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Humans are continuously exposed to hundreds of man-made chemicals that pollute the
environment in addition to multiple therapeutic drug treatments administered throughout
life. Some of these chemicals, known as endocrine disruptors (EDs), mimic endoge-
nous signals, thereby altering gene expression, influencing development, and promoting
disease. Although EDs are eventually removed from the market or replaced with safer
alternatives, new evidence suggests that early-life exposure leaves a fingerprint on the
epigenome, which may increase the risk of disease later in life. Epigenetic changes occur-
ring in early life in response to environmental toxicants have been shown to affect behavior,
increase cancer risk, and modify the physiology of the cardiovascular system. Thus, expo-
sure to an ED or combination of EDs may represent a first hit to the epigenome. Only
limited information is available regarding the effect of ED exposure on adrenal function.
The adrenal gland controls the stress response, blood pressure, and electrolyte homeosta-
sis. This endocrine organ therefore has an important role in physiology and is a sensitive
target of EDs. We review herein the effect of ED exposure on the adrenal gland with partic-
ular focus on in utero exposure to the plasticizer di(2-ethylehyl) phthalate. We discuss the
challenges associated with identifying the mechanism mediating the epigenetic origins of
disease and availability of biomarkers that may identify individual or population risks.
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INTRODUCTION
The safety of chemical compounds that pollute our environ-
ment is a topic of wide concern. Some of these pollutants have
structures that mimic endogenous ligands and therefore inter-
fere with hormone biosynthesis and metabolism, resulting in
altered endocrine homeostasis (1). Identification of these chem-
icals, known as endocrine disruptors (EDs), is hindered because
of the lack of screening tools (2). The ability to identify poten-
tial endocrine-disrupting effects is critical because an estimated
1000 new chemicals are introduced each year with only mini-
mal pre-market safety testing. One of the most well-known EDs
is thalidomide, which cause limb malformations, eye and heart
digenesis, and other defects in organogenesis in babies born to
women who take this drug during pregnancy (3). These striking
abnormalities have led to public outrage, implementation of new
regulations for drug use, and removal of thalidomide from the
market. However, for most EDs, high doses are required before a
clear phenotype can be identified, which has resulted in contro-
versy about the risks of life-long exposure to low doses of EDs (4).
One example is the plasticizer bisphenol A (BPA). This chemical
was first introduced in the market in the 1920s, and its production
has reached 2.2 million tons in recent years. Despite overwhelming
evidence of its deleterious effects, there is still debate about safe
exposure levels of BPA. Moreover, identifying the risk associated

with a single ED is complex because we are exposed to low doses
of several hundred chemicals starting at conception. These life-
long environmental exposures, which include lifestyle factors, are
collectively known as the exposome and will need to be taken into
consideration for comprehensive risk assessments in the future (5).
To study these complex interactions, tools based on omic technolo-
gies are currently being developed (6), along with in silico methods
to predict ED activity (7).

Despite the important role of the adrenal gland in cardiovas-
cular physiology and stress as well as evidence that steroidogenic
enzymes are affected by EDs, research has been lagging. This prob-
lem was acknowledged by Hinson et al. (8) and Sanderson et al.
(9) in their 2006 reviews of the effects of EDs on the adrenal gland.
Since then, few studies have described cellular mechanisms under-
lying the effects of environmental pollutants on adrenal gland
function.

Fetal development is a period of high plasticity that may be
negatively influenced by exposure to environmental pollutants,
resulting in disease later in life (10). In particular, the plasticizer
di(2-ethylhexyl) phthalate (DEHP) is widely used in industry as
an additive to polyvinyl chloride products. Exposure to DEHP has
been shown to alter gonadal steroidogenesis, and levels of DEHP
or its metabolites are positively correlated with human disease.
Here, we will focus on the effects of in utero DEHP exposure on
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adult adrenal steroid biosynthesis, examining recent evidence for
mechanisms that appear to mediate the long-term effects of fetal
exposure to DEHP.

THE TESTES AND ADRENAL GLAND SHARE A COMMON
DEVELOPMENTAL ORIGIN
The adrenal cortex and gonads originate from a common struc-
ture, the adrenogenital primordium, which is derived from the
intermediate mesoderm (11). In the rat, the adrenogenital pri-
mordium divides into two distinct cell populations at gestational
day (GD) 11.5, which gives rise to the adrenal cortex and the
bipotential gonad [reviewed in Ref. (12, 13)].

In the rat testis, Leydig cells develop in two waves of prolifer-
ation and differentiation; these cells are thought to arise from
mesenchymal precursors (14). Fetal-type Leydig cells differen-
tiate at GD 14 and reach peak testosterone production at GD
19, driving primary sex organ development. Thereafter, fetal-
type Leydig cells decrease testosterone production and disap-
pear by postnatal day (PND) 10. Testosterone levels remain low
until puberty, when adult-type Leydig cells initiate differentiation
and testosterone biosynthesis, which continues for the remainder
of life.

