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Abstract
In wake of COVID-19, the world has adapted to a new order. People have started wearing mask on their faces to prevent
getting infected. The present face recognition models are no longer proving to be efficient in the current circumstances.
This is because, most of the informative part of the face is covered by mask. The periocular recognition therefore holds
the key to future of face recognition. However, the periocular region proves to be insufficiently enough to generate highly
discriminative features. Also, most of the pre-COVID-19 algorithms fail to work in cases, where the number of training
images available is very less. We propose a lightweight periocular recognition framework that uses thermo-visible features
and ensemble subspace network classifier to improve upon the existing periocular recognition systems named as Masked
Mobile Lightweight Thermo-visible Face Recognition (MmLwThV). The framework successfully improves the accuracy
over a single visible modality by mitigating the effect of noise present in the thermo-visible features. The experiments on
WHU-IIP dataset and an in-house collected dataset named, CVBL masked dataset, successfully validate the efficacy of our
proposed framework. The MmLwFR framework is lightweight and can be easily deployed on mobile phones with a visible
and an infrared camera.

Keywords Masked face recognition · COVID-19 · Periocular recognition · Random subspace sampling ·
Ensemble of networks · Thermo visible fusion

1 Introduction

Ever since the outburst of pandemic COVID-19, the whole
world is struggling to overcome it. The world order has
changed and people are developing new protocols to cope
with the highly infectious disease. Recently the World
Health Organization suggested that the world will have to
learn to live with the COVID-19 disease even after the
vaccine is launched. This will also involve modifying the
existing systems to work with the new world protocol.

To prevent the spread of the highly infectious disease,
people have to wear mask at all public places like airports.
Mei Ngan et. al [32] from National Institute of Standards
and Technology (NIST), recently published an exhaustive
report on Face recognition accuracy with masks using
pre-COVID-19 algorithms. This report contains a detailed
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analysis of the results obtained from 89 different face
recognition algorithms from different companies while
applied on masked faces. Some of the face recognition
algorithms which have been tested on masked faces are [20,
30, 36, 44]. The report states that due to mask, the face
recognition algorithms resulted in comparatively higher
False non-match rate (FNMR) and False match rate (FMR),
in comparison to when the pre-COVID-19 face recognition
algorithms are applied on unmasked faces. The reason for
the failure of present day face recognition algorithms on
masked faces is that they require whole face image as
input for recognition. However, when the mask on the face
hides most of the area on the face below the eyes, the face
recognition algorithms are not able to generate features that
are rich enough to discriminate between the different faces.
The second reason for the higher FNMR and FMR in the
results of the pre-COVID-19 algorithms on masked faces is
that the mask on the faces adds to the noise in the generated
face features. The noise in the face features dominates the
relevant face features and contributes to misclassification.

Though there are improvements in the primitive machine
learning classifiers and deep learning networks for face
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recognition [1, 12, 20, 31], the improvements have not been
done keeping in mind the masked faces. Hence, there is an
urgent need to develop a face recognition system that is able
to recognise faces even with mask or in other words, we
can say that there is need for a face recognition systems
which can recognize faces using only the eye region.
The system that recognizes a face using the eye region
is called Periocular Recognition System. A Periocular
recognition system has the advantage that the periocular
region does not change because of various poses, aging,
expression, facial changes and other artifacts. Because of
this advantage, lot of research work is going on in the
domain of periocular biometric recognition [11, 41]. Some
have used the primitive features like local binary patterns
while others have used modern deep learning models for
extraction of features and its classification [3, 21, 24].
However, in all the cases, periocular recognition systems are
not as robust as the full face recognition systems. The reason
is very clear that due to the presence of the mask on the
faces, the informative portion of the face is hidden. Robust
face recognition therefore, cannot be done on the basis of
features present in the periocular region alone.

Face recognition using the thermal modality is an emerg-
ing field of research [28]. This is because unlike visible
images, the thermal modality is unaffected by the illumina-
tion variation and most of the occlusions (except occlusion
caused by glass). Also the thermal images can be captured
in dark which is not possible using the visible camera. This
means that that the thermal and visible modality comple-
ment each other by providing for the missing information in
the other modality. But the thermal images cannot be alone
used for face recognition [6, 35] because the face detec-
tion algorithms work well only for visible images and not
on thermal images. To use the thermal modality for face
recognition, reconstruction of visible images from the ther-
mal images has to be done [9, 19, 47]. This process is
heavy weight and complex, and prone to error. The recon-
struction of visible image from the thermal image may not
always be correct because of the missing information in the
thermal image required for the reconstruction of the visi-
ble image. This may lead to inconsistent face recognition
results. Lot of research therefore has been done in the field
of fusion of thermal and visible features [27, 37, 49]. Fusion
of thermal and visible image has given good results for face
recognition. This is because the both the thermal and vis-
ible modalities complement each other. Also, the process
of fusion of thermal and visible features is a comparatively
lightweight process when compared with the process of
reconstruction of visible face from the thermal. In our sur-
vey, we did not find any research work that applied the
concept of fusion of the visible and thermal modality for
periocular recognition. In this paper, we therefore propose
a Masked Mobile Lightweight Thermo-visible Periocular

Recognition system (MmLwThV) that performs better and
comparable to the existing face recognition systems by the
use of fusion of thermal and visible features.

At most places such as airports, arranging large number
of training images is not possible. Hence, we propose to
develop a periocular recognition system that is lightweight
and needs only few templates of the individual faces for
recognition. Another challenge that limits the performance
of the MmLwThV framework is the introduction of the
noise due to mask. The noise due to mask, may affect
the discriminative ability of the thermo-visible features and
hence the periocular recognition accuracy. To negate the
affect of noise, we propose to use ensemble of classifiers
[34] along with random subspace sampling [7, 8] of the
training samples in the proposed MmLwThV framework.
Our proposed lightweight framework MmLwThV, can be
deployed in any mobile or handheld device which has a
visible and thermal camera.

Hence, to summarize, we make the following contribu-
tions in this paper:

– We proposed an efficient and robust periocular recog-
nition framework for masked faces that uses the fusion
of thermal and visible features and an ensemble of
subspace networks to mitigate the effect of noise due
to mask in the features. The proposed framework
is called Masked Mobile Lightweight Thermo-visible
Face Recognition (MmLwThV) framework.

– We collected an unconstrained, in-the-wild thermo-
visible masked dataset for validation of our proposed
MmLwThV framework.

2 Related work

Lot of work has been done in face recognition using visible
images [20, 30, 36, 44]. However, all these works fail
to work with masked faces [32]. Occlusion is one of the
real world challenges that degrades the performance of
face recognition. Various approaches have been proposed
to handle the problem of occlusion [10, 23, 25, 26, 38, 42,
43, 46]. But all these works are based on random occlusion.
These works are therefore not suited for conditions where
most of the face is occluded with mask leaving only
periocular region uncovered.

To overcome the challenges of face recognition in visible
images, [18] and [40] reported face recognition using ther-
mal images. Singh et.al. [40] used the wavelet domain and
eigenspace domain to combine and fuse the features from
visible and thermal images. He used Genetic algorithm to
find an optimum fusion strategy. Madheswari et. al. [27]
used feature fusion of thermal and visible images. To per-
form feature fusion from images of two different modalities,
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the authors considered features such as discrete wavelet trans-
form and Curvelet transform (CT). Then they employed
particle swarm optimization, self-tuning particle swarm
optimization and brain storm optimization algorithm to find
optimal fusion coefficients. In the above such works where
the features from the thermal and visible modalities were
fused, finding an appropriate feature and subsequently find-
ing an optimal fusion strategy was always a challenge. Also,
we needed a feature that can be extracted from both thermal
and visible image without any compatibility issues.

