been shown to reduce myocardial

IRI, resulting in preservation of cardiac function and reduced

complement deposition on histology (84).

The application of complement blockade for hepatic IRI

requires consideration of the balance between tissue injury and

regenerative potential, as complement plays an essential role in

both processes. Marshall et al. explored this balance using a rat

total IRI and 70% partial hepatectomy model. They found that

inhibition of both MAC with CR2-CD59 and C3 with CR2-Crry

ameliorate hepatic IRI; however, CR2-CD59 treatment leaves

liver regeneration intact whereas CR2-Crry does not, indicating

the importance of upstream complement activation in hepatic

regeneration (85). While blockade of upstream targets such as

C1 and C5 may successfully ameliorate hepatic IRI, the impact of

these treatments on regenerative potential must also be taken

into consideration. Taken together, available data show that IRI

can be reduced by targeting various aspects of the complement

pathways in a variety of organ systems.

3.1.3 Clinical use
Several complement inhibitors have advanced to the clinic

since the introduction of Eculizumab in 2007. Many have been

tested off-label in the field of organ transplantation—mostly for

antibody mediated rejection (AMR) (86–88). However, the

importance of IRI is increasingly recognized as more marginal

organs are utilized. In a phase I trial evaluating C1INH as an

adjunct for highly sensitized kidney transplant patients

following desensitization, Vo et al. noted lower rates of DGF

among those that received C1 INH (10% vs 40%, n=10 in each

arm) (86). The subsequent phase I/II RCT was performed in

patients receiving high risk deceased-donor kidney allografts for

the prevention of DGF. The treatment group received C1 INH

intraoperatively and at 24 hours postoperatively. There was no

significant difference in primary endpoint, defined as the need

for hemodialysis within the first week following transplantation,

patient or graft survival at one year. However, the treatment

group required fewer dialysis sessions at 2 and 4 weeks

posttransplant and had better renal function at 1-year

compared to the placebo group (89). A three-year post hoc
frontiersin.org
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analysis of the trial revealed higher cumulative graft failure and

gradually declining eGFR in the control group, with comparable

patient survival compared to the C1 INH group (90).

In contrast, the results of Eculizumab trials for the reduction

of IRI have been disappointing. Eculizumab has been extensively

trialed for AMR prevention and treatment—including in

sensitized recipients and HLA-incompatible transplants—with

heterogenous results (91–95). A multi-center double-blinded

RCT of peri-transplant eculizumab infusion in patients

receiving extended criteria kidney allografts showed no

difference in rate of DGF, short-term, or long-term graft

function between the eculizumab and control groups (96).

Additionally, the Alexion-sponsored PROTECT study

(NCT02145182), a phase II/III multicenter RCT involving 288

patients from 77 centers that tested the efficacy of two doses of

Eculizumab, one prior to and one after reperfusion, for DGF

prevention, found no difference in DGF rate or graft survival

(96). Interestingly, in a small single-center, non-blinded RCT (29

in the Eculizumab group and 28 in the control group) to assess

eculizumab pretreatment in pediatric kidney transplantation, the

authors demonstrated better eGFR on post-transplant day 1 and

2, and lower rates of arteriolar hyalinosis and chronic

glomerulopathy on biopsy (97). However, several early graft

losses were observed among eculizumab-treated children,

including 4 within the first two months. Of note, 68% patients

included in this study received living donor kidney transplant.

A few studies examined complement inhibitors in other

solid organ transplant settings. TP-10, a sCR1, was evaluated in a

multicenter double-blinded RTC among lung transplant

recipients for the reduction of IRI. Although the incidence of

operative deaths, infection and rejection, and length of hospital

stay was not significantly different between the treatment and

control groups, more patients that received pre-reperfusion TP-

10 were extubated by 24-hour posttransplant, compared to

controls (50% vs 19%). One study evaluated the use of

Nafamostat, a synthetic broad spectrum protease inhibitor that

acts on all three complement pathways, in liver transplantation

and found a lower incidence of postreperfusion syndrome (98),

although it is not clear whether this salutary effect was due to

complement inhibition.

Taken together, these studies demonstrate the potential

utility of complement blockade in the treatment of IRI, though

the success of complement inhibitors in pre-clinical models has

not directly translated to the clinical setting. Several issues have

emerged. First, systemic administration to the recipient

immediately prior to reperfusion may not allow sufficient time

for the drug to take effect. Second, systemic administration

poorly targets the end organ and may lead to undesired off-

target effects. Third, complement activation precedes donor

organ procurement and thus complement inhibition

administered to recipient may not completely reverse

complement activation that began in the donor. The question
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remains, at which level of the complement cascade should

therapeutic agents target to best minimize IRI?
4 Ex vivo perfusion and
drug delivery

The delivery of complement therapeutics for IRI can be

achieved through multiple strategies. Donor preconditioning is

commonly used in pre-clinical studies and is not without

precedent in humans, as it generally takes a range of

pharmacologic support to maintain a brain-dead donor (99);

however, various ethical concerns have limited its application in

clinical practice. Alternatively, complement therapeutics can be

administered ex vivo or systemically during the peri-transplant

period. Ex vivo delivery may limit off-target effects seen in

systemic delivery.