The fetal adrenal gland consists of two distinct zones: an inner
cell layer known as the fetal zone, and an outer layer known as the
definitive zone (15). During GD 12–14, the fetal adrenal under-
goes encapsulation, which coincides with the migration of cells
that originate at the neural crest. These neural cells will become
chromaffin cells in the medulla and release epinephrine under
sympathetic regulation (16). From PND 1 to 7, the adrenal gland
undergoes zonation, which is characterized by compaction of the
chromaffin cells into the medulla and regression of the fetal zone.
This is followed by tissue remodeling of the definitive zone to
form the zona glomerulosa (ZG), zona fasciculata (ZF), and zona
reticularis (ZR). Around PND 11–21, a transient layer of undif-
ferentiated cells called the X-zone develops between the ZF and
ZR (13). This zone disappears at maturity in males and regresses
after the first pregnancy in females. Steroid production is con-
fined to the adrenal cortex, where in humans the ZG produces
aldosterone, the ZF produces cortisol, and the ZR produces dehy-
droepiandrosterone (DHEA) and dehydroepiandrosterone sulfate
(DHEAS).

Adrenal organogenesis is regulated by several key genes. The
WT1 gene, which encodes the Wilms tumor 1 protein, is essen-
tial for the genesis of the urogenital ridge. Mice lacking WT-1
function show agenesis of the kidneys, adrenal glands, and gonads
(17). Other genes specific to adrenal cortex development are SF-1
(NR5A1) and DAX-1 (NR0B1). SF-1 knock-out mice also exhibit
adrenal agenesis (18). Postnatally, SF-1 is expressed in the defini-
tive zones of the adrenal cortex, interacting with Dax-1 to maintain
adequate steroidogenic function (19). Dax-1 knock-out mice show
persistency of the X-zone after puberty and are infertile (20).
Although Dax-1 knock-out mice do not exhibit adrenal insuf-
ficiency, experiments involving SF-1 and Dax-1 knock-out mice
revealed that these two genes are essential for correct adrenal
function (21). Other genes such as NR4A1 (Nurr77 or NGFI -
B) are involved in adrenal zonation and expression of key adrenal
steroidogenic enzymes (22).

ADRENAL GLAND STEROIDOGENESIS
The cellular mechanisms that initiate steroid biosynthesis are
specific to the adrenal cortex layer (Figure 1). In the ZG, aldos-
terone production is stimulated by numerous molecules; how-
ever, angiotensin II, potassium, and adrenocorticotropic hor-
mone (ACTH) have the most physiological relevance (23). The
ZG expresses the angiotensin II type I receptor, which is part
of the renin–angiotensin system that maintains blood pressure
and water balance. The ZG also strongly expresses TWIK-related
acid-sensitive potassium channel (TASK) 1 and TASK3, two-pore
domain potassium channels that detect changes in circulating
potassium levels (24). TASK1, which is also found in the ZF
and ZR, appears to be involved in adrenal development since its
deletion results in hyperaldosteronism and altered adrenal zona-
tion (25–27). The ACTH receptor is expressed throughout the
adrenal cortex and mediates the biosynthesis of glucocorticoids
and androgens in the ZF and ZR (28). Ligand-mediated activation
of these receptors and changes in extracellular potassium levels
stimulate the release of second messengers that initiate cholesterol
mobilization and prime the mitochondria for steroidogenesis.

Cholesterol serves as the substrate for all steroid hormones
[reviewed in Ref. (29)]. Cholesterol for steroid biosynthesis can
be obtained from extracellular or intracellular sources or can be
synthesized de novo. The preferred sources of cholesterol are tissue-
specific; here we will focus on pathways preferred by the adrenal
gland. Extracellular cholesterol can be imported into the cell by
the low-density lipoprotein (LDL) or scavenger receptor class BI
(SR-BI) pathways (30). The LDL pathway internalizes lipopro-
teins containing apolipoprotein B or E and releases unesterified
cholesterol after hydrolysis by lysosomal acid lipase. The free cho-
lesterol can then be used for steroidogenesis or re-esterified and
stored in lipid droplets by acyl CoA:cholesterol acyltransferase
(31). In contrast to its role in the Leydig cell, the LDL pathway
is a minor source of cholesterol for steroidogenesis in the adrenal
gland. The SR-BI pathway mediates the uptake of high-density
lipoprotein (HDL)-bound lipids (32) and is the main source of
cholesterol for adrenal steroid biosynthesis. Esterified cholesterol
delivered by this pathway is de-esterified by the hydrolase action
of the hormone-sensitive lipase (HSL), encoded by the LIPE gene
(33). HSL is responsible for 90% of the cholesterol ester hydrolysis
activity in the adrenal gland (34, 35). Lipid droplets also contain
esterified cholesterol and require HSL function to provide free
cholesterol for steroidogenesis. De novo cholesterol synthesis starts
by combining acetyl CoA and acetoacetyl CoA precursors into 3-
hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) in a reaction
catalyzed by HMG-CoA synthase. This is followed by the rate-
limiting step in de novo cholesterol biosynthesis, the production of
mevalonate catalyzed by the enzyme HMG-CoA reductase, which
is the target of statin drugs (36). Although de novo cholesterol
biosynthesis may help maintain adrenal gland steroidogenesis,
studies have shown that lipoprotein-bound cholesterol is essential
for normal adrenal steroidogenesis (37).