To reduce sensitivity to noise, illumination conditions,
and facial expressions, texture analysis has time and again
proven to be highly efficient. Ojala et. al. [33] introduced
the local binary patterns (LBP) for capturing the texture
in an image. LBP is computationally simple and yet is
capable of capturing the fine details in the image. LBP has
not only been used in visible images but also in thermal
images for feature extraction. Several variants of LBP have
been proposed like Local Derivative Patterns [5] and Local
Variant Patterns (LVP) [17]. Most recently in the year
2015, in the paper[11, 41] used the Local Binary Pattern to
extract feature from the eye region. The author performed
bit shifting for feature matching, because the accuracy may
degrade because of head movement. Dubey el. al. [15] in
2015 introduced a novel low dimensional and time efficient
variant of LBP. This was called Local Bit-plane Decoded
Pattern (LBDP). The LBDP encodes the relationship of each
pixel in the image with its neighbours in each bit plane
separately. In LBDP, encoding is done at the lowest level of
an image, i.e. the bit level, LBDP can be efficiently used to
capture the texture variation of an image from two different
modalities. These works motivated us to use LBP and its
different variants to extract features from both visible and
thermal images and fuse them.

3 Datasets

To validate our proposed framework MmLwThV, we needed
a dataset that contained masked and unmasked images of
each subject. Each image in the dataset was required to
have both the thermal and the visible modality. In our
experiments for the MmLwThV framework, we needed the
periocular region from both the thermal and visible images.
However, cropping the periocular region from the thermal
image is difficult as eye detection algorithms do not work
on thermal images. The periocular region can be cropped
from the thermal image using the same coordinates as that
of the periocular region in the visible image, only when
the thermal image is registered with the visible image.
The dataset for our experiments therefore, was required
to have pixel-to-pixel registration between the thermal
and the corresponding visible images. WHU-IIP dataset

contains registered thermal and visible face images of
different subjects. However, it does not contain the masked
images of subjects. So we collected and prepared a masked
thermo-visible dataset and named it as CVBL Masked Face
Recognition dataset. The details of the datasets are given
below:

3.1WHU-IIP dataset

WHU-IIP dataset is a thermo-visible dataset that contains
thermal and visible images of 33 different unmasked
subjects. For each of the 33 subjects, the dataset contains
24 thermal and 24 visible images. The thermal and the
corresponding visible images are pixel-to-pixel registered.
Some of the thermal and visible images from the WHU-IIT
dataset are shown in Fig. 1.

3.2 CVBLmasked face recognition dataset

To verify our proposed framework MmLwThV, we col-
lected a masked dataset in unconstrained environment for
face recognition. We named this dataset as CVBL Masked
Face Recognition dataset. The dataset has both visible and
corresponding thermal images for masked and unmasked
images of all the subjects. The images from the dataset have
been shown in Fig. 2. The images have been captured using
Sonel KT150 Thermal Imager camera. The camera is capa-
ble of capturing both the thermal and visible images of a
subject simultaneously. Both the thermal and visible images
are pixel-to-pixel registered. The images have been captured
in the real world environment with varying pose, illumina-
tion, resolution and distance of the subject from the camera.
Because of the lighting variations, the quality of the ther-
mal image is also varying and is not consistent throughout.
This is because, the quality of thermal images is affected
by the day light intensity which kept on varying during the
entire session of the data collection. The visible images also
exhibit wide variation in their quality. The periocular region
is sometimes not very clearly captured in the visible images
because of inconsistent lighting and varying pose as shown

Fig. 1 Registered thermal and visible images of WHU-IIP dataset. The
WHU-IIP dataset has no masked faces
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Fig. 2 Registered thermal and visible images of CVBL Masked
dataset. The dataset is unconstrained and captured in real world
environment. There is high variation in illumination, pose, distance of
subject of the camera. The subjects have real masks on their faces. The
quality of thermal images is also affected by the intensity of the day
light when the image was captured

in Fig. 2. Most importantly, the masked dataset is realis-
tic and not synthetic. The quality of masks and position of
the masks on the face also varies from person to person.
The number of images per subject also varies in the dataset.
Thus the CVBL masked dataset represents the actual situa-
tion where the number of images available for training the
classifier per subject may vary depending on the availabil-
ity. Thus, CVBL masked dataset presents all such practical
and real world challenges before the periocular recognition
system. Thus, CVBL masked dataset will allow us to check
the validity and robustness of our proposed method.

There are in total 235 visible images and 235 correspond-
ing thermal images for 21 subjects. Thus there are on an

average 11 images per subject each for visible and ther-
mal modalities. The lowest number of images for any
subject is 6 and the highest number of images for any
subject is 16. In case of unmasked images, there are 236
images from the same 21 subjects. The lowest and highest
number of unmasked images for any subject is 6 and 16
respectively.

4 Ablation study

4.1 Face recognition onmasked faces

In this section, we have shown the experimental results
when a masked face is used for face recognition using
the pre-COVID-19 algorithms inspired by Local Binary
Patterns (LBP) [2] and its variants. We then compared the
results of face recognition on masked and unmasked full
faces. The experiments have been performed on CVBL
masked dataset using the thermal, visible and thermo-
visible features. The results are summarized in Table 1.
We used the LBP[2], LBDP [15], LDP [5] and LVP [17]
features and used lightweight primitive classifiers such as
Minimum Distance Classifier, Support Vector Machines
(SVM) [13] and its variants, K-Nearest Neighbour(KNN)
[16] and its variants, Ensemble Subspace Discriminant [4]
and Ensemble Subspace KNN [48] for classification.

In all experiment, we trained the classifiers on the fea-
tures from the unmasked face images. We used 5-fold cross
validation to test the classifiers on unmasked images. Using
the trained classifiers on unmasked faces, we also tested
the classifiers on masked dataset. The results in Table 1
can be summarized in two headings: In the Table 1, we
compare the corresponding values from the two rows ’M’
and ’Un’, for a classifier, we find that the face recognition
accuracy on masked face is very less than the correspond-
ing accuracy on unmasked face for a particular modality.
The highest accuracy obtained on masked face is 27% with
Ensemble Subspace Discriminant classifier and LBDP fea-
tures of the masked thermal face image. The corresponding
accuracy on unmasked face is 63.6%. The highest accuracy
obtained on unmasked face is 92.80% when Ensemble Sub-
space KNN classified the thermo-visual features of LBDP
for the unmasked images.

