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Abstract 24 

Traditional clustering and visualization approaches in human genetics often operate under 25 

frameworks that assume inherent, discrete groupings1,2. These methods can inadvertently 26 

simplify multifaceted relationships, functioning to entrench the idea of typological groups3. 27 

We introduce a network-based pipeline and visualization tool grounded in relational 28 

thinking4, which constructs networks from a variety of genetic similarity metrics. We 29 

identify communities at multiple resolutions, departing from typological models of analysis 30 

and interpretation that categorize individuals into a (predefined) number of sets. We applied 31 

our pipeline to a dataset merged from the 1000 Genomes and Human Genome Diversity 32 

Project5, revealing the limitations of traditional groupings and capturing the complexities 33 

introduced by demographic events and evolutionary processes. This method embraces the 34 

context-specificity of genetic similarities that are salient depending on the question, markers 35 

of interest, and study individuals. Different numbers of communities are revealed depending 36 

on the resolution chosen and metric used, underscoring a fluid spectrum of genetic 37 

relationships and challenging the notion of universal categorization. We provide a web 38 

application (https://sohail-lab.shinyapps.io/GG-NC/) for interactive visualization and 39 

engagement with these intricate genetic landscapes. 40 

Introduction 41 

The idea that population categories correlate with older racial categorizations traces back 42 

to the evolutionary synthesis, where the genetic concept of race was reformulated within the 43 

framework of populations. Dunn and Dobzhansky (1946) asserted that "races can be defined as 44 
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populations which differ in the frequencies of some gene or genes"6. Although this reformulation 45 

intended to catalyze a shift from typological thinking to population thinking, it ultimately 46 

preserved the underlying assumption that human populations represent discrete, stable, natural 47 

categories. Typological concepts persisted in descriptions of human diversity, including in the 48 

UNESCO statements that retained humanity's division into major racial categories7,8. 49 

 50 

High-profile studies, such as those by Rosenberg et al. (2002)1 and the 1000 Genomes 51 

Project (2015)2,5,9–11, have played a pivotal role in structuring our comprehension of human genetic 52 

variation, and also classified populations into discrete blocks along “continental" lines (calling 53 

these super populations) for analysis and visualization purposes, further illustrating the incomplete 54 

transformation from typological constructs. Nonetheless, a growing body of literature has begun 55 

to question the efficacy and implications of such categorical classifications. Critiques by Lewis, et 56 

al. (2023)12 and the National Association of Science, Engineering, and Medicine13, among others, 57 

have pointed out the limitations of using continental labels as population descriptors, arguing that 58 

these categories oversimplify the rich tapestry of human genetic diversity and history. They also 59 

lead to the erroneous belief that these classifications validate a genetic basis for race14–16. 60 

Advancing beyond traditional heuristics 61 

While this consensus against simplistic categorical labels is growing, the methods used to 62 

study genetic variation have lagged. Commonly used model-based approaches to infer population 63 

structure, such as ADMIXTURE17 and STRUCTURE18 require researchers to pre-specify the 64 

number of source populations that are assumed to be in Hardy-Weinberg Equilibrium. Model-free 65 

methods for analyzing population structure, like Principal Component Analysis (PCA), do not 66 
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require a pre-specified number of categories, but are often combined with subjective approaches 67 

for identifying groups such as a sample’s continent of origin.  68 

 69 

In response to the limitations of static, geographically defined labels, the community has 70 

sought out novel approaches and interactive tools that provide a refined understanding of genetic 71 

diversity. From the Geography of Genetic Variants (GGV) browser to the "Visualizing human 72 

genetic diversity" blog, and employing methodologies like FineStructure, topological analysis, and 73 

ancestral recombination graphs, researchers are exploring genetic variation in richer ways that 74 

challenge traditional views19–24. Despite these shifts, STRUCTURE/PCA are still dominant. 75 

Our Contribution: Contextual and Fluid Groupings 76 

In biomedicine, genetic similarity is now widely understood to be more relevant than 77 

(continental) ancestry for interpreting and accounting for genetic structure13. Network approaches 78 

have recently emerged as fruitful for decoding the genetic structures that may underpin disease 79 

risk and other aspects of human health22,25–29. Network-based approaches capture complex 80 

relationships among individuals with minimal assumptions and without need for a pre-specified 81 

number of populations. Further, a suite of established community detection algorithms can identify 82 

subnetworks called communities, grouping genetically similar individuals. Communities are 83 

always connected internally, as well as externally to individuals in other communities. They are 84 

also fluid in the sense that their composition and subsequent connections vary depending on the 85 

resolution considered. Previous implementations of network analyses have primarily focused on 86 

specific aspects, like demonstrating the feasibility of network approaches26,28, or leveraging 87 

networks to identify hierarchical structure25.  88 
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 89 

We present a novel framework called the Global Genetic Network Communities pipeline 90 

and browser. It centers two key aspects of network analysis.  First, it allows for great flexibility in 91 

the definition of genetic similarity, both the metric used and which data are used to compute it. 92 

Second, the detection of communities at varying resolutions can be achieved using any suitable 93 

community detection method. Both of these aspects facilitate more dynamic data-driven, 94 

assumption-free analyses and visualizations of genetic structure suited to the particular questions 95 

targeted in a study. These groupings convey the landscape of genetic diversity without fixed or 96 

geographically bound labels, thereby challenging oversimplified classifications and fostering a 97 

more interconnected and fluid view of genetic diversity that aligns with the realities of human 98 

evolution and migration.  99 
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Results 100 

Flexible community detection with GG-NC 101 

 102 

Figure 1. Overview of the Global Genetic Network Communities (GG-NC) computational pipeline. 103 