Transport of cholesterol into the mitochondria is aided by
the steroidogenic acute regulatory protein (StAR) and a protein
complex known as the transduceosome (38). Once inside the
mitochondrion, cholesterol is cleaved into pregnenolone by the
cholesterol side-chain cleavage enzyme (encoded by the CYP11A1
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FIGURE 1 | Cellular mechanisms involved in the biosynthesis of adrenal
steroids. The cellular mechanisms that underlie adrenal steroidogenesis are
initiated by activation of the adrenocorticotropic hormone (ACTH) receptor
and angiotensin II type I (ATIIR) receptor by ACTH and angiotensin II,
respectively. Steroidogenesis is also initiated by changes in serum potassium
levels through the specific expression of potassium channels in the zona
glomerulosa. This is followed by the activation of second messengers, which

initiate cholesterol mobilization. Cholesterol can be obtained from LDL and
HDL lipid carriers, lipid droplets, or de novo synthesis. Unesterified cholesterol
is transported to the mitochondria, where cleavage by CYP11A1 is the first
step of steroidogenesis. Tissue-specific expression in the various zones of the
adrenal cortex leads to aldosterone and cortisol biosynthesis. Abbreviations:
3β HSD, 3β-hydroxysteroid dehydrogenase; HSL, hormone-sensitive lipase;
LDLR, low-density lipoprotein receptor; SR-BI, scavenger receptor class BI.

gene) to initiate steroidogenesis. Zone-specific expression of
steroidogenic enzymes results in biosynthesis of aldosterone in
the ZG, cortisol in the ZF, and DHEA and DHEAS in the ZR.
In rodents, the lack of adrenal Cyp17a1 expression results in
the production of corticosterone and the absence of DHEA and
DHEAS (39).

THE PLASTICIZER DEHP POLLUTES OUR ENVIRONMENT
Di(2-ethylhexyl) phthalate (DEHP) is used in industry to increase
the malleability of polyvinyl chloride and as an additive to con-
sumer products such as cosmetics (40). DEHP can comprise up
to 40% of the dry weight of polyvinyl chloride products, and
because it is not permanently bound to the polyvinyl chloride
matrix, it is eventually released into the environment. Because of
the widespread use of DEHP, it has become a ubiquitous pollutant,
contaminating our food sources and resulting in life-long exposure
that ranges from 1.7 to 52.1 µg/kg/day (41–44). Food is the main
source of phthalates such as DEHP, which are present in particu-
larly high levels in fatty foods (45). Additional routes of exposure
occur through dermal contact, house dust (46), and medical
interventions. For example, high phthalate levels in medical

equipment, such as blood (47, 48) and parenteral nutrition (49)
bags and other tubing equipment, account for some of the highest
exposures recorded (50). Phthalates are also used as drug excip-
ients (51), and their use correlates with high urinary levels of its
metabolites (52, 53). DEHP is rapidly metabolized, and despite its
lipophilic properties, neither DEHP nor its metabolites are stored
in the body (54–58). DEHP and its metabolites have been detected
primarily in bodily fluids, and their presence in amniotic fluid (59)
and umbilical cord blood (60) indicate direct fetal contact with
the plasticizer. Exposure continues through the newborn’s envi-
ronment (61), baby formula, or breast milk (62). Concerns have
been raised about the risks of phthalates in newborns and infants,
because they have the highest levels of exposure, whether from the
environment or perinatal medical interventions (63–65).

FETAL DEVELOPMENT IS A SENSITIVE WINDOW FOR
ENDOCRINE DISRUPTION IN THE ADULT
Rat models have been extensively used to assess the endocrine-
disrupting effects of phthalates. However, the windows of treat-
ment and endpoints vary considerably across studies, making the
data difficult to compare [reviewed in Ref. (66)]. In general, the
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results indicate that even low-dose exposure during fetal develop-
ment and the neonatal period results in long-lasting phenotypes.
The prepubertal period is another time of increased sensitivity
to phthalates, and these compounds can cause reproductive and
endocrine abnormalities. In the adult, sensitivity to phthalates is
decreased, and endocrine disruption is induced only by exposure
approaching the gram per kilogram per day range (67, 68). Taken
together, these findings suggest that the most sensitive targets
of phthalates appear during early development of the endocrine
system. Moreover, mixtures of phthalates, which are more repre-
sentative of human exposure, decrease the threshold for endocrine
disruption (69, 70).

To evaluate long-term outcomes of fetal DEHP exposure, we
treated (by gavage) pregnant Sprague–Dawley rats from GD 14 of
their offspring until birth (71). During the acute exposure, DEHP
decreased fetal testosterone levels and expression of steroidogenic
enzymes involved in androgen biosynthesis. Immunostaining of
fetal testis sections with nestin, a marker of fetal-type Leydig cells,
revealed delayed Leydig cell development (72). Following birth,
DEHP is rapidly metabolized in both dam and offspring, and
they become phthalate-free soon after. However, in utero expo-
sure to DEHP led to decreased circulating testosterone levels in the
adult rat, but steroidogenic enzymes were not affected and Leydig
cell numbers were near normal or even increased in adults (71).
These data suggest the existence of mechanisms independent of the
classic steroidogenic pathway that mediate long-term endocrine-
disrupting effects of phthalates. Since fetal- and adult-type Leydig
cells have different precursors, this finding also indicates that
DEHP affects the development of adult-type Leydig cell precur-
sors or the function of another organ that interacts with the testes
to modulate testosterone production in adults.