From the Table 1, it can be easily observed that, in
many cases the fusion of thermal and visible features did
not generate better results than the features for visible or
the thermal modality when used individually. This pattern
in the results is more prevalent in case of masked images
than in case of unmasked images. This clearly means
that when the features of thermal and visible modalities
are fused together, the noise due to facial mask become
more dominant than the facial features themselves. Hence,
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Table 1 Comparative Results of Face Recognition for MASKED (M) and UNMASKED (Un) faces on CVBL Masked Dataset. The experiment
has been performed on features from Visible (V) and Thermal (T) images

Classifiers M/Un LBP LBDP LDP LVP

V T V+T V T V+T V T V+T V T V+T

Minimum

Distance Un 81.78 81.78 81.78 87.71 72.46 92.80 71.19 58.90 84.32 76.69 55.51 86.44

Classifier M 19.41 5.91 10.97 5.06 21.94 9.70 13.08 13.08 15.61 10.55 14.35 16.46

Linear SVM Un 64.4 65.7 64.4 81.8 73.7 89.4 58.5 51.3 72.5 57.2 50.8 70.8

M 21.1 4.64 7.59 10.97 21.52 15.19 13.92 14.77 12.66 12.24 16.03 12.24

Quadratic SVM Un 67.8 67.8 68.2 84.7 77.5 90.3 64.4 56.4 77.1 67.8 55.1 79.2

M 21.10 4.22 7.59 10.13 20.25 12.66 15.19 16.46 13.92 13.08 16.88 12.24

Cubic SVM Un 68.2 66.9 67.4 84.3 75.8 89.4 62.3 50.0 76.3 64.8 54.2 76.7

M 20.68 4.22 8.02 8.86 20.68 14.35 13.62 15.61 13.50 13.50 17.72 12.24

Fine Un 7.6 8.1 7.2 9.7 11.4 7.6 6.4 7.2 6.4 6.8 6.4 6.8

Gaussian SVM M 4.22 4.22 4.22 4.22 7.59 4.22 4.22 4.22 4.22 4.22 4.22 4.22

Medium Un 55.5 56.8 57.2 72.5 69.1 75.8 53.0 41.5 64.8 49.2 48.3 62.3

Gaussian SVM M 9.28 6.33 6.75 5.06 21.52 4.64 10.13 15.19 14.77 10.97 15.61 13.50

Coarse Gaussian Un 29.2 29.2 30.1 46.2 32.6 46.6 24.2 24.6 30.9 22.9 28.0 29.2

SVM M 15.61 3.80 8.86 6.33 20.68 13.50 9.28 12.24 13.50 6.75 11.81 17.72

Fine KNN Un 63.1 62.3 60.6 85.6 62.3 90.3 58.5 55.1 78.0 63.6 57.2 76.3

M 19.41 4.64 10.97 9.28 18.14 13.92 7.59 16.88 13.92 13.50 15.61 17.30

Medium KNN Un 61.9 57.6 60.2 71.2 59.3 79.2 58.5 45.8 63.6 55.5 53.0 70.3

M 17.30 5.91 11.39 4.64 14.77 11.81 12.66 18.57 13.50 12.24 20.25 19.41

Coarse KNN Un 23.7 25.8 25.0 20.3 24.6 23.3 27.5 16.1 22.5 28.8 20.0 23.7

M 18.99 6.75 14.35 5.91 16.03 9.28 6.75 12.24 10.13 8.44 17.72 14.35

Cosine KNN Un 58.5 57.2 58.1 72.5 58.5 83.9 45.8 31.4 67.4 59.7 42.4 69.1

M 15.19 7.17 11.39 4.22 19.83 13.92 9.28 14.77 16.03 11.39 16.88 21.70

Cubic KNN Un 51.7 46.2 51.7 65.3 48.3 69.1 51.7 49.2 61.9 53.0 51.7 68.2

M 15.19 5.49 11.39 3.38 13.50 7.59 13.92 18.57 14.35 12.24 16.88 17.72

Weighted KNN Un 64.8 60.6 63.6 76.7 61.9 84.7 58.5 52.1 69.1 59.3 53.0 73.7

M 14.77 7.17 11.81 5.49 18.14 12.24 10.97 18.99 12.24 11.39 20.25 20.25

Ensemble

Subspace Un 79.2 78.4 71.6 78.8 63.6 89.8 73.3 65.3 86.4 77.1 66.1 84.3

Discriminant M 24.47 9.70 12.24 8.02 27.00 13.92 15.61 22.36 18.99 19.83 23.21 21.10

Ensemble Un 82.6 82.6 83.1 87.7 75.4 92.8 71.2 62.7 83.1 79.7 58.1 86.4

Subspace KNN M 22.36 5.91 10.13 3.80 22.36 12.66 13.50 15.61 15.19 11.39 14.77 16.88

face recognition accuracy on masked faces dropped down
due to fusion of the features from thermal and visible
modalities.

4.2 Strength of periocular recognition

In this section, we experimentally try to understand the
strength of the periocular recognition. For this, we extracted
the lightweight LBDP features of the full face, left eye and
right eye from the unmasked images in the WHU-IIP dataset
and compared the results. The results are summarized in
Table 2. The predictions have been done using the minimum
distance classifier which uses the Euclidean distance.

From the Table 2, we compare the results for left and
right eye from that of the face. The periocular recognition
for left and right eye is quite less than the face recognition

Table 2 Recognition Accuracy for different face regions for Thermal
and Visible Images using Euclidean distance based prediction

Face Thermal Visible Thermo-

Region Image Image visible

Face 98.99 98.23 100

Left Eye 81.75 56.05 92.05

Right Eye 75.51 58.59 91.29
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for the thermal or the visible modality. However, for thermo-
visible modality, the periocular recognition accuracy for left
and right eye become comparable to the face recognition
accuracy. The accuracy for the left and right eyes are
respectively 92.05% and 91.29%.

So we can conclude that periocular recognition can make
a very strong contribution towards identification of a person
by using thermo-visible features.

5 The proposedmethodology

We describe our proposed Masked Mobile Lightweight
Thermo-visible Face Recognition (MmLwThV) framework
in this section. The entire framework is shown in Fig. 3.
The MmLwThV framework follows the following steps for
recognition of masked faces:

1. Periocular Region Extraction
As diagrammatically described in the Fig. 3 the

training set X contains registered masked thermal and
visible images of n subjects. For each subject, the
periocular region is extracted from the visible image
using cropping based on coordinates provided by the
eye detection algorithm. The corresponding periocular
region from thermal image is extracted using the bound-
ing box obtained from the visible image. The bound-
ing box was obtained using the functions available in
opencv.

2. Thermo-visible Feature Extraction After obtaining
the periocular region from the thermal and visible
images of a subject in the training set, the handcrafted
features are then generated from periocular region in
the thermal and visible modality and concatenated to
generate features Xk such that k varies from 1 to n. Thus
X1, X2, X3, X4, ..., Xk are the fused features obtained
from each subject in the training set X.

3. Random Subspace Sampling This is shown in block
named Random Feature Selection in Fig. 3. The train-
ing set X is randomly sampled to produce D differ-
ent samples subspaces Xd

1, X
d

2, ..., Xd
k, ...., Xd

D . D

such random subspaces are generated for training D

different classifier models.
4. Classifier Training Classifier Training is shown in block

named Random Feature Selection in Fig. 3. D dif-
ferent models C1, C2, C3, C4, ....., CD are trained such
that classifier model Ck is trained using the sample
subspace Xd

k , k lies between 1 and n. Thus, the ensem-
ble network consisting of D weak classifiers is trained
using D random subspaces. The trained network can
now be used for periocular recognition of masked faces.

5. Periocular Recognition by the Ensemble Network
After the training, the ensemble of classifiers C1, C2,

C3, C4, ....., CD is used for classification. Registered
thermal and visible images of masked faces are
captured and used to extract periocular region from both
visible and thermal images. Features are then extracted
from both thermal and visible images of the periocular
region. The features obtained from thermal and visible
periocular regions are then fused and is given as input to
the ensemble network. The ensemble network classifies
the input using the majority voting rule.

In Fig. 4, three different visible facial images IV
A , I

Vi

P

and I
Vj

N from a facial image dataset of size N such that
1 ≤ i, j ≤ N − 1 and i �= j for all i and j . IV

A is the anchor

image, I
Vi

P is a positive image and it is having face of the

person same as in IV
A . I

Vj

N is a negative image and contains
a face image of a different person than that in IV

A .