GG-NC is grounded in relational thinking in contrast to typological thinking4. Communities are detected 104 

on genetic similarity networks at multiple resolutions. Across these resolution values, our pipeline 105 

computes the stability of the detected communities, builds networks of the detected communities, and 106 

visualizes the detected communities geographically on a world map. 107 

 108 

Our Global Genetic Network Communities (GG-NC) pipeline accepts diverse genetic similarity 109 

metrics (Figure 1 and S1) to construct networks which represent individuals’ genomes as nodes 110 
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and genetic similarity as edge weights. Genetic similarity can be defined in different ways (e.g. 111 

identity-by-descent sharing, and kinship), with different sets of variants (e.g. common vs rare), or 112 

based on different parts of the genome (genome, exome, or trait-specific variants), allowing users 113 

flexibility in probing genetic similarity as a function of evolutionary timescale and functional 114 

importance. Our pipeline uses the Louvain algorithm30,31 to infer modules or communities in these 115 

networks at different resolutions25,32. However, we also implement the Leiden algorithm, which 116 

has some superior properties33 (see methods).  117 

 118 

No single metric or resolution value is considered correct;  instead, we explore the effect of the 119 

parameter space on the communities detected using resolution plots (Figure 2), which summarize 120 

the communities detected across a range of resolutions. In a resolution plot, each vertical line 121 

represents the same individual allowing us to observe their changing community membership and 122 

how communities break apart into smaller ones as the resolution value is increased.  123 

 124 

There is an inherent stochasticity to community detection algorithms, and therefore, the 125 

community that each individual belongs to at a given resolution may shift across different runs. 126 

To allow users to assess the stability of the communities detected at a given resolution value, the 127 

pipeline computes the Adjusted Rand Index (ARI) and Normalized Information Distance (NID) 128 

(see methods).  129 

 130 

Once communities are detected, we emphasize the continuum of relationships among them by 131 

creating community networks that represent communities as single nodes and the density of the 132 
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connection between them as edges, with the size of the nodes being proportional to the size of the 133 

community.  134 

 135 

Finally, we visualize the geographic distribution of the detected communities at multiple 136 

resolutions using a web browser that we developed. Our results are available through the browser 137 

(https://sohail-lab.shinyapps.io/GG-NC/) and our computational pipeline is flexible and 138 

accessible, allowing extensions to any new dataset (https://github.com/mariajpalma/GG-NC).  139 

 140 

To illustrate our approach, we computed the pairwise genetic similarity among 4,150 individuals 141 

from the harmonized 1000 genomes project and Human Genome Diversity Project (HGDP) 142 

dataset5 using four different metrics: (i) the Genetic Relationship Matrix (GRM) using rare variants 143 

(ii) GRM using common variants, (iii) Correlation of PC scores (PC), and (iv) sharing of identity-144 

by-descent (IBD) segments (Figure S2 and Supplementary Tables 1-3).  The use of these different 145 

inputs enables us to probe genetic similarity at different evolutionary timescales34,35. 146 
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Genetic communities beyond continental groups 147 

 148 

Figure 2.  Resolution plot for IBD results and associated individual and community networks, along 149 

with the geographic distribution of the communities. The central plot is the Resolution plot showing the 150 

results of the Louvain algorithm at 50 resolution values (see results for Leiden algorithm in Figure S3). 151 

Communities that do not have more than 6 members in any resolution are colored in white. The left panels 152 

display results for a resolution value of -2, and the right panel shows results at resolution -0.041. Each side 153 

includes (from top to bottom) the individual network, the community network, and the geographic 154 

distribution of the communities. The individual network is formed of 2,977 individuals represented by 155 

nodes (280 outlier samples were excluded from the network for visualization purposes, see methods and 156 

Figure S4) in which nodes are colored according to the community membership in the resolution plot. 157 

Community network plots present communities as nodes and the density of the connection among them as 158 

edges. In the maps, we show the 1000G project and HGDP cohorts using pie charts placed at sampling 159 

locations. Each pie chart represents the community membership of the individuals within each cohort. 160 
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Finally, a color-coding scheme was implemented where genetically “closer” communities are represented 161 

by more similar colors (see methods and Figures S5 and S6). 162 

 163 

Our approach allows the user to examine groups from multiple “viewpoints” providing insights 164 

into genetic structure that is highly dynamic. Our results show that there is no clear basis to 165 

structure individuals in genetic studies primarily by continental origin.  We demonstrate this in 166 

Figures 2, 3, and 4 using community detection on sharing of IBD segments longer than 5cM which 167 

is useful in studying recent demographic history and fine-scale genetic structure34 (results from 168 

other metrics in Figure 5 and the supplement (Figures S7 and S8). At a low resolution value of -2, 169 

representing a “zoomed out” view of the network structure, five major communities emerge 170 

(Figure 2). The largest comprises 1595 individuals (shown in teal) with a wide geographic 171 

distribution including individuals from the Americas, Europe, and Africa. The other two 172 

communities are colored in deep rose and bright green respectively with around 600 members 173 

each. The deep rose community includes individuals from East Asia and Pima individuals in 174 

Mexico while the bright green community is mainly formed by individuals from Central South 175 

Asia, including Gujarati Indians in Texas, Indian Telugu in the UK, and Sri Lankans in the UK. A 176 

community with 95 individuals (colored in orchid) is formed of Palestinians, Bedouins, Papuans, 177 

and some French individuals. The smallest community of 50 individuals (shown in green grass) 178 

groups together Hazara and Druze individuals. Community networks show the relationships that 179 

exist among these communities, for instance, showing a closer relationship between bright green 180 

and teal communities than the bright green and deep rose communities.  181 

 182 

At a higher resolution of -0.041, the number of communities increases to 34 (Figure 2). Some 183 

cohorts from geographically close regions such as Pima and Maya indigenous groups in Mexico 184 
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form distinct communities with each other. In contrast, individuals from different continental 185 

groups remain in the same community such as Mexicans in Los Angeles, Peruvians in Lima, 186 