Ex vivomachine perfusion has recently garnered interest as a

method for marginal organ preservation and evaluation prior to

transplantation. Several ex vivo machine perfusion devices are

currently FDA approved for heart, lung, liver and kidney. The

conditions used in ex vivo perfusion devices vary with respect to

preservation temperature and perfusate composition, and are

extensively reviewed elsewhere (100–102). One potential benefit

of ex vivo machine perfusion is that therapeutics may be

delivered to the target organ while on the circuit, a particularly

attractive strategy for marginal organs. Major interventions,

including stem cell therapy, anti-inflammatory and

thrombolytic agents, and vasodilators in animal models were

reviewed in great detail by Xu et al. (103). Using discarded

human organs, several groups have evaluated therapeutic

administration during machine perfusion, including high-dose

antimicrobials to clear bacterial and fungal infections (104),

ultraviolet light to reduce donor organ hepatitis C viral load

(105, 106), Rituximab and novel chemokine-based

immunotoxin to treat latent CMV-infected monocytes (107,

108) , and thrombolyt ic therapy to preserve l iver

microvasculature (109).

As applied to complement therapeutics, ex vivo delivery via

machine perfusion offers an opportunity to avoid potential

deleterious effects of systemic complement blockade, while

allowing for localized delivery of therapeutics that may have a

greater potential to prevent or treat pathology compared to

systemic blockade, especially in organs such as the kidney, lung,

and liver that serve as sites of complement production. Local

delivery and dosing can also be titrated to further avoid off-target

effects and prolonged immunocompromise. Additionally,

complement blockade in the donor or administered ex vivo

also allows for termination of complement’s downstream effects

at an earlier timepoint in the complement cascade. Ex vivo

administration also provides an opportunity to monitor organ

function and therapeutic efficacy simultaneously.
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5 Ex vivo delivery of complement
therapeutics for IRI

5.1 Pre-clinical models

Several studies to date have evaluated ex vivo delivery of

complement therapeutics for IRI prevention in animal models.

C5 is a commonly used target, as inhibition results in terminal

blockade without compromising the utility of upstream proteins

such as C3a, which is involved in opsonization. The

administration of an anti-C5 mAb following prolonged cold

ischemia time results in a decreased complement deposition in

renal tissue and decreased creatinine in rat models (110, 111).

Furthermore, addition of a localization sequence allows for

complement blockade in the kidneys without decreasing

circulating C5, highlighting the utility of tissue-specific

localization to not compromise systemic complement function

(111). Ex vivo administration of C5aR blockade has also

successfully increased graft survival, as well as reduced tissue

damage, apoptosis, and cytokine production (112). Antagonism

of both C5 and the less central target C5aR improves graft

function and decreases tissue injury.

Many have targeted C3 as it is involved in all three pathways

and its split product C3a is highly inflammatory. In a murine

renal transplant model, Zheng et al. administered an siRNA

cocktail targeting C3, RelB, and Fas to the donor prior to graft

procurement. Grafts then underwent static cold storage in the

same siRNA cocktail. Renal function 48 hours post-transplant,

as well as long-term survival was significantly better in the

siRNA cocktail group compared to controls. Furthermore,

siRNA solution reduced apoptosis of tubular cells and

expression of inflammatory cytokines (113). siRNA remains an

interesting approach to complement-targeting therapeutics that

may be delivered in vivo or ex vivo with improvement in

graft survival.

Mirococept (APT070) is a membrane-localizing complement

inhibitor that consists of the minimal functional unit of human

CR1 with a membrane binding tail designed to bind damaged cell

membranes, which also blocks complement activation at the C3

level. Patel et al. perfused ex vivo rat kidney allografts with

mirococept prior to subjecting the organs to prolonged cold

ischemia time (114). This group first assessed tubular damage

and complement deposition on histology and graft function with

different lengths of cold ischemia time, finding increased C3 and

C9 deposition and a dose-dependent rise in creatinine with

increased cold ischemia time. Explanted rat donor kidneys were

perfused with mirococept or control agent prior to cold storage

and subsequent transplantation. This study reported better renal

function at 24 and 72 hours in the treatment group, along with a

35% decrease in tubular damage and reduced complement

deposition on histology (114). Indeed, C3 blockade results in

robust suppression of inflammation and graft damage
Frontiers in Immunology 07
corresponding with improved graft function and prolonged

survival. Given significant preclinical results, mirococept has

since progressed to human trials, discussed below.

Complement-targeting therapeutics for IRI have been

administered ex vivo in multiple other organ systems.