Similarly, IT
A , ITi

P and I
Tj

N are three thermal images corre-

sponding to the visible images IV
A , I

Vi

P and I
Vj

N respectively
such that IV

A and IT
A are pixel-to-pixel registered. Simi-

larly, I
Vi

P and I
Ti

P as well as I
Vj

N and I
Tj

N are also having
pixel-to-pixel correspondence.

Features of the visible images IV
A , I

Vi

P and I
Vj

N are FV
A ,

F
Vi

P and F
Vj

N respectively such that:

FV
A = [FV

A1
, FV

A2
, FV

A3
, FV

A4
, FV

A5
, .......FV

Al
] (1)

F
Vi

P = [FVi

P1
, F

Vi

P2
, F

Vi

P3
, F

Vi

P4
, F

Vi

P5
, .......FVi

Pl
] (2)

F
Vj

N = [FVj

N1
, F

Vj

N2
, F

Vj

N3
, F

Vj

N4
, F

Vj

N5
, .......F

Vj

Nl
] (3)

The distance between the anchor image IV
A and positive

image I
Vi

P is denoted by D
Vi

AP and the distance between the

IV
A and negative image I

Vj

N is denoted by D
Vj

AN where,

D
Vi

AP = FV
A − F

Vi

P (4)

D
Vj

AN = FV
A − F

Vj

N (5)

Calculating D
Vi

AP and D
Vj

AN using Euclidean distance, we
get:

D
Vi

AP =
{ l∑

k=1

(FV
Ak

− F
Vi

Pk
)2

}1/2

(6)

D
Vj

AN =
{ l∑

k=1

(FV
Ak

− F
Vj

Nk
)2

}1/2

(7)

From the unmasked faces, we obtain discriminative
features from the whole of the face. Hence, intra-class
distance D

Vi

AP is assumed less than inter-class distance D
Vj

AN .
This can be written ∀k : 1 ≤ k ≤ l as:

(FV
Ak

− F
Vi

Pk
) <<< (FV

Ak
− F

Vj

Nk
) (8)
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Fig. 3 Complete block diagram
of MmLwThV framework

So, the classification can be done correctly as the demarca-
tion line between the classes is clear.

5.1 Problem 1

For the masked faces, if a kth feature NF
Vi

Pk
is a noise due

to mask. Then it may affect the relation in equation (8). The
equation may become:

(FV
Ak

− NF
Vi

Pk
) >> (FV

Ak
− F

Vj

Nk
) (9)

If (9) is true for most of the k, then the result is:

D
Vi

AP >> D
Vj

AN (10)

i.e. the discriminative ability of the features gets affected.
The problem is to devise a method for masked face recognition
so that the noise due to mask do not affect the discriminative
ability of the features for correct classification.

5.2 Proposed solution stage 1: Thermo-visible fusion

We propose to use only the periocular region from the
masked faces such that the noise due to mask is removed.
For simplicity of nomenclature, we assume that FV

A , F
Vi

P ,

F
Vj

N , FT
A , FTi

P , F
Tj

N are the thermal and visible features from
the periocular region, then we get:

(FV
Ak

− F
Vi

Pk
) ≈< (FV

Ak
− F

Vj

Nk
) (11)
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Fig. 4 The Anchor, Positive and Negative Visible Images. For correct
classification, the Intra-class distance should be less than the Inter-
class distance

However, since the features from periocular region are not
highly discriminative, we get

D
Vi

AP ≈ D
Vj

AN (12)

This may lead to erratic classification results. Hence, the
fusion of thermal features with the visible features is done
to increase the discriminative power of the thermo-visible
features of the periocular region.

Given the thermal and visible features, we fuse the fea-
tures of the visible image from the features of the correspond-
ing thermal image, then as shown in Fig. 5, the thermo-
visible features can be written as:

FV T
A = [FV

A1
, FV
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If we assume ∀k : 1 ≤ k ≤ l:

D
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= (FV
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) (16)

we can write (6) and (7) as:

D
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Similar to (4) and 5, the Euclidean distance between the
fused features FV T

A and F
V Ti

P , denoted by D
V Ti

AP and the

distance between FV T
A and F

V Tj

N , denoted by D
V Tj

AN is given
by equations:
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Squaring both sides of (6) and also of (7) and substitut-
ing in (19) and 20 respectively, we get:
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When thermal features are added and concatenated with
the visible features, they complete the missing information
in the features. The thermal features complement the visible
features. The term (F T

Ak
− F

Ti

Pk
) in (21) is less than the term

(F T
Ak

− F
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Nk
) in (22) i.e.:
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∀k : 1 ≤ k ≤ l. Hence, there is a small increment added
to the intra-class distance D

Vi

AP while, there is a larger

increment in the inter-class distance D
Vi

AN . So, we get:

D
V Ti

AP <<< D
V Tj

AN (24)

The equation clearly tells that, the fusion of the thermal
and visible features, makes the fused feature more dis-
criminative. The intra-class distance is much less than the
inter-class distance.

5.3 Problem 2

In real world circumstances, the mask is randomly placed
on the face. When the periocular region is cropped from the
face in the thermal or visible images, a portion of the mask
is left in the cropped periocular region. This is shown in
Fig. 5. This small masked region in the cropped periocular
part of the thermal and visible periocular image, adds to the
noise and may affect the discriminative ability of features.
For the recognition of the periocular region from the masked
face, it is compared with periocular region of the unmasked
face template. Here, the unmasked periocular template is
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Fig. 5 The figure explains how the mask causes noise in the thermo-visible features. The noise affects the discriminative ability of the features

free from the noise due to no mask. While, the test image
may be a periocular region from the masked Positive image
or a Negative image.

We can therefore rewrite the (16) for noisy features as:

D
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such that NF
Vi

Pk
and NF

Vi

Nk
are the noisy feature values from

the periocular region of a positive and a negative visible

image I
Vi

P and I
Vj

N respectively.

As stated before, if D
Vi

APk
< D
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for most of values of k

then the condition D
Vi

AP < D
Vi

AN is satisfied and classifica-
tion is correct.

However, the noisy feature values NF
Vi

Pk
and NF

Vi

Nk
can

be any random value. This can affect the relation between
D

Vi

APk
and D

Vi

ANk
and therefore D

Vi

AP and D
Vi

AN . The relation

may transform to D
Vi

AP > D
Vi

AN , and subsequently result in
misclassification.

The problem is to propose a method so that the noise in
the features can be ignored for better classification.

5.4 Proposed solution stage 2: Random subspace
samplingmethod and ensemble of networks

We propose to use Random Subspace Sampling Method to
overcome the effect of noise in the thermo-visible features.
Random Subspace Sampling Method is described below:

Let us suppose that we have a training set X = (X1,

X2, ....., Xn). Each of the training object Xi in the training
set X is a p dimensional feature vector such that Xi = (xi1,

xi2, ..., xip).
To construct random subspace Xd from the available

training set X, we select r random features from each of
the p dimensional feature vector Xi such that r < p. Thus
the modified random subspace training set Xd = (Xd

1 , Xd
2 ,

....., Xd
n). Each of training object in random subspace

training set, Xd
i for i = 1, 2, ...n is a r-dimensional vector

such that Xd
i = (xd

i1, x
d
i2, ...., xd

ir ) where each of xd
i1 for

i = 1, 2...r is selected from the p-dimensional vector Xi =
(xi1, xi2, ..., xip).

We now construct an ensemble of classifiers Cd(x) con-
taining D classifiers, such that d = 1, 2, ..., D. Each clas-
sifier Cd(x), is trained using a separate random subspace
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Xd , d = 1, 2, ..., D. The results of each classifier Cd(x) is
combined using the majority voting rule. The algorithm for
the training of the ensemble of classifiers using the random
subspace samples from the original training set is shown in
Figure 6.