We then studied nuclear receptors in an attempt to identify an
alternative pathway that mediates the long-term effects of DEHP
in the adult, and found that the mineralocorticoid receptor (MR),
encoded by Nr3c2, is a novel target of DEHP in Leydig cells (72).
In utero DEHP exposure leads to a decrease in MR expression sim-
ilar to the decrease in testosterone level. MR stimulates androgen
biosynthesis and potentiates the function of luteinizing hormone
in purified adult Leydig cells (73). We also found that circulat-
ing levels of aldosterone, the endogenous ligand of MR, were also
decreased in a manner similar to that of testosterone and MR
(74). Taken together, these findings support the idea that Ley-
dig cells are under-stimulated after DEHP exposure and identify
the adrenal cortex as an additional target of DEHP. We therefore
shifted our focus to the adrenal cortex, where we sought to iden-
tify the mechanisms by which DEHP affects steroidogenesis. The
altered adult steroidogenic profile suggested that in utero exposure
chosen presented DEHP with a sensitive target that has a critical
role during fetal development. We hypothesized that this unknown
target is likely shared by the testes and adrenal cortex because of
their common mesodermal origin.

IN UTERO DEHP EXPOSURE ALTERS ADULT ADRENAL
STEROIDOGENESIS AND CARDIOVASCULAR PHYSIOLOGY
Our previous study showed that in utero DEHP exposure decreases
testosterone and aldosterone levels in adult male offspring at doses
starting at 100 mg/kg/day (74). Thus, exposure to 100 mg/kg/day

DEHP appears to be the threshold for adult endocrine disruption
following an in utero exposure.

The main challenge associated with identifying the molecu-
lar mechanisms underlying the antisteroidogenic effects of DEHP
is the long duration of the experiments. This limits the use of
certain techniques, such as primary cell culture and the num-
ber of animals and doses used to study the physiology of the
DEHP-exposed animals. Instead, we and others have relied on
global gene expression assays and other omic techniques to obtain
a snapshot of the pathways dysregulated at specific doses and time
points. We selected 300 mg/kg/day as the initial dose to evaluate
the effects of DEHP. This dose decreases testosterone and aldos-
terone levels to approximately half of normal without causing
major morphological abnormalities (71, 72).

In male offspring, aldosterone levels were not affected by
in utero DEHP exposure at PND 21; it was only at PND 60 that
aldosterone levels were decreased. The effects of endocrine dis-
ruption were still observed in the elderly rat (PND 200), where
mineralocorticoid levels remained reduced (75). Aldosterone con-
trols water and electrolyte balance by acting on the ion pumps
of distal tubules and collecting ducts of the kidney to absorb
sodium and excrete potassium. The reabsorption of sodium carries
water, which increases intravascular volume and cardiac preload,
thereby increasing blood pressure. The latter mechanism is part of
the renin–angiotensin–aldosterone system, which regulates blood
pressure in the short- and long-term.

To better understand the effects of DEHP on the cardiovascu-
lar system, we surgically implanted a transducer into the aorta to
continuously monitor blood pressure in the unrestrained rats. The
data showed that systemic blood pressure was decreased approx-
imately 5 mmHg during the night, a period of higher activity
in rats (75). Blood pressure was further decreased in older rats
(PND 200) by a low-sodium diet (0.01% NaCl), which lowered
diastolic blood pressure, but the DEHP-induced changes were
abolished by a high-sodium diet (8% NaCl). Moreover, the low-
sodium diet raised aldosterone levels 12-fold; the DEHP-treated
and control rats had similar aldosterone levels, demonstrating that
DEHP-exposed adrenal glands retained the capacity to maximally
produce steroids and suggesting that the mechanisms regulating
basal aldosterone biosynthesis were the primary target of DEHP.
The decreases in blood pressure were not observed in young adult
rats (PND 60), indicating that additional factors are involved in
this effect on cardiovascular function. Whether heart function,
vascular endothelia, or feedback mechanisms involved in regulat-
ing blood pressure are also targeted by in utero DEHP exposure
remains unclear. However, in vitro models of acute DEHP expo-
sure in cardiomyocytes have suggested a link to arrhythmias (76)
and altered cardiomyocyte metabolism (77).

The decrease in blood pressure underpins the effect of DEHP
on endocrine function and cardiovascular physiology, and sug-
gests that DEHP may even have cardioprotective effects. However,
we recently found evidence to the contrary. DEHP-exposed rats
exhibit chronic low-grade systemic inflammation and macrophage
infiltration into adipose tissue (78). Similar observations were
observed in the epithelial cell line A549, which increases pro-
duction of IL-6 and IL-8 in response to long-chain phthalates
(79). In addition, acute ex vivo exposure to DEHP increases the
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inflammatory marker CD11b in human and rat neutrophils (80).
In humans, high urinary levels of phthalate monoesters are asso-
ciated with elevated levels of the inflammatory markers C-reactive
protein and gamma-glutamyltransferase (81). These data indicate
that DEHP induces inflammation during in utero and acute expo-
sures. In addition, high urinary levels of phthalates are associated
with a subclinical increase in blood pressure in children and ado-
lescents (82). Although DEHP decreased blood pressure in our
model, it is important to note that the exposure window was
limited to the fetal stage. It still needs to be demined if a dif-
ferent exposure window or a life-long exposure to DEHP targets
additional cardiovascular components that may negatively impact
blood pressure.

IN UTERO DEHP-INDUCED ENDOCRINE DISRUPTION IS
CONFINED TO THE ADRENAL GLAND
After in utero DEHP exposure, circulating levels of aldosterone in
rats are normal at the time of weaning (PND 21). Thus, DEHP
does not appear to target adrenal endocrine function until the
young adult stage (PND 60) (74). Since corticosterone levels were
not affected at either time point, fetal exposure resulted in altered
ZG development.