Bergamachini et al. trialed C1 INH in a porcine liver

reperfusion model. They demonstrated reduced complement

activity, including generation of C3 and C3 deposition in the

graft when C1 INH was added to the preservation solution

following liver procurement. Biopsies of control organs had

higher inflammatory cell infiltration, microabscess formation,

and centrilobular necrosis compared to the treatment group,

further supporting the potential of C1 INH to reduce

inflammation in multiple organ systems and using multiple

routes of administration (115).

Zheng et al. applied the aforementioned complement-

silencing siRNA approach in a murine heart transplant model.

siRNA solution containing TNF-a-, C3-, and Fas-silencing

siRNA was administered to the donor prior to organ harvest.

The organ was then preserved in and then flushed with the same

siRNA cocktail, and then used for heterotopic transplantation.

siRNA treatment resulted in successfully silenced C3

transcription. Additionally, 87.5% of siRNA-treated grafts

preserved function at 100 days, compared to 0% in control

groups (116). Wei et al. carried out a similar experiment in a

porcine model, perfusing and storing cardiac allografts with

siRNA targeting C3, caspases-8 and -3, and NF kB-p65, also
finding improved graft survival and reduced tissue inflammation

and apoptosis with treatment. Upon reperfusion, the cardiac

allografts that received siRNA cocktail did not see a decline in

hemodynamic parameters observed in controls (117). These

experiments showcase the utility of ex vivo administration of

complement—specifically C3—targeting siRNA for treatment of

IRI in multiple organ systems.

Cheng et al. targeted C3aR in a murine DBD lung transplant

model. C3aR is upregulated in lung parenchyma following brain

death, thus presenting a particularly relevant target for lung IRI

therapy. The authors administered a nebulized C3aR antagonist

following brain death and prior to procurement, cold storage,

and subsequent transplantation. Mice that received a C3aRA-

treated graft had reduced IRI and acute rejection compared to

untreated DBD. C3aRA treatment also decreased C3 and C3aR

expression, injury on histology, and neutrophil and macrophage

infiltration (118). Nebulizers offer a novel localized therapeutic

delivery to the lung without the potentially deleterious effects of

systemic treatment, that may also be delivered using an ex vivo

machine perfusion circuit.
5.2 Clinical studies

To date, only one complement-targeting drug has been

trialed using ex vivo delivery in humans. The EMPIRIKAL
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trial, a multi-center RCT, assessed the utility of mirococept when

delivered ex vivo via machine perfusion, in prevention of IRI

(119). 10mg mirococept was added to Soltran solution following

initial flushing of the organ, and then administered via a single

pass flush through the renal artery. The authors observed

comparable levels of DGF between the mirococept and control

groups, when stratified by site, pump, and donor type. Secondary

outcomes, such as eGFR at one-year, acute rejection episodes,

and duration of DGF were also comparable between the two

groups (120). Of note, the authors failed to detect any

mirococept or mirococept-specific IgG in the recipient serum.

No CR1-specific staining above background levels of native CR1

was noted, and no significant difference in serum complement

activity was observed between the treatment and control groups.

The authors concluded that mirococept was likely not delivered

at a clinically significant dose, and thus the study was terminated

following the first cohort given the need for dose optimization.

Kassimatis et al. conducted a follow-up dose-defining

experiment using porcine kidneys, defining the optimal dose

of mirococept (APT070) at 80 mg for ex vivo administration.

Overall, the impact of complement inhibition in clinical kidney

transplant when delivered ex vivo remains unclear; future studies

using an optimized dose are needed to better evaluate the utility

of this approach.
6 Conclusion

New solutions to the growing organ shortage, such as DCD

and extended criteria organ transplants, have presented new

challenges—namely increased vulnerability to IRI and increased

rates of DGF, leading to worse outcomes compared to living and

DBD organs. Complement activation is implicated in the

pathogenesis of IRI across various organ systems and provides

a promising target for IRI prevention. Ex vivo organ perfusion

has emerged as a strategy not only for maintaining organs prior

to transplantation, but also as a route of administration for pre-

transplant therapies. In this review, we have highlighted the

utility of complement blockade administered both systemically

to the recipient and ex vivo to the target organ, with animal
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models exploring blockade at multiple levels in the complement

pathway, including C1, C3, and C5. However, clinical studies so

far have seen mixed results. C1INH administered to the recipient

during the peri-transplant period may minimize IRI, especially

among those receiving high KDPI kidneys. In contrast, human

experience with eculizumab for IRI has been disappointing so

far. The first human trial of ex vivo delivery of Mirococept also

did not show a difference in DGF or graft survival, although

mirococept drug dosing clearly requires optimization prior to

continued evaluation. Ex vivo pre-treatment of complement

blockade is a promising, yet imperfect strategy which requires

further investigation prior to large-scale implementation

in humans.
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