Colombians in Colombia, Karitinian in Brazil, Iberian populations in Spain, Basque in France, and 187 

French in France. Importantly, clear substructures appear within continental groups, even before 188 

continental groups split from each other. For example, individuals from Africa are grouped into 7 189 

communities. Afro-descendant individuals in the Americas are grouped with four of these 190 

communities showing the diversity of the genetic ancestries that contributed to the Afro-191 

descendant groups. Substructure within countries is also evident, for example, individuals in 192 

Pakistan are mainly grouped into 4 communities: Makrani, Barahui, and the majority of Sindhi 193 

and Balochi individuals (as well as a few Pathan and Punjabi individuals) belong to one of these 194 

communities, all Hazara individuals are part of a different community along with a few French 195 

individuals, Burusho individuals form the third community, and the majority of Punjabi and Pathan 196 

individuals are grouped into the fourth community.  197 

 198 

We further ask how stable our communities are at each detected resolution, and how they compare 199 

to the standard continental labels used in many human population genetic studies. To answer this, 200 

we estimated the pairwise Adjusted Rand Index (ARI) value for 100 replicates to assess “stability” 201 

of detected communities at every resolution (Figure 3, see Figures S9 and S10, supplementary text 202 

and methods). We show that at lower resolutions, the median ARI of the communities detected 203 

through the GG-NC pipeline is low with a high variance, suggesting that community membership 204 

is highly unstable across runs even though some individuals might be consistently grouped 205 

together in the same community. Stability increases at higher resolution values, peaking after R=0 206 

with a low variance, suggesting more consistent grouping of individuals, before decreasing again 207 

slightly at higher resolution values where more and more communities are observed. We also 208 
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formally compare continental “super population” labels and the communities detected in the 209 

network across all resolution values for individuals from the HGDP and 1000G datasets, answering 210 

some key questions about their correspondence. Is there a point where continental labels are 211 

equivalent to the network communities? No, at every resolution, the communities identified on the 212 

IBD network differ from the superpopulations of the 1000 Genomes Project and HGDP (median 213 

ARI communities vs. super population <= 0.71). Even at the resolution (R=-1.34) where we 214 

observe the highest concordance between super populations and communities detected (median 215 

ARI = 0.71), the variance of both ARI distributions is large suggesting a lack of consistency in 216 

community membership, and we detected 12-14 communities using GG-NC compared to only 7 217 

superpopulations (Figure S11). Are the network communities detected similar to continental 218 

groups at a majority of resolution values? No, at resolutions greater than -1,  the similarity between 219 

super populations and network communities decreases linearly. In fact, the network communities 220 

are more stable amongst themselves than they are with super populations at every resolution 221 

(Supplementary Table 4, Wilcoxon test). Given this, the standard use of continental groups to 222 

organize or visualize individuals in genetic studies seems poorly suited if the goal is to accurately 223 

and faithfully represent patterns of genetic similarity. Instead, the communities detected based on 224 

genetic relationships transcend continental boundaries at low and high resolutions. 225 

  226 

 227 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2024. ; https://doi.org/10.1101/2024.12.11.627824doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.11.627824
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 228 

Figure 3. Communities detected in the IBD-network are fairly stable across resolutions, and different 229 

from superpopulations from 1000G and HGDP.  The x-axis shows the resolution value. The y-axis 230 

shows the ARI values.  ARI values closer to 1 indicate more individuals falling in the same communities 231 

across runs at a given resolution value. Purple boxplots summarize the comparison of community detection 232 

results across 100 independent runs at each resolution (see methods). Green boxplots represent the 233 

comparison between the independent runs and the super populations. In this case, ARI values closer to one 234 

indicate greater similarity between the detected communities and the superpopulations. Boxplot elements: 235 

center line, median; box limits, upper and lower quartiles; whiskers, 1.58x interquartile range; points, 236 

outliers. The same analysis was conducted for GRM and PCA networks (supplementary figures S12 and 237 

S13 (NID)). 238 
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Comparisons to traditional approaches 239 

 240 

Figure 4. Using communities derived from GG-NC gives different insights than conventional 241 

population and super population groupings. Each column shows the same type of information but using 242 

different groups illustrated with different colors. In column A, the colors come from the standard super 243 

populations (7 groups; Supplementary Table 2). In columns B and C, they come from the communities 244 

detected at different resolution levels: -2, where 5 communities are detected,  and at -0.041 where 34 245 

communities are detected. At the top of each column is a PCA plot, created from the jointly called dataset 246 

of 1000G and HGDP (2,977 samples included in the shown networks). At the bottom right of each column 247 

is an ADMIXTURE plot using the same data and K = 13 (lowest cross-validation error), but with 248 

individuals sorted by the different color grouping, according to the stacked bar chart at bottom left. 249 
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Community membership at the two different resolutions gives different insights than the conventionally 250 

deployed superpopulations. 251 

 252 

A comparison of our approach with existing approaches such as ADMIXTURE and PCA further 253 

illustrates the dynamic complexity of human genetic variation. In particular, IBD-based data-254 

driven clustering does not recapitulate the clean super-populations that the 1000 Genomes and 255 

HGDP studies have used to frame human genetic variation. To show this, we carried out 256 

ADMIXTURE (K = 13 with the lowest cross-validation error) and PCA (first 20 PCs) on the same 257 

dataset (n=2,977; Figure 4, Figures S14-16). First, we grouped individuals according to pre-258 

defined continental categories (super populations) from the 1000G and HGDP studies, and colored 259 