To determine whether the effects of DEHP on aldosterone
biosynthesis were confined to the adrenal gland, we measured cir-
culating levels of aldosterone secretagogues. Levels of potassium,
angiotensin II, and ACTH were not altered in DEHP-treated rats,
supporting the idea that the DEHP effects were confined to the
adrenal gland. The decreased aldosterone levels were in the low-
normal range, suggesting that feedback mechanisms prevent an
electrolyte imbalance that would pose an immediate threat to life.

Taken together, our research findings suggest that in utero
DEHP exposure exerts long-term effects on the expression of
genes involved in regulatory functions of the adrenal gland. We
will group the genetic findings into (i) cellular mechanisms that
control aldosterone, (ii) cholesterol and lipid metabolism, and (iii)
epigenetic mechanisms mediating endocrine disruption.

IN UTERO DEHP EXPOSURE AFFECTS MECHANISMS
REGULATING ALDOSTERONE SECRETION
In search of mechanisms underlying altered aldosterone produc-
tion in the adrenal gland, we found that angiotensin II receptor
expression was decreased in rats exposed to DEHP in utero (74).
This finding suggests under stimulation of the ZG to initiate
aldosterone production. However, a recent transcriptomic analy-
sis of whole adrenal glands suggested that the mechanism behind
angiotensin II receptor downregulation is more complex than ini-
tially thought (83). We analyzed global gene expression at two
time points to identify pathways that reflected long-term effects
of DEHP exposure. Adrenal glands from male offspring exposed
in utero to DEHP (100 or 300 mg/kg/day) were collected at PND
21 and PND 60. These time points were selected to compare the
effects of DEHP during a period in which aldosterone production
was not affected (PND 21) versus a period in which aldosterone
production had previously been shown to be decreased (PND 60).
The results showed that although DEHP deregulated a similar
number of genes at the two time points, there were few genes in
common among the doses and time points, suggesting that DEHP

affects adrenal gland gene expression in a dose- and time-specific
manner.

We then evaluated the angiotensin II and potassium pathways,
comparing genes affected by DEHP in these pathways against a list
of genes known to be upregulated by aldosterone secretagogues.
This gene profile was obtained by isolating glomerulosa cells from
adult rats stimulated with 100 mM angiotensin II or 16 mM potas-
sium for 2 h (84). Our analysis showed that DEHP increases the
expression of genes regulated by the angiotensin II and potassium
pathways at PND 60 but not at PND 21. These findings suggest that
the adrenal gland was chronically activated to produce steroids,
perhaps to counteract the endocrine-disrupting effects of DEHP.
Angiotensin II receptor expression is dynamically regulated and it
is unclear whether the downregulation of the angiotensin II recep-
tor is in response to chronic stimulation of the adrenal glands by
DEHP.

These data also suggest that the potassium pathway plays an
important role in DEHP-induced endocrine disruption. We found
that genes encoding potassium channels Kcnk5, Kcnn2, and Kctd14
were affected by DEHP in the adult rat. However, expression of
these potassium channels was altered only at PND 60, suggest-
ing that they mediate the chronic activation of the adrenal gland.
Recently, decreased KCNK5 (TASK-2) expression was identified
as a hallmark of aldosterone-producing adenomas, and its trans-
fection into human adrenal cell lines H295R and HAC15 cells
resulted in increased aldosterone production (85). Further stud-
ies are needed to determine whether DEHP directly targets any of
these potassium channels or whether these channels are part of a
feedback mechanism that counteracts the effects of DEHP.

CHOLESTEROL METABOLISM IS A SENSITIVE TARGET OF
PLASTICIZERS
Cholesterol import into the mitochondria is the rate-limiting step
in steroid biosynthesis (38). Thus, interference in mitochondr-
ial cholesterol transport is likely to alter steroid hormone lev-
els. Phthalates appear to affect cholesterol metabolism in MA-10
mouse Leydig tumor cells, which show decreased expression of
enzymes involved in testosterone production but retain the ability
to produce progesterone and its sensitivity to hormonal stim-
ulation (86). Treatment of MA-10 cells with mono-ethylhexyl
phthalate (MEHP) for 24 h resulted in altered mitochondrial mor-
phology and an increased number of lipid droplets starting at
1 µM MEHP and decreased progesterone levels at 30 µM MEHP
(87). Similar findings were reported in 20-day-old prepubertal
rats treated with DEHP (500 mg/kg/day administered by gavage
for 10 days), which exhibited decreased serum progesterone and
estradiol levels (88). Ex vivo cultures of granulosa cells isolated
from these animals showed a decreased ability to produce proges-
terone under basal and stimulated conditions. Moreover, the use
of 22-hydroxycholesterol, a cholesterol derivative that bypasses
cholesterol transport machinery and diffuses freely into the mito-
chondria, restored steroid production in these rats, providing
additional evidence that MEHP interferes with mitochondrial cho-
lesterol transport (88). Together, these data suggest that acute
exposure to DEHP/MEHP targets organelles involved in choles-
terol storage and mechanisms involved in cholesterol import into
mitochondria.
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In our model, DEHP did not affect total circulating levels
of cholesterol, LDL, HDL, and triglycerides, consistent with the
idea that in utero exposure specifically targets the adrenal gland.
We therefore assessed the effects of in utero DEHP exposure on
cholesterol metabolism in the adult adrenal gland. We first ana-
lyzed expression levels of genes involved in extracellular and de
novo cholesterol synthesis pathways. We found that Ldlr, Hmgcr,
Hmgcs1, and Insig1 expression was upregulated by DEHP, suggest-
ing an increase in cholesterol sources (74). This putative increase
in cholesterol bioavailability was a puzzling finding since DEHP
decreases aldosterone output, indicating an intracellular accumu-
lation of cholesterol. Staining of adrenal sections with Oil Red O
revealed that DEHP-induced lipid droplet accumulation was spe-
cific to the ZG, positively correlating with the doses of DEHP that
decreased aldosterone levels. These data suggest the existence of
an unidentified gene that is responsive to DEHP and involved in
mitochondrial cholesterol transport in ZG cells.