The thermo-visible features of the anchor image is as
shown in (13). The features of the masked face image
contains noise due to mask, hence we can rewrite (13) to
include the noise as shown in (27) and (28):
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such that NF in the feature term represents the noisy

feature. For example, NF
Vi

Pk
or NF

Tj

N3
, k = 1, 2, 3, ....(2l)),

denote the noisy features. Lets say we generate a random
subspace Xd , d = 1, 2, 3, ...., D of dimension r , r < 2l,
using the random subspace sampling method, then one of
the sample objects, F

V Ti

P can be expressed as:
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Because r < S, such that r is the dimension of the
randomly selected subspace, and S is dimension of the
features in the original training set, the probability that a
features gets selected in the sampled subspace Xd , from the
visible feature set is only r/ l. Whereas, the probability that
a feature gets selected in the sampled subspace Xd , from
the thermo-visible feature set is only r/(2l). Since r/(l) >>

r/(2l), we can say that fusion of thermal and visible features
and random subspace sampling both together lessen the
probability of appearance of noise in the final sampled
subspace and hence the misclassification.

Fig. 6 Random Subspace Sampling Method

The ensemble of networks has the following advantages
in our proposed approach:

1. Generalization property of the Ensemble
The ensemble of networks has a good generalization
property. It takes weak classifiers and generalizes the
result obtained from the weak classifiers to generate
results better than the individual classifiers.

2. Ensemble reduces the impact of noise
The probability of a noisy feature appearing in the
randomly selected subspace is r/(2l). The probability is
low and hence the noisy feature may not appear in most
of the sampled subspace. This causes most of classifiers
networks in the ensemble to make correct prediction.
The final decision about the classification, is done by
majority voting. This allows to nullify the effect of
noise on the final classification results of the ensemble
network.

6 Implementation

To verify the efficacy of our proposed MmLwThV frame-
work, we carried out the experiments on WHU-IIP dataset
and CVBL masked face recognition dataset. As discussed
before, WHU-IIT dataset has pixel-to-pixel registered ther-
mal and visible images. But it does not have the masked
images of the subjects. So using the WHU-IIP dataset, we
performed the periocular recognition with visible, thermal
and thermo-visible features extracted from the unmasked
faces. The CVBL masked face recognition dataset con-
tains the masked and unmasked faces in thermal and visible
modalities. Hence we performed exhaustive experiments on
the dataset for periocular recognition using the thermal, vis-
ible and thermo-visible features on masked and unmasked
faces. We have used ensemble networks for classification.
We have also used other basic classifiers such as minimum
distance classifier(using Euclidean distance), Support Vec-
tor Machines(SVM), K-Nearest Neighbour(KNN) and their
different versions for the purpose of comparison. The result
on WHU-IIT dataset and CVBL dataset are summarized in
Tables 3 and 4 respectively.

6.1 Periocular recognition usingMmLwThV
framework onWHU-IIP dataset

As discussed above, the WHU-IIT dataset does not contain
masked faces. Hence, there is no introduction of noise
due to mask in the thermo-visible features. We therefore
performed the experiment on WHU-IIT dataset to validate
the efficacy of fusion of thermal and visible features. We
used 5-fold cross-validation for the test results. The results
are summarized in Table 3.
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Table 3 Results of MmLwThV framework on WHU-IIP dataset on Thermal(T) and Visible (V) Images for different Features

Classifiers LBP LBDP LDP LVP

V T V+T V T V+T V T V+T V T V+T

Minimum Distance

Classifier 97.1 97.73 98.86 83.46 95.33 97.60 49.87 26.26 54.8 91.54 54.17 91.41

Linear SVM 96.6 90.8 99.1 71.7 87.4 93.6 83.7 73.5 92.6 91.7 81.3 96.1

Quadratic SVM 97.0 90.9 99.2 73.6 86.9 93.3 85.2 75.4 94.1 92.6 83.3 96.7

Cubic SVM 96.7 89.9 98.9 70.8 84.8 91.9 84.5 73.7 93.8 92.6 82.6 96.8

Fine Gaussian SVM 5.2 5.1 4.8 6.3 6.1 6.4 3.4 2.8 3.7 3.0 2.8 3.3

Medium Gaussian SVM 95.7 90.7 98.4 74.5 83.0 90.7 82.8 68.3 92.7 92.7 81.4 96.2

Coarse Gaussian SVM 16.2 15.7 16.7 14.0 13.5 16.2 15.0 13.6 14.8 15.4 14.0 16.0

Fine KNN 74.2 46.1 73.7 59.6 76.4 85.9 39.5 19.4 44.2 71.5 34.8 74.7

Medium KNN 69.6 45.6 63.5 51.6 74.0 78.7 37.1 17.6 37.8 72.0 30.3 71.8

Coarse KNN 39.1 23.1 32.4 21.7 31.9 38.5 21.7 9.2 17.7 51.4 18.7 53.9

Cosine KNN 92.0 82.3 97.5 58.2 77.1 84.0 70.6 51.3 83.2 84.0 69.4 91.4

Cubic KNN 51.9 34.5 44.9 40.8 62.8 65.2 21.0 12.1 20.3 54.8 20.1 46.5

Weighted KNN 74.5 50.1 68.7 56.8 76.4 81.7 40.2 17.0 40.8 74.6 32.4 77.1

Ensemble Subspace

Discriminant 99.1 97.2 99.9 68.6 85.1 88.8 91.4 76.4 96.7 98.1 89.5 98.5

Ensemble

Subspace KNN 97.0 98.1 99.1 83.5 97.1 98.2 87.6 75.4 93.4 96.6 79.2 96.6

In order to evaluate different classifiers, it is necessary
to understand if there is any statistical difference in the
results of any two classifiers. If the results of any two

classifiers are statistically different, then the two classifiers
can be compared for better performance. If the results are
statistically same, then we can say that the behavior of the

Table 4 Results of MmLwThV framework on CVBL Masked dataset on Thermal(T) and Visible (V) Images for different Features

Classifiers LBP LBDP LDP LVP

V T V+T V T V+T V T V+T V T V+T

Minimum Distance

Classifier 65.11 26.81 65.95 56.17 34.47 53.19 36.60 20.43 34.04 36.6 31.49 42.98

Linear SVM 45.11 29.36 42.98 31.91 28.51 37.02 34.04 21.70 34.89 34.04 25.53 34.47

Quadratic SVM 50.64 29.79 45.53 35.32 27.23 38.72 39.15 24.26 40.85 39.15 29.36 42.55

Cubic SVM 50.64 30.21 44.68 37.45 29.79 39.15 38.30 22.98 40.85 37.02 26.81 41.28

Fine Gaussian SVM 4.26 4.26 4.26 4.26 8.09 4.26 4.26 4.26 4.26 4.26 4.26 4.26

Medium Gaussian SVM 41.28 23.83 32.77 20.43 23.83 22.98 28.94 23.40 28.94 32.77 29.79 37.02

Coarse Gaussian SVM 17.02 13.19 17.02 17.02 20.00 19.57 10.64 16.17 17.45 11.49 16.17 17.87

Fine KNN 36.17 22.55 33.62 48.09 30.64 39.15 29.79 24.68 32.77 29.79 31.91 36.17

Medium KNN 34.47 22.55 34.89 37.87 30.21 35.32 31.91 25.11 33.62 32.77 28.51 36.60

Coarse KNN 18.30 14.89 17.02 12.77 15.74 16.60 12.34 14.89 25.96 14.47 14.47 19.57

Cosine KNN 42.13 33.62 45.53 40.00 25.96 40.43 34.04 22.13 34.04 31.91 27.23 34.89

Cubic KNN 23.40 23.40 28.09 34.04 21.28 29.36 30.64 24.26 31.06 31.91 27.66 36.17

Weighted KNN 33.62 23.83 37.02 40.00 32.34 40.00 34.04 25.11 31.06 32.77 29.36 38.30

Ensemble Subspace

Discriminant 48.94 36.60 63.40 38.72 28.94 51.06 48.09 37.87 51.49 48.94 40.43 54.47

Ensemble

Subspace KNN 68.94 28.94 70.64 54.47 35.74 54.47 36.17 22.13 36.60 37.87 30.64 42.98
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two classifiers are same. Hence, we analysed the results
of MmLwThV framework on WHU-IIT dataset using the
Wilcoxon Signed rank test [14, 39].