PCA results according to these continental labels (Figure 4A). Alternatively, individuals in the 260 

admixture plot were grouped according to the 5 communities detected at resolution value -2 261 

(Figure 4B), and the 34 communities found at resolution value -0.041 (Figure 4C) using the GG-262 

NC pipeline based on IBD data. 263 

 264 

The network community-based analysis reveals many levels of structure. For example, we observe 265 

that individuals from the Middle East (purple color in Figure 4A) are split into three different 266 

communities (Figure 4B) at a resolution of -2. These communities also include individuals from 267 

other continental groups (Figure S17). A distinct substructure is seen when increasing the 268 

resolution to -0.041, with individuals belonging to the same community nevertheless clustering 269 

closely in PC space (Figures 4C and S18).  270 

 271 

Furthermore, we show that there is no direct relationship between genetic similarity (reflected by 272 

the IBD-based communities) and ADMIXTURE components. We observe individuals with 273 
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different ADMIXTURE components grouped within the same community, as seen in the dark 274 

purple community (Figures 4C and S19). This community includes individuals from diverse 275 

cohorts, such as the Iberian Population in Spain, individuals with Mexican ancestry in Los 276 

Angeles, Basque in France, and Peruvians in Lima, among others.  277 

 278 

Conversely, distinctive communities exhibit similar proportions of ADMIXTURE components. 279 

For instance, Lime green, Bright pink, and Orange communities at resolution value -0.041 share 280 

similar proportions of these components (Figures 4C and S19). These communities also occupy 281 

similar or overlapping positions in PC space (Figure 4C). The lime green community is 282 

predominantly composed of Gujarati Indiviand in Houston, while the pink community is primarily 283 

formed from Indian Telugu in the UK, and the orange community is composed of Bengali 284 

individuals in Bangladesh. Another example is that individuals with a high proportion of the red 285 

Admixture component are distributed in three different communities (Figures 4C and S19).  286 

 287 

We show how network-based community detection captures genetic similarities that transcend the 288 

sharing of ancestry proxies as captured through an ADMIXTURE approach, primarily highlighting 289 

that communities emerging from population-based thinking (GG-NC) do not neatly fall into 290 

continental ancestry categories. A key issue/limitation with standard ADMIXTURE approaches is 291 

that they assume the existence of otherwise "pure" types. Thus, they remain confined to a 292 

typological or continental framework.  293 

 294 
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Metric choice impacts detected structure 295 

 296 

Figure 5. Resolution plots from networks using different definitions of genetic similarity and different 297 

subsets of genetic variants reveal different aspects of genetic relatedness.  298 

Resolution plots summarize community detection results at 50 resolution values; Communities that do not 299 

have more than 6 members in any resolution are colored in white. The x-axis represents the individuals and 300 

the y-axis corresponds to the resolution value (see results for Leiden algorithm in Figure S20).  A) 301 

Resolution plot for the network based on the Genetic Relationship Matrix (GRM) estimated on rare variants 302 

(n=4,150). B) Resolution plot for the network based on the GRM estimated on common variants (n=4,150). 303 

C) Resolution plot for the network based on Principal Component Analysis (PCA) correlation (n=4,119).  304 

Resolution plots for trait-PCA-based networks using only independent variants in: D)  Type 2 diabetes 305 

associated genes (n= 3,199; 15 genes)36. E) Skin pigmentation associated genes (n=3,214; 38 genes)37. F) 306 

Genes associated with or inferred to be under natural selection for Altitude adaptation (n=3,281; 7 genes)38.   307 
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 308 

Another layer of complexity in the inference and visualization of human genetic diversity is the 309 

information used to specify genetic similarity. To illustrate, we applied our community detection 310 

pipeline using different measures of genetic similarity (Figure 5). We show that the number and 311 

size of communities detected are determined both by the input genetic metric and the subset of 312 

variants used. For example, in the resolution plot based on GRM using common variants (GRM 313 

common) (Figure 5B), we observe fewer larger communities before they eventually fragment into 314 

many smaller ones (<6 members),  a pattern also observed in the resolution plot based on PCA. In 315 

general PCA and GRM common produce more communities at higher resolutions; however the 316 

size of these communities (<6) limits their utility for analysis and reflects an abrupt fragmentation 317 

of larger groups. In contrast, in the resolution plot based on GRM using rare variants (GRM rare) 318 

(Figure 5A), we observe a greater number of intermediate-sized communities, which better capture 319 

finer genetic structure (Figure S21). This generally makes sense since rare variants are more recent 320 

in origin and therefore, more useful for the study of fine-scale structure than common variants 321 

which are older in origin35. 322 

 323 

Furthermore the resolution plots for PCA, GRM common, and GRM rare all show that at the 324 

lowest explored resolution value, two distinct communities emerge, separating Sub Saharan 325 

African individuals from the rest of the human groups. The first three communities detected on the 326 

network generated from PCA and GRM common are almost identical, dividing individuals into 327 

three major geographic areas: Sub-Saharan Africa (including Afrodecendent individuals), Europe 328 

and Central South Asia (excluding some Hazara individuals), and East Asia and the Americas. In 329 

contrast, in the GRM rare network, a community composed of individuals from Oceania is detected 330 

after the division of Sub-Saharan Africa and the rest of the world (Figure S21). This community 331 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2024. ; https://doi.org/10.1101/2024.12.11.627824doi: bioRxiv preprint 

https://paperpile.com/c/yNnLYW/EbCgD
https://doi.org/10.1101/2024.12.11.627824
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

is first detected at higher resolutions of 0.531 and 0.612 using GRM common and PCA networks 332 

respectively. 333 

 334 

While increasing the resolution value, a high proportion of Hazara individuals from Pakistan and 335 