Analysis of global gene expression at PND 21 and PND 60 also
revealed that DEHP targets the metabolism of lipids and lipopro-
teins in a time-specific manner. We observed changes in enzyme
expression related to metabolism of fatty acids, triacylglycerol, and
ketone bodies at PND 21 but not at PND 60. Conversely, the de
novo cholesterol synthesis pathway, including the rate-limiting step
and several other enzymes, was affected only at PND 60, suggesting
that DEHP decreases the pool of free cholesterol below the level
required to maintain adult aldosterone biosynthesis. Moreover,
our pathway analysis showed that DEHP alters the expression

of genes involved in intracellular cholesterol mobilization (Lipe,
Fabp4, Plin, MgII, and Prkacb). We noted that downregulation of
the gene encoding HSL (Lipe) matched the decreased levels of
aldosterone in magnitude, suggesting a direct role in endocrine
disruption (83). Consistent with our findings, experiments in Lipe
knock-out mice revealed the accumulation of lipid droplets in
the ZG and ZF (89) and adipose tissue (90). These mice had
normal basal levels of corticosterone and aldosterone, suggesting
that other pathways were able to supply sufficient amounts of free
cholesterol (89). We therefore hypothesized that the downregula-
tion of Lipe expression was involved in decreasing intracellular
levels of free cholesterol, leading to activation of the de novo
cholesterol synthesis pathway. Our results also suggested that de
novo cholesterol synthesis was critical for steroidogenesis in adult
male rats exposed in utero to DEHP. Figure 2 summarizes the
effects of in utero DEHP exposure in adult adrenal cholesterol
metabolism.

In vitro studies performed in human testes and ovaries exposed
to MEHP for 72 h have identified a potential role for liver X recep-
tor alpha (LXRα) in the upregulation of cholesterol biosynthesis
genes (91). However, the role of LXRα in the long-term changes
observed in our model remains unclear.

THE PPAR PATHWAY IS A SENSITIVE TARGET OF
PHTHALATES
Pathway analysis of our global gene expression data also revealed
that DEHP decreases expression of several genes downstream of

FIGURE 2 | In utero exposure to DEHP alters cholesterol metabolism. The
scavenger receptor class BI (SR-BI) pathway, which facilitates the uptake of
cholesterol from HDL, is the predominant source of cholesterol for adrenal
steroidogenesis. The esterified cholesterol delivered by SR-BI and obtained
from lipid droplets is de-esterified by hormone-sensitive lipase (HSL) for
steroid biosynthesis. In utero DEHP exposure increases expression of the

low-density lipoprotein receptor (LDLR) and de novo cholesterol synthesis
pathway but decreases HSL expression. HSL function appears to be
insufficient to release free cholesterol, thus decreasing the pool of free
cholesterol. Some of the esterified cholesterol is shunted to lipid droplets,
increasing their size. The data suggest that increased de novo cholesterol
synthesis is critical to maintain steroidogenesis.
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the peroxisome proliferator-activated receptor (PPAR) nuclear
receptors at PND 21 and PND 60 (83). At PND 21, we found that
DEHP downregulated the genes encoding the retinoid X receptor
(Rxrg ), a PPAR dimerizing partner, and PPAR-gamma coacti-
vator 1-beta (Ppargc1b), a coactivator of PPARγ. Despite these
changes, aldosterone levels were not affected, suggesting that the
PPAR pathway-related genes targeted by DEHP are not essential to
maintain aldosterone levels. In untreated control rats, aldosterone
levels were increased threefold at PND 60 compared to levels at
PND 21 (74), correlating with a sixfold increase in Ppara levels at
this time point, suggesting that PPARα function may be impor-
tant for aldosterone biosynthesis in the adult. We quantified gene
expression of the PPARs at various developmental time points, and
found that DEHP decreased Ppara expression in adult rats at doses
starting at 1 mg/kg/day. This dose is two orders of magnitude lower
than the 100 mg/kg/day needed to induce endocrine disruption,
demonstrating that Ppara is a sensitive target of DEHP. PPARs
regulate lipid metabolism; therefore, PPARα may be an upstream
mediator of the long-term lipid changes described in the previous
section. The involvement of PPARα in the deregulation of lipid
metabolism genes was also observed in fetal testes acutely exposed
to DBP (92). However, it is important to note that the expres-
sion patterns of lipid-related genes after acute DBP exposure to
(93) differed considerably from expression patterns observed after
in utero DEHP exposure (83). Taken together, these data implicate
the PPAR pathway as a mediator of both short- and long-term
endocrine-disrupting effects of phthalates, and suggest the exis-
tence of additional mechanisms responsible for the time-specific
effects.