6.1.1 Wilcoxon signed-ranks test

The Wilcoxon signed-rank test [14, 39] is a non-parametric
statistical test. This means that the data is derived from
a population that is non-parametric in nature. A non-
parametric population can be ranked but does not have
numerical values. The Wilcoxon signed-rank test is used to
determine if two or more sets of pairs are different from one
another in a statistically significant manner. The Wilcoxon
sign test is performed with the assumption that the two
samples are dependent observations of a case. The second
assumption is that the paired observations are randomly and
independently drawn from the population.

6.1.2 Evaluation of Wilcoxon signed-ranks test onWHU-IIT
dataset

From the Table 3, we can see that Ensemble subspace
discriminant is having the highest accuracy of 99.9%. Hence
we compare Ensemble subspace discriminant with every
other classifier as specified in Table 3. The comparison
is done using Wilcoxon signed rank test to find if the
results of Ensemble subspace discriminant is statistically
different from the results of other classifiers. The results of
the Wilcoxon Signed-rank Test are summarized in Table 5
where each column presents the results obtained from
the comparison of Ensemble subspace discriminant with
a different classifier. In the first column of Table 5, for
example, Ensemble subspace discriminant is compared with
Ensemble subspace KNN.

From the results in Table 5, it is very much clear that
the results of the classifiers Ensemble subspace KNN, Min-
imum Distance classifier, Linear SVM and Quadratic SVM
are similar to that of the Ensemble subspace discriminant
classifier. The results of all other classifiers are different
from that of the Ensemble subspace discriminant. Hence we
can say that the Ensemble subspace discriminant shows a
better performance in comparison to most of the classifiers
on WHU-IIT dataset.

6.1.3 Results analysis and discussion

From the Table 3, it can be observed that, the results
of MmLwThV framework on WHU-IIP dataset is highly
encouraging. The highest accuracy for periocular recogni-
tion obtained is 99.9% for the LBP thermo-visible features
using the Ensemble subspace discriminant classifier. The

accuracy of 99.9% is comparable to any state-of-the-art
result. For LBP feature, the periocular recognition accu-
racy of the Ensemble Subspace Discriminant for the visible
modality is 99.1% and 98.1% in thermal mode. The fusion
of thermal and visible LBP features increased the periocular
recognition accuracy to 99.9% by the Ensemble Subspace
Discriminant. Thus the result validates our proposed frame-
work. Also, the ensemble subspace classifiers performs the
best among all the classifiers. Ensemble subspace classifier
gives the highest accuracy in each column of the Table 3.

6.2 Periocular recognition usingMmLwThV
framework on CVBLmasked face recognition
dataset

We performed experiments on CVBL masked dataset. Since
both the masked and unmasked images are available in
the dataset, we cropped the periocular region from the
registered thermal and visible images for masked and
unmasked faces. For the masked faces, features were
extracted from the periocular region of both thermal and
visible images and subsequently fused with each other. The
same was done with features of the periocular regions of
the unmasked images. We then trained the classifier on the
thermo-visible features from the periocular region of the
unmasked faces and tested the classifier on the thermo-
visible features from the periocular regions of the masked
faces. To understand the effect of fusion of thermal and
visible features, we conducted separate experiments for
face recognition using only thermal images for masked and
unmasked faces and also face recognition using only visible
images for masked and unmasked faces. The results are
summarized in Table 4

6.2.1 Evaluation of Wilcoxon signed-ranks test on CVBL
masked dataset

To see if the results of Ensemble Subspace KNN are same
as or different from other classifiers as specified in Table 4,
we conducted Wilcoxon Signed-ranks Test. The results of
the Wilcoxon Signed-ranks Test are summarized in Table 6.
In the first column for example, Ensemble subspace KNN is
compared with Ensemble subspace discriminant.

From the results in Table 6, it is very much clear that the
results of the classifiers Ensemble subspace discriminant,
Quadratic SVM and Cubic SVM are similar to that of the
Ensemble subspace KNN. The results of all other classifiers
are different from that of the Ensemble subspace KNN.
Hence we can say that the Ensemble subspace KNN shows
a better performance in comparison to most of the classifiers
on CVBL dataset.
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Table 5 Results of Wilcoxon Signed-ranks Test for the MmLwThV
framework on WHU-IIT masked dataset. Ensemble Subspace Dis-
criminant is compared with all other classifiers. The other classifiers
are represented by the letter in brackets. Ensemble subspace KNN
(B), Minimum distance classifier (C), Linear SVM (D), Quadratic

SVM(E), Cubic SVM (F), Fine Gaussian SVM (G) , Medium Gaus-
sian SVM (H), Core Gaussian SVM (J), Fine KNN (K), Medium KNN
(L), Course KNN (M), Cosine KNN (N), Cubic KNN (O), Weighted
KNN (P). Also, S stands for similar and D stands for Different

Parameters B C D E F G H J K L M N O P

R+ 44 56 62 59.5 66 78 68 78 78 78 78 78 78 78

R- 34 22 16 18.5 12 0 10 0 0 0 0 0 0 0

Stats 34 22 16 18.5 12 0 10 0 0 0 0 0 0 0

T S S S S D D D D D D D D D D

6.2.2 Results analysis and discussion

The results on CVBL masked dataset are a more realistic
evaluation of the MmLwThV framework. Firstly because,
as already discussed, the CVBL dataset has been captured in
real world circumstances and therefore presents real world
challenges for periocular recognition. Also, the masks in
the dataset are real and no synthetic masks have been used.
The second reason why the results on CVBL dataset are
realistic is because the unmasked images from the dataset
are used for training the classifiers and the masked images
are used for testing the trained classifiers. This is unlike
in case of WHU-IIT dataset, where we used the unmasked
images for both training and testing of the classifiers using
5-fold validation.

As shown in the Table 4, the highest periocular accuracy
on masked faces is 70.64%. The accuracy has been obtained
using the Ensemble subspace KNN on the thermo-visible
LBP features. The second in position of periocular recog-
nition accuracy is Minimum Distance classifier on LBP
thermo-visible features with 65.95%. Subsequently, the
third rank in the order of accuracy is held by ensemble
subspace classifiers on thermo-visible features indicates the
efficacy of the classifier on thermo-visible fused features.

The efficacy of the ensemble subspace classifiers are
further validated when we analyse the Table 4 column wise.
When we say ensemble subspace classifiers, we mean either

by Ensemble subspace Discriminant or Ensemble subspace
KNN. For all the columns in the Table 4, the highest
periocular accuracy is given by the ensemble subspace
classifiers. There is one exception to this however, when
the Minimum Distance classifier gives the highest accuracy
of 56.17% on LBDP features and Ensemble subspace KNN
follows next with an accuracy of 54.47% accuracy. But this
happens for the visible modality. But for all the thermo-
visible features, the highest periocular accuracy is given by
the ensemble subspace classifiers.