Uygur individuals from China form their own community when analyzing GRM common 336 

(R=0.449) (Figure S22) and PCA networks (R=0.531) (Figure S23). Hazara and Uygur individuals 337 

are also grouped when analyzing GRM rare networks, along with individuals sampled in China 338 

(Xibo, Mongolian, Oroquen, Daur, Hezheh) and Yakut individuals in Siberia. These findings 339 

corroborate previous studies on Hazara and Uygur being genetically close39. Despite the 340 

similarities among PCA and GRM common results, some communities such as Bedui in Negev 341 

and Druzel in Camel were detected by PCA and GRM rare networks, but not in the GRM common 342 

network. 343 

 344 

Further, not all genes or regions of the genome reflect the same evolutionary history; therefore the 345 

genetic similarity of individuals will not be identical for all loci. We highlight that the relevant 346 

communities for a gene or a given set of genes (related to a phenotype of interest) may differ from 347 

one set of genes to another. The groupings most relevant for genetic epidemiology depend on the 348 

specific sets of genetic loci and the trait under consideration. To demonstrate this, we analyze sets 349 

of specific genes involved in Type 2 Diabetes, skin pigmentation, or altitude adaptation at diverse 350 

resolutions using PCA-based networks (Figure 5, d-f, Supplementary text, Supplementary Figures 351 

S24-S27 and Extended Data Tables 1-3). Similar to Mohsen et al40, we believe that this approach 352 

can allow users to explore the community structure relevant for genetic variation associated with 353 

their trait of interest, to help identify trait-specific variant clustering and epidemiology that may 354 

not relate to continental categories.  355 
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 356 

We tested and showed that, as for the IBD networks, network communities detected from any of 357 

these metrics or set of variants are more stable amongst themselves than they are with super 358 

populations at every resolution (Figures S12-13, S28, and S29, Supplementary Tables 5-10, 359 

Wilcoxon test). Further, their concordance with super populations varies significantly over the 360 

resolution range. As would be expected, networks based on PCA on all variants, or on PCA on 361 

variants associated with skin pigmentation give the highest concordance with super populations at 362 

their peak value compared to other networks (Figures S11 and S30; maximum median 363 

ARI(genome-wide PCA)=0.904 and maximum median ARI(PCA on skin pigmentation associated 364 

variants)=0.887 for comparison of network communities with super populations). This makes 365 

sense as, (1) PCA on common variants best captures broad-scale patterns of variation especially 366 

when combined with sparse sampling as in the 1000 Genomes and HGDP joint dataset, whereas 367 

IBD or GRM-rare networks capture more fine-scale structure,  and (2) race as a social construct 368 

was primarily created based on skin color41. Nevertheless, even at the resolution of their maximum 369 

concordance with super populations, the network based on PCA on common variants results in 8-370 

11 communities, and the network based on PCA on skin pigmentation variants results in 10-12 371 

communities, in comparison to 7 super populations. Overall, this work reinforces the idea that the 372 

genetic similarity between two individuals can be measured in different ways capturing different 373 

aspects of genomic variation, and that any scheme to cluster individuals based on genetic similarity 374 

including for biomedical purposes must take this into account.  375 
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Discussion 376 

Our network-based approach captures and reflects the fact that there are no universally valid or 377 

relevant groupings of genetic variation. When different genetic similarity metrics are used (e.g. 378 

IBD, rare-GRM, common-GRM, and PCA), each contains unique patterns of genetic relatedness 379 

that were not well-captured by either traditional continental divisions or standard approaches like 380 

ADMIXTURE or PCA. Our analysis of network communities based on trait-related variants 381 

further underlined that no single representation of human genetic ancestry captures genetic patterns 382 

relevant for all traits. Collectively, our study supports a shift away from traditional typologies 383 

towards a fluid, context-specific understanding of genetic diversity. Instead of viewing genetic 384 

groups as static descriptors of the world, our findings argue for an approach where decisions on 385 

how to represent genetic relationships and groups are shaped by the particular context and purpose 386 

of a study42. 387 

 388 

Beyond simply challenging the use of conventional genetic groupings, our contribution is the 389 

flexibility of the GG-NC pipeline enabling multiple operationalizations of genetic similarity by 390 

using networks defined i) using any number of similarity metrics, ii) on different subsets of genetic 391 

data (e.g. just constrained to relevant to specific traits) and iii) probing these networks at multiple 392 

resolutions.  393 

 394 

GG-NC will be useful as the starting point for research projects in genetic history or biomedicine. 395 

Researchers can use the GG-NC pipeline to quantitatively and qualitatively analyze and visualize 396 

the genetic structure in their dataset at different resolutions, and obtain graphics summarizing the 397 

multi-scale complexity of genetic variation in their dataset. They can also obtain quantitative 398 
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measures of the stability of the genetic structure at any given resolution using a specific similarity 399 

metric of choice. In this way, the user can navigate different evolutionary timescales to view 400 

genetic structure from multiple “viewpoints” with ease and flexibility, before deciding upon a 401 

particular metric or resolution relevant to their question. GG-NC allows researchers to analyze the 402 

genetic structure of study samples on their own or in combination with reference datasets (e.g. 403 

1000 Genomes and HGDP, or other cohorts sampled at finer-scales), which can be useful in 404 

studying genetic ancestries when detailed demographic information is not available. GG-NC will 405 

determine the reference individuals that study samples cluster with at different resolutions, and 406 

allow communities for specific research questions to be identified. Instead of using ancestry, 407 

continental labels, or ad-hoc clusters, we affirm that researchers should describe the genetic 408 

structure of their study samples at different resolutions and provide a justification for why they 409 

have chosen to use a particular resolution value. Future work should assess applications of GG-410 