Other members of the PPAR family have also been reported to
influence adrenal steroidogenesis. PPARγ modulates aldosterone
biosynthesis by modulating the expression of the gene encoding
aldosterone synthase (Cyp11b2) in H295R (94) and HAC15 cell
lines (95). These studies also demonstrated that the PPARγ agonist
pioglitazone decreases aldosterone levels, even in the presence of
angiotensin II stimulation. Similarly, pioglitazone was reported to
suppress high aldosterone levels in a patient with primary aldos-
teronism (96). In our study, we found that DEHP appeared to
decrease Pparg expression starting at 1 mg/kg/day; however, this
effect was not significant (P = 0.09). Interestingly, Ppard was sig-
nificantly upregulated at DEHP doses that decreased aldosterone
levels. Few studies have investigated the effects of PPARδ, but
studies in 3T3 cells demonstrated that PPARδ represses the ligand-
induced activities of PPARα and PPARγ (97). We hypothesized
that the PPAR pathway is critical for maintaining adequate aldos-
terone biosynthesis in the adult, and that its disruption is one of
the mechanisms underlying the long-term effects of DEHP on the
adrenal gland.

To identify mediators of this long-term PPAR dysfunction, we
quantified the expression of selected transcription factors reported
to activate PPAR promoter activity in adrenal and other tissues.
We showed that DEHP significantly decreased mRNA levels of Sp1,
Gata6, and Nr1h4 and increased Nfkb1 levels at the doses affecting
aldosterone levels. Although these genes modulate several cellu-
lar functions, the role that they play in adrenal PPAR expression
remains to be elucidated. Interestingly, GATA6 has been shown to
mediate the expression of key steroidogenic enzymes and proteins

involved in cholesterol transport to mitochondria (98). Moreover,
SP-1 and PPARγ were shown to control HSL expression in the
liver (99). In our model, these data suggest that GATA6 and SP-1
may mediate some of the long-term effects of DEHP. Additional
research is needed to elucidate the exact role of PPARs and the
transcription factors identified in our study in DEHP-induced
endocrine disruption.

There is additional in vitro evidence suggesting that the PPAR
pathway acts as a dominant regulator of steroidogenesis. Treat-
ment of MA-10 mouse Leydig tumor cells with the PPARα

agonist bezafibrate (100 µM) decreased biosynthesis of proges-
terone and testosterone (100). Moreover, MA-10 cells exposed
to 10 or 100 µM MEHP were not able to achieve normal
levels of steroid production despite stimulation with human
chorionic gonadotropin (100, 101). Conversely, low doses of
MEHP (0.1 µM) showed discrete increases in stimulated steroid
production in MA-10 cells (102).

EPIGENETIC CHANGES INDUCED BY DEHP
The addition of a methyl group to cytosine in CpG dinucleotides
is known as DNA methylation. This epigenetic mark influences
gene expression and is one of the mechanisms responsible for cell
diversity. Epigenetic changes occurring in early life in response to
environmental factors such as stress or toxicants have been shown
to affect behavior (103, 104), increase cancer risk (105), and mod-
ify cardiovascular physiology later in life (106). Several epigenetic
mechanisms that regulate endocrine function have been identified
[reviewed in Ref. (107, 108)]. The identification of epigenomic
regions that interact with the environment is critical to under-
standing origins of disease, determining which chemicals exert
long-term effects on human health, and identifying novel bio-
markers for use in personalized medicine. However, research has
been lagging because of the challenges associated with large-scale
epigenomic screening, high cost and slow turnaround of data
acquisition, and lack of established bioinformatics pipelines to
process the data.

Since DEHP is rapidly metabolized, we hypothesized that
changes observed in the adult after in utero DEHP exposure
were mediated by epigenetic changes. In the testes, we identi-
fied an area of differential DNA methylation in the MR pro-
moter (72) and time-specific DNA methylation changes in various
nuclear receptor genes in adult rats exposed to DEHP in utero.
In the adrenal gland, we searched for changes in the promoter
regions of several genes affected by DEHP. We previously reported
the lack of DNA methylation changes in Agtr1a, Agtr1b, and
Atrap (74). We also analyzed the promoters of Kcnk5 and Kcnn2
but did not detect any DNA methylation changes (unpublished
data).

We recently used reduced representation bisulfite sequencing
(RRBS) to characterize DEHP-induced DNA methylation in the
adrenal glands of adult male rats exposed in utero. RRBS uses
a combination of methylation-insensitive restriction enzymes,
bisulfite treatment, and next-generation sequencing to ascertain
the DNA methylation levels of millions of CG dinucleotides (109).
We sampled approximately 2.18 million CpGs and identified 972
differentially methylated CpGs (110). Although we expected to
find differentially methylated CGs near or within promoter regions
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of genes upregulated or downregulated after in utero DEHP expo-
sure, most of the differentially methylated CGs (40%) were found
in CpG islands followed by shore/shelf regions (30%), which con-
trol gene expression. Moreover, our results showed the clustering
of differentially methylated CGs throughout the genome. Some
of these methylation hotspots correlated with genes affected by
DEHP, within a 2.5-Mb window (110). In particular, chromo-
some 20p12 showed two distinct clusters of DNA methylation
in a locus that contains genes that regulate immune respon-
siveness, including several that are part of the antigen process-
ing and presentation pathway (Rt1-Bb, Rt1-a2, Rt1.aa, Rt1-Bb,
Hspa2, and Hspa1a). We also reported that DEHP targets sev-
eral genes related to the immune response in whole adipose
tissue, and significantly increases serum C-reactive protein and
tumor necrosis factor levels (78). In adrenals, it is unclear whether
the increased expression of immune-related genes is a conse-
quence of macrophage or another immune cell infiltration, like
the one observed in adipose tissue (78). At present, it remains to
be investigated whether the identified immune-related genes or
the elevated inflammatory state induced by DEHP have a direct
effect in aldosterone biosynthesis. Results of other studies sug-
gest that DEHP increases inflammation in animals and humans
(111, 112). Therefore, identification of this epigenetically active
region may help elucidate the mechanism underlying the altered
immune state induced by DEHP and serve as a biomarker of DEHP
exposure.