In summary, the experiments on CVBL masked dataset
re-validate all our conclusions drawn on results of MmLwThV
framework on WHU-IIT dataset.

6.2.3 Effect of noise on the results of MmLwThV framework

In our paper, we have performed our experiments on two
different datasets: WHU-IIT dataset and CVBL masked
dataset. WHU-IIT dataset is a dataset that contains images
without mask. On the other hand, CVBL masked dataset
contains images that contain images with real masks.
The images in CVBL dataset are captured in real world
environment.

Hence, the periocular region from the images in WHU-
IIT dataset contain no noise due to mask. However, perioc-
ular images from the images in CVBL dataset contain noise
due to mask. This is because while the periocular region is

Table 6 Results of Wilcoxon Signed-ranks Test for the MmLwThV
framework on CVBL masked dataset. Ensemble Subspace KNN is
compared with all other classifiers. The other classifiers are rep-
resented by the letter in brackets. Ensemble subspace KNN(A),
Ensemble subspace discriminant (B), Minimum distance classifier (C),

Linear SVM (D), Quadratic SVM(E) , Cubic SVM (F), Fine Gaussian
SVM (G) , Medium Gaussian SVM (H), Core Gaussian SVM (J), Fine
KNN (K), Medium KNN (L), Course KNN (M), Cosine KNN (N),
Cubic KNN (O), Weighted KNN (P). Also, S stands for similar and D
stands for Different

Parameters B C D E F G H J K L M N O P

R+ 29 56.5 77 54.5 61.5 77 76 78 75 75.5 78 72 77 75

R- 49 9.5 1 23.56 16.5 0 2 0 3 2.5 0 6 1 3

Stats 29 9.5 1 23.5 16.5 0 2 0 3 2.5 0 6 1 3

T S D D S S D D D D D D D D D
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extracted from the faces in CVBL dataset, a portion of the
mask is present in the periocular images.

Comparison of the results in Tables 3 and 4 clearly
demonstrates the effect of noise due to mask. The
highest accuracy of 99.9% in case of WHU-IIT dataset in
comparison to 70.64% in case of CVBL dataset clearly
demonstrates the effect of noise in the images due to mask.
The effect of noise can also be understood by comparing
cells in the Tables 3 and 4. It can be understood that the
accuracy of a classifier on a feature in case of CVBL dataset
is less than the corresponding accuracy of the same classifier
on the same feature in case of WHU-IIT dataset. This means
that the noise due to masks negatively impacts the accuracy
of face recognition.

On analysing the results column wise in Table 4, we
can see that the accuracy of either Ensemble subspace
discriminant or Ensemble subspace KNN is highest. This
clearly means that drop in the accuracy due to noise, is more
in case of all other classifiers except Ensemble subspace
discriminant or Ensemble subspace KNN. Hence we can say
that, our proposed MmLwThV framework, is less affected
due to noise in comparison to other classifiers. We can
therefore conclude that MmLwThV framework is robust
against noise to mask.

6.2.4 Complexity of the MmLwThV framework

For SVM based classifiers in the Table 1,the number of
parameters in a Support Vector Machine (SVM) is equal
to the number of pixels in the input image. Since we input
handcrafted features such LBP, LDP etc in the classifier, the
largest input size is 4096. Hence, we can say that largest
number of trainable parameters in an SVM can be equal to
4096.

As we know that, the discriminant analysis classifier
learns coefficients for projecting a sample into the correct
class. If there are k classes, k × k structure of coefficient
matrices are learnt by the classifier. In an Ensemble Sub-
space Discriminant classifier, there are 30 such Discrim-
inant classifiers. Also, there are 33 classes in WHU-IIP
dataset and 21 classes in CVBL Masked Face recognition
dataset. Therefore, total number of parameters for WHU-
IIP dataset can be calculated as 32,670. Similarly, for CVBL
Masked Face recognition dataset total number of learnable
parameters are 13,230. For an Ensemble Subspace KNN,
there are no trainable parameters. This is because in KNN
there is no requirement for training.

Now when we compare the Ensemble Subspace KNN or
Ensemble Subspace Discriminant classifier any SVM based
classifier, then we can say that in general all the classifiers
mentioned in Table 4, are actually machine learning based
classifiers. All the machine learning based classifiers are

lightweight. This can be better understood if any of the
machine learning based classifier is compared with any
deep learning model. This is because a deep learning model
contains at least a million of parameters.

If we compare Ensemble based classifiers with SVM
based classifiers based on the number of learnable parame-
ters, it may occur that Ensemble based classifiers are more
complex. But it must be mentioned that the increase in the
number of parameters is not very high. Also, a little increase
in complexity of ensemble based classifiers is because of
more number of learners in the model. The increase in
the parameters of ensemble based classifiers comes with
increase in robustness against noise and generalization capa-
bility. Hence we can finally conclude that our proposed
MmLwThV framework is a lightweight solution for the
masked face recognition.

6.2.5 Summary of discussion onMmLwThV framework

Putting together the results on WHU-IIT dataset, we can say
that periocular recognition can be effectively used instead of
full face identification if the visible features are used with
the fusion of thermal features as well. However, upon the
fusion of the thermal and visible features, it is likely that the
noise due to mask can dominate the recognition accuracy
and increase the false reject and false accept rates. The
Ensemble subspace classifiers have been effectively able
to combat the effect of noise and generalize well over the
features from the periocular region.

Thus experimentally it is validated that our proposed
MmLwThV framework is highly effective in improving
the robustness and accuracy of the masked periocular
recognition over the existing visible periocular recognition
systems. MmLwThV framework accomplishes this by
using the ensemble subspace networks over thermo-visible
features.

7 Comparison with the state-of-the-art
methods

Because of the advent of COVID-19 in recent past, little
work has been published in the domain of masked face
recognition. Diaz et al. [22] used deep learning networks for
feature extraction from the periocular region of the masked
faces. The features were then used for classification using
Euclidean distance measure. Li et al. [29] used attention
based network to recognize faces with masks. Li et al. [29]
used spatial and channel attention modules within the deep
learning networks. The attention modules within the deep
learning network forced the network to give attention to
those areas of the input face that could help in generation
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Table 7 Comparison with state-of-the-art methods

Method Accuracy in %

Alexnet [22] 42.55

GoogleNet [22] 43.83

VGG-16 [22] 39.15

ResNet-50 [22] 61.70

ResNet-18 [29] 55.31

ResNet-34 [29] 61.27

ResNet-18 [45] 15.74

ResNet-34 [45] 9.78

MmLwThV framework 70.64

of discriminative features. Another work by Wu et al. [45]
used pyramidal attention module, apart from the spatial and
channel attention modules for masked face recognition.

We implemented the above discussed works on our
CVBL masked face dataset. Since the CVBL masked
dataset is too small with only 21 classes, it cannot be used
to train a deep learning network from scratch. Hence, we
used pretrained deep learning models for our purpose and
retrained them using transfer learning on CVBL masked
face dataset. The fine-tuning of the deep network was
carried for 100 epochs. The results are summarized in
Table 7.

From the Table 7, it can be easily concluded that state-of-
the-art methods perform poorly on the challenging CVBL
masked face dataset. The reason is that the CVBL masked
face dataset is a challenging real world dataset collected
in real world environment. Such a dataset must be large
enough to train a deep learning network properly. However,
since the CVBL masked dataset is small and not enough to
train a deep learning network, the results for masked face
recognition are poor. Hence, we can say that our proposed
method is an efficient, robust and a lightweight method for
masked face recognition in case of a small dataset.