NC to study genetic structure in other organisms, as well as undertake theoretical analyses to relate 411 

resolutions for different similarity metrics to evolutionary timescales.   412 

 413 

GG-NC can further serve projects interested in detecting genetic variants that are highly 414 

differentiated across groups due to selection, demographic events, or/and association with a 415 

disease or trait. In this case,  researchers can use the pipeline to determine the relevant clusters, 416 

which can then be used as the unit/population for selection analysis, for example, with population 417 

branch statistics43, or as cohorts for association analysis that can then be meta-analyzed. The 418 

inferred communities can also simply be used to understand trait/disease variation among different 419 

communities44 or/and assess underlying SNP differentiation. This would have clear value for 420 

public health and precision medicine, without the need to resort to continental groups. Notably, 421 
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the GG-NC enables researchers to analyze genetic structure at varying resolutions with ease, 422 

allowing one to understand at which scale the genetic community structure became relevant for a 423 

particular disease or SNP differentiation, and helping researchers to identify communities that 424 

share or carry unique genetic risk for a given disease or trait44. 425 

 426 

The GG-NC pipeline and browser also provide an important educational resource that can be used 427 

in courses and workshops. Further, it is a resource that the public can use to develop an 428 

understanding of genetic diversity. In these ways, it can be a tool against white supremacists and 429 

their weaponization of genetic science towards a racist agenda.  430 

 431 

Our approach enables researchers and the general public to shift to a more accurate, non-432 

essentialist perspective on human diversity. It provides new tools and terminologies to foster more 433 

insightful, ethical, and inclusive explorations of our shared humanity and the relevance of genetic 434 

variation to our lives.   435 
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Figure Captions 531 

Figure 1. Overview of the Global Genetic Network Communities (GG-NC) computational 532 

pipeline. GG-NC is grounded in relational thinking in contrast to typological thinking4. 533 

Communities are detected on genetic similarity networks at multiple resolutions. Across these 534 

resolution values, our pipeline computes the stability of the detected communities, builds 535 

networks of the detected communities, and visualizes the detected communities geographically 536 

on a world map.  537 

 538 

Figure 2.  Resolution plot for IBD results and associated individual and community networks, 539 

along with the geographic distribution of the communities. The central plot is the Resolution 540 

plot showing the results of the Louvain algorithm at 50 resolution values (see results for Leiden 541 

algorithm in Figure S3). Communities that do not have more than 6 members in any resolution are 542 

colored in white. The left panels display results for a resolution value of -2, and the right panel 543 

shows results at resolution -0.041. Each side includes (from top to bottom) the individual network, 544 

the community network, and the geographic distribution of the communities. The individual 545 

network is formed of 2,977 individuals represented by nodes (280 outlier samples were excluded 546 

from the network for visualization purposes, see methods and Figure S4) in which nodes are 547 

colored according to the community membership in the resolution plot. Community network plots 548 

present communities as nodes and the density of the connection among them as edges. In the maps, 549 

we show the 1000G project and HGDP cohorts using pie charts placed at sampling locations. Each 550 

pie chart represents the community membership of the individuals within each cohort. Finally, a 551 
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color-coding scheme was implemented where genetically “closer” communities are represented 552 

by more similar colors (see methods and Figures S5 and S6). 553 

 554 

Figure 3. Communities detected in the IBD-network are fairly stable across resolutions, and 555 

different from superpopulations from 1000G and HGDP.  The x-axis shows the resolution 556 

value. ARI values closer to 1 indicate more individuals falling in the same communities across 557 

runs at a given resolution value. The y-axis shows the ARI values.  Purple boxplots summarize the 558 

comparison of community detection results across 100 independent runs at each resolution (see 559 

methods). Green boxplots represent the comparison between the independent runs and the super 560 

populations. In this case, ARI values closer to one indicate greater similarity between the detected 561 

communities and the superpopulations. Boxplot elements: center line, median; box limits, upper 562 

and lower quartiles; whiskers, 1.58x interquartile range; points, outliers. The same analysis was 563 

conducted for GRM and PCA networks (supplementary figures S12 and S13 (NID)). 564 

 565 

Figure 4. Using communities derived from GG-NC gives different insights than conventional 566 

population and super population groupings. Each column shows the same type of information 567 

but using different groups illustrated with different colors. In column A, the colors come from the 568 

standard super populations (7 groups; Supplementary Table 2). In columns B and C, they come 569 

from the communities detected at different resolution levels: -2, where 5 communities are detected,  570 

and at -0.041 where 34 communities are detected. At the top of each column is a PCA plot, created 571 

from the jointly called dataset of 1000G and HGDP (2,977 samples included in the shown 572 

networks). At the bottom right of each column is an ADMIXTURE plot using the same data and 573 

K = 13 (lowest cross-validation error), but with individuals sorted by the different color grouping, 574 
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according to the stacked bar chart at bottom left. Community membership at the two different 575 

resolutions gives different insights than the conventionally deployed superpopulations. 576 

 577 

Figure 5. Resolution plots from networks using different definitions of genetic similarity and 578 

different subsets of genetic variants reveal different aspects of genetic relatedness.  579 

Resolution plots summarize community detection results at 50 resolution values; Communities 580 

that do not have more than 6 members in any resolution are colored in white. The x-axis represents 581 

the individuals and the y-axis corresponds to the resolution value (see results for Leiden algorithm 582 

in Figure S20).  A) Resolution plot for the network based on the Genetic Relationship Matrix 583 

(GRM) estimated on rare variants (n=4,150). B) Resolution plot for the network based on the GRM 584 

estimated on common variants (n=4,150). C) Resolution plot for the network based on Principal 585 