We mapped the genomic location of differentially methylated
CGs and genes deregulated by DEHP in the adrenal gland of adult
rats. At the chromosome 20p12 loci, DNA methylation hotspots
correlated positively with genes deregulated by DEHP. Moreover,
transcriptomic data from various adrenal and non-adrenal tissues
at PND 21 and PND 60 also correlated with gene deregulation at
the chromosome 20p12 loci (110). Taken together, these data sug-
gest that DNA methylation at these loci may be affected in other
tissues and that these epigenetic changes regulate regional gene
expression. Is important to note that RRBS covered only 9% of the
genome; therefore, other CpGs may be involved in mediating the
effects of DEHP.

We wondered whether these differentially methylated CGs were
sensitive to environmentally relevant doses of DEHP. We there-
fore selected 52 CGs that exhibited the greatest DNA methylation
changes, and used DNA methylation enrichment techniques to
quantify their response to 1 mg/kg/day DEHP. The data showed
that several loci were significantly affected at this low dose. More-
over, we identified DNA methylation changes at doses below those
that affect aldosterone biosynthesis. These data together with the
decreased PPARα expression at 1 mg/kg/day led us to hypothe-
size that exposure to low levels of DEHP acts as a first hit to the
epigenome, increasing disease risk later in life.

IN SEARCH OF A BIOMARKER OF DEHP EXPOSURE
Despite the fact that EDs have been extensively studied, few
biomarkers have been reported (113). Most studies correlating
phthalate levels with human disease are based on a single urine
measurement, but since DEHP is rapidly metabolized, multi-
ple measurements are needed to accurately evaluate exposure
to EDs (114). Moreover, identification of a “clean” biomarker

is difficult because EDs mimic endocrine signals that may be
altered in metabolic or endocrine diseases. Nevertheless, biomark-
ers that are easily accessible in humans are needed to confirm
findings in animal models and aid in the risk assessment of
EDs (115).

We therefore sought to identify biomarkers of DEHP expo-
sure using the results of our global gene expression assays. We
identified genes affected at both time points and doses in our
adrenal gene expression assay. We hypothesized that these genes
were the most sensitive to DEHP, and that some gene products
could be measured in the serum. Our selection criteria resulted
in a short list of genes, most of which were downregulated by
DEHP. We quantified serum levels of aquaporin 7 (AQP7), fatty
acid-binding protein 4 (FABP4), and phosphoenolpyruvate car-
boxykinase 1 (PCK1). Results of linear regression analysis showed
that serum levels of FABP4 and PCK1 were inversely correlated
to the fetal dose of DEHP (83). In particular, serum PCK1 level
was increased by in utero exposure at 1 mg/kg/day but sharply
decreased at higher DEHP levels, suggesting dose-specific effects
of DEHP on PCK1 expression. Although serum levels of PCK1 and
FABP4 may not necessarily be indicative of individual exposure to
EDs, they may help identify exposure in high-risk populations.
Further studies of these proteins and discovery of other putative
biomarkers are needed to translate findings in animal models to
humans (116, 117). Whether PCK1 levels remain altered by dif-
ferent exposure windows or different phthalates requires further
study.

It is also uncertain how ED exposure may be at the origin or
a participant in other public health problems such as the meta-
bolic syndrome where obesity, abnormal glucose metabolism, and
inflammation are common findings. Several studies have proposed
an association between early-life exposure to an ED and increased
risk of obesity later in life (118). Some of these studies have ques-
tioned whether phthalates increase obesity risk via PPARs (119).
In male rats exposed to DEHP in utero, we identified markers of
systemic and local adipose tissue inflammation (78). Moreover,
the DEHP-induced downregulation of Lipe may also play a role
in the development of metabolic syndrome, since Lipe knock-
out mice exhibit insulin resistance in several tissues, including
the liver, adipose tissue, and skeletal muscle (120). Furthermore,
in humans, single nucleotide polymorphisms in the LIPE locus
have shown gender-specific associations with plasma lipid and
glucose levels (121). The discovery of novel biomarkers will aid in
clarifying the relationships between ED exposures and metabolic
syndrome.

CONCLUSION
Numerous studies have demonstrated that in utero exposure to
DEHP alters endocrine function in adulthood. Taken together,
the results suggest that endocrine disruption is initiated at lower
doses but remains latent until a second hit occurs in the form of
a higher dose of DEHP or a combination of EDs. The data also
show that long-term endocrine disruption is dependent on the
window of exposure. Given that humans are exposed to hundreds
of chemicals throughout life beginning at conception, there is a
need for screening tools that can aid in the risk assessment of
potential EDs.
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