8 Conclusion

For COVID-19 like scenarios, we proposed a novel frame-
work for periocular recognition which is robust and does not
require much data for training. The proposed MmLwThV
framework fuses the thermal and visible features from the
periocular region and classifies it using ensemble sub-
space network. We used the ensemble subspace network
for classification because of its ability to generalize and
ignore the presence of noise due to mask. We tested our
proposed MmLwThV framework on two thermo-visible
datasets, WHU-IIT and CVBL masked dataset. On both the
datasets, MmLwThV framework successfully improved the
results of periocular recognition over the visible or thermal

modality by using thermo-visible fused features and ensem-
ble subspace network. We obtained the highest accuracy of
99.96% on the WHU-IIP dataset using the LBP feature. The
result is comparable to any state-of-the-art face recognition
systems. Again, on unconstrained and challenging CVBL
masked face dataset, the MmLwThV framework success-
fully increases the accuracy of visible periocular recognition
from 68.94% to 70.64%. Moreover, the MmLwThV frame-
work makes the periocular recognition system robust to
noise due to mask. The MmLwThV framework can be cus-
tomized flexibly to work with any other feature other than
LBP for better performance and suitability. The MmLwThV
framework, being lightweight, can be easily deployed on
any mobile phone which has an installed visible and an
infrared camera on it.
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28. Krišto M, Ivasic-Kos M (2018) An overview of thermal face
recognition methods. In: 2018 41St international convention
on information and communication technology, electronics and
microelectronics (MIPRO), pp 1098–1103

29. Li Y, Guo K, Lu Y, Liu L (2021) Cropping and attention based
approach for masked face recognition. Appl Intell 51(5):3012–
3025

30. Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017)
Sphereface: Deep hypersphere embedding for face recognition.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 212–220

31. Moghaddam VH, Hamidzadeh J (2016) New hermite orthogonal
polynomial kernel and combined kernels in support vector
machine classifier. Pattern Recogn 60:921–935

32. Ngan ML, Grother PJ, Hanaoka KK (2020) Ongoing face
recognition vendor test (frvt) part 6a: Face recognition accuracy
with masks using pre-covid-19 algorithms

33. Ojala T, Pietikäinen M, Harwood D (1996) A comparative
study of texture measures with classification based on featured
distributions. Pattern Recognition 29(1):51–59

34. Ryu JW, Kantardzic M, Walgampaya C (2010) Ensemble
classifier based on misclassified streaming data. In: Proc. of the
10th IASTED int. Conf. on artificial intelligence and applications,
austria, pp 347–354

35. Sancen-Plaza A, Contreras-Medina LM, Barranco-Gutiérrez AI,
Villaseñor-Mora C, Martı́nez-nolasco JJ, Padilla-Medina JA
(2020) Facial recognition for drunk people using thermal imaging.
Mathematical Problems in Engineering, 2020

36. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified
embedding for face recognition and clustering. In: Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp 815–823

37. Seal A, Bhattacharjee D, Nasipuri M, Gonzalo-Martin C,
Menasalvas E (2017) Fusion of visible and thermal images using a
directed search method for face recognition. International Journal
of Pattern Recognition and Artificial Intelligence 31(04):1756005

38. Sharma M, Prakash S, Gupta P (2013) An efficient partial
occluded face recognition system. Neurocomputing 116:231–241

39. Sheskin DJ (2003) Handbook of parametric and nonparametric
statistical procedures. Chapman and hall/CRC

40. Singh S, Gyaourova A, Bebis G, Pavlidis I (2004) Infrared
and visible image fusion for face recognition. In: Biometric
technology for human identification, vol 5404. International
Society for Optics and Photonics, pp 585–596

41. Tiong LCO, Lee Y, Teoh ABJ (2019) Periocular recognition in
the wild: Implementation of rgb-oclbcp dual-stream cnn. Appl Sci
9(13):2709

42. Vijayalakshmi A, Raj P (2015) An efficient method to recognize
human faces from video sequences with occlusion. World of
Computer Science & Information Technology Journal 5(2)

43. Wen Y, Liu W, Yang M, Fu Y, Xiang Y, Hu R (2016) Structured
occlusion coding for robust face recognition. Neurocomputing
178:11–24

44. Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative
feature learning approach for deep face recognition. In: European
conference on computer vision. Springer, pp 499–515

45. Wu G (2021) Masked face recognition algorithm for a contactless
distribution cabinet. Math Probl Eng, 2021

46. Yang G, Feng Y, Lu H (2015) Sparse error via reweighted low
rank representation for face recognition with various illumination
and occlusion. Optik 126(24):5376–5380

47. Yuan C, Sun C, Tang X, Liu R (2020) Flgc-fusion gan: an
enhanced fusion gan model by importing fully learnable group
convolution. Math Probl Eng, 2020

48. Zhang Y, Cao G, Wang B, Li X (2019) A novel ensemble method
for k-nearest neighbor. Pattern Recogn 85:13–25

49. Zhao Y, Fu G, Wang H, Zhang S (2020) The fusion of unmatched
infrared and visible images based on generative adversarial
networks. Math Probl Eng, 2020

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ICIF.2007.4408092
https://doi.org/10.23919/BIOSIG.2018.8553348


MmLwThV framework: A masked face...

Nayaneesh Kumar Mishra is
a Ph.D. from the Indian Insti-
tute of Information Technol-
ogy, Allahabad India. His
areas of interest include Image
Processing, Computer Vision,
Biometrics, Deep Learning,
and Pattern Recognition.

Sumit Kumar is a research
scholar at the Indian Insti-
tute of Information Technol-
ogy, Allahabad India. His
areas of interest include Image
Processing, Computer Vision,
Biometrics, Deep Learning,
and Pattern Recognition.

Satish Kumar Singh is an
Associate Professor at the
Department of Information
Technology, Indian Institute
of Information Technology
Allahabad India. He has
about 16+ years of profes-
sional experience in various
capacities. Presently, he
is heading the Computer
Vision and Biometrics Lab
(CVBL) at IIIT Allahabad
from 2015 onwards. His
group is involved in the R&D
of Signal & Image Process-
ing, Vision, and Biometrics

Algorithms and Systems. His areas of interest include Image Pro-
cessing, Computer Vision, Biometrics, Deep Learning, and Pattern
Recognition.


	MmLwThV framework: A masked face...
	Abstract
	Introduction
	Related work
	Datasets
	WHU-IIP dataset
	CVBL masked face recognition dataset

	Ablation study
	Face recognition on masked faces
	Strength of periocular recognition

	The proposed methodology
	Problem 1
	Proposed solution stage 1: Thermo-visible fusion
	Problem 2
	Proposed solution stage 2: Random subspace sampling method and ensemble of networks

	Implementation
	Periocular recognition using MmLwThV framework on WHU-IIP dataset
	Wilcoxon signed-ranks test
	Evaluation of Wilcoxon signed-ranks test on WHU-IIT dataset
	Results analysis and discussion

	Periocular recognition using MmLwThV framework on CVBL masked face recognition dataset
	Evaluation of Wilcoxon signed-ranks test on CVBL masked dataset
	Results analysis and discussion
	Effect of noise on the results of MmLwThV framework
	Complexity of the MmLwThV framework
	Summary of discussion on MmLwThV framework


	Comparison with the state-of-the-art methods
	Conclusion
	Declarations
	References