Component Analysis (PCA) correlation (n=4,119).  Resolution plots for trait-PCA-based networks 586 

using only independent variants in: D)  Type 2 diabetes associated genes (n= 3,199; 15 genes)36. 587 

E) Skin pigmentation associated genes (n=3,214; 38 genes)37. F) Genes associated with or inferred 588 

to be under natural selection for Altitude adaptation (n=3,281; 7 genes)38.    589 
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Materials and Methods 590 

Dataset 591 

We applied our pipeline to the recently published jointly called reference panel of the 1000 592 

Genomes (1KGP) and HGDP projects5.   We downloaded the set of variants jointly called on the 593 

HGDP+1KGP data and the metadata information from gnomAD   594 

(https://gnomad.broadinstitute.org/downloads#v3-hgdp-1kg) server into our HPC Kayab server. 595 

Sampling locations were obtained from https://www.internationalgenome.org/data-596 

portal/population. 597 

Global Genetic Network Communities Pipeline 598 

Building Individual network.  599 

We developed a computational pipeline in R (Figure 1 and S1) that uses the package igraph45 to 600 

build a network from an adjacency matrix or directly from a data frame. The matrices can be 601 

obtained directly from the Genetic Relationship Matrix (GRM), from the pairwise correlation of 602 

principal components (PCs), or from the total length of the genome shared identical-by-descent 603 

(IBD) between pairs of individuals. PCA and GRM can be further computed from different sets of 604 

genetic variants (e.g. common or rare).  605 

 606 

Identity by descent inference. Pairwise long IBD (>5cM) sharing was estimated from 607 

released phased data using Germline246 using autosomal biallelic SNPs with MAF > 0.01 for IBD 608 

estimation. We removed variants with more than 10% missing data and samples with more than 609 
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10% missingness. Then, for each pair of individuals, we computed the total length of the shared 610 

segments between two individuals as the input for network construction and community detection. 611 

We removed related individuals using the list provided in the metadata from the jointly called.  612 

 613 

GRM estimation. The Genetic Relationship Matrix (GRM) was estimated using GCTA 614 

(v1.94.1)47 using autosomal biallelic SNPs.  We removed variants with more than 10% of 615 

missing data and those failing the Hardy-Weinberg equilibrium test (p-value < 1e-10). We also 616 

removed samples with more than 10% missingness (No samples were removed). We pruned 617 

variants for linkage disequilibrium in Plink (v1.90b6.21)48 (with  --indep-pairwise 50, 5, 0.2). 618 

We estimated GRM matrices separately from common (MAF > 1%), and rare (MAF < 1%) 619 

variants, excluding singletons, referring to them as common- and rare-GRM, respectively.  620 

  621 

PCA correlation. The PCs were made available as part of the metadata in the joint  1KGP 622 

+ HGDP variant call set (https://gnomad.broadinstitute.org/help/hgdp-1kg-annotations). We used 623 

the first 20 PCs to compute pairwise genetic similarity (Pearson correlation) between individuals, 624 

setting negative correlations to zero. 625 

 626 

Our pipeline outputs a graphic representation of the built network with different features. We used 627 

the Fruchterman-Reingold layer to aid in the visualization of dense data points in the network49. 628 

This algorithm emulates a particle system, where the vertices represent charged particles that repel 629 

each other, while the edges represent springs that attract the connected vertices. Through multiple 630 

iterations, the algorithm fine-tunes and provides the positions of the vertices to attain a state of 631 

equilibrium49. 632 
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Louvain Algorithm for Community Detection.  633 

For each genetic metric, we used the Louvain algorithm31 for community detection. The algorithm 634 

partitions a network into communities, or modules, which are groups of nodes that are more 635 

densely connected than would be expected by chance. This algorithm employs a two-phase 636 

iterative approach to determine the community structure that maximizes modularity, which 637 

measures the level of connectivity within these communities. In the initial iteration, each 638 

individual is considered a community. Then, during phase one, it evaluates whether moving 639 

individuals from one community to another improves modularity. In phase two, it constructs a new 640 

network where the communities identified in phase one are treated as individuals. These phases 641 

are repeated until the modularity cannot be further improved. 642 

 643 

We implemented the algorithm using the igraph package in R45. In this implementation 644 

modularity50 is defined as: 645 

𝑄 =  
1

2𝑚
𝛴𝑖,𝑗(𝐴𝑖𝑗 −  𝛾

𝑘𝑖⋅𝑘𝑗

2𝑚
)𝛿(𝑐𝑖 , 𝑐𝑗)           (1) 646 

Where 𝑚 is the weight of all network links, 𝐴𝑖𝑗 is the sum of the weights of links that connect the 647 

node 𝑖 with the node 𝑗, 𝑘𝑖  is the sum of the weights of links in node 𝑖, 𝑘𝑗 is the sum of the weights 648 

of links in node 𝑗, 𝛴𝑖,𝑗 is the sum of the weights for all pairs of nodes 𝑖 and 𝑗. 649 

 650 

In this equation, 𝐴𝑖𝑗 reflects the density of interactions between the pair of nodes 𝑖 and 𝑗, and 
𝑘𝑖⋅𝑘𝑗

2𝑚
 651 

is the expected density by chance. Thus, the 𝛾 parameter determines the density threshold for nodes 652 

to be reassigned to communities identified by the algorithm. A smaller gamma yields a small 653 

number of larger communities due to many nodes exceeding the density threshold. In contrast, a 654 
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higher gamma leads to more, but smaller in size, communities, as only the denser nodes can surpass 655 

the density threshold. When the gamma parameter equals 1, the equation transforms into the 656 

standard equation for modularity. 657 

 658 

The Louvain algorithm optimizes modularity, but also suffers from the resolution limit, making it 659 

challenging to detect smaller communities within the network33,51. To properly address these 660 

issues, we also implemented the Leiden algorithm in the GG-NC pipeline, which is not affected 661 

by the resolution limit (Figures S3 and S20)30. Louvain can also find poorly connected 662 

communities, and in the worst-case scenario, communities could be internally disconnected33. The 663 

Leiden algorithm overcomes this limitation by adding an extra step (refinement of the partition) to 664 

guarantee internally connected communities. 665 

Resolution plot based on community detection at multiple resolutions  666 

We applied the Louvian community detection algorithm (described in more detail above)  – a 667 

heuristic method that is based on modularity optimization31. We defined the exploration space of 668 

this parameter as a logarithmic space from -2 to 2 considering 50 steps. We refer to log_10(gamma) 669 

as the resolution value. The membership of the individuals to the emergent communities at each 670 

resolution value can be represented in a ‘resolution plot’ (Figure 2), which shows how individuals 671 

change their membership across the range of resolution values. Such a visualization is inspired 672 

from its prior use to visualize protein-protein interaction networks32. It is important to note that the 673 

nomenclature of the communities is maintained across resolution values and nodes are reordered 674 

on the x-axis to try to maintain the continuity of the communities as much as possible, using a 675 

convention for labeling communities described in Lewis et al (2010)32. For example, community 676 
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4 will be labeled and colored the same across resolutions, also individuals belonging to this 677 

community will be ordered together on the x-axis. Communities that do not have more than 6 678 

members in any resolution are colored in white in the Resolution Plot (the smallest cohort we 679 

analyzed has 6 individuals). 680 

 681 

Assess community stability at each resolution and compare with super 682 

population structure 683 

The pipeline can compute two measures of ‘stability’, which describes the extent to which 684 

individual memberships in communities are stable for a given resolution value. To do so we ran 685 

the Louvain algorithm 100 times for each resolution value and compared the communities obtained 686 

pairwise. We used the Adjusted Rand Index (ARI) and the Normalized Information Distance 687 

(NID) metrics. Additionally, we compared the 100 runs for each resolution against the super 688 

populations using the same metrics. 689 

 690 

We implemented the functions NID() and ARI() in the aricode R package, both highly efficient 691 

for their respective purposes. However, specific considerations arise in trivial cases that require 692 

attention: 693 

 694 

For NID(), when each individual in both partitions form their own community, the output is “0”. 695 

When all individuals in both partitions belong to a single community, the result is “NaN”. For 696 

ARI(), when each individual in both objects forms their own community, the function produces 697 

“NaN”. When all individuals in both partitions belong to a single community, the output is “1”.  698 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2024. ; https://doi.org/10.1101/2024.12.11.627824doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.11.627824
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 699 

Normalized information distance (NID). To evaluate the stability of community 700 

formation using the Louvain Algorithm method, we employed the Normalized Information 701 

Distance (NID)52, as a measure to quantify the resemblance in the distribution of individuals across 702 

communities, using the function NID() in the aricode R package53. This measure, based on 703 

information entropy, was calculated based on 100 iterations of the algorithm for each resolution 704 

value. 705 

The general formula for the NID between two objects 𝑋 and 𝑌 is expressed as:  706 

𝑁𝐼𝐷(𝑋, 𝑌)  =  1 −  
𝐼(𝑌,𝑋)

𝐻(𝑋,𝑌)
            (2) 707 

Where 𝐻 is entropy: 𝐻(𝑋)  =  −𝛴𝑖𝑝𝑖(𝑋)𝑙𝑜𝑔𝑝𝑖(𝑋). Thus, the mutual information is 𝐼(𝑌, 𝑋)  =708 

 −𝐻(𝑋|𝑌)  +  𝐻(𝑋) +  𝐻(𝑌) and 𝐻(𝑋, 𝑌) is the joint entropy. The function is normalized to fit 709 

the range [0, 1], where 0 means that the two objects are identical and 1 that they are completely 710 

different. 711 

 712 

Adjusted Rand Index (ARI). We also used the Adjusted Rand Index (ARI), an extension 713 

of the Rand Index54 as a second external cluster validation. The Rand Index (RI) was created by 714 

Rand in 1971 as a measure to evaluate the similarity between clustering and classifications. 715 

 716 

Considering two objects 𝑋 =  {𝑋1, 𝑋2, . . . 𝑋𝑛} and 𝑌 =  {𝑌1, 𝑌2, . . . 𝑌𝑛}, we can build a contingency 717 

matrix 𝑀 where every column represents an element of 𝑋, every row represents an element of 𝑌, 718 

𝑛 is the length of the objects, and the entries 𝑚𝑖𝑗 indicate the overlap between X and Y. Then, 719 

𝑚𝑖.represents the sum over the ith row, 𝑚.𝑗 is the sum over the jth column. The equation for ARI 720 

estimation is given by: 721 
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 722 

𝐴𝑅𝐼 =  
∑ (

𝑚𝑖𝑗
2

)𝑖𝑗 − ∑ (
𝑚𝑖.
2

) ∑ (
𝑚.𝑗

2
)𝑗𝑖 /(

𝑛
2)

1
2

[∑ (
𝑚𝑖.
2

)+∑ (
𝑚.𝑗

2
)𝑗𝑖 ] − ∑ (

𝑚𝑖.
2

) ∑ (
𝑚.𝑗

2
)𝑗𝑖 /(

𝑛
2)

           (3) 723 

The ARI value ranges from -1 to 1, where a score of 1 denotes a perfect match between the 724 

partitions, 0 indicates expected similarity by chance, and -1 perfect disagreement. 725 

 726 

Besides using these metrics, we also analyzed the results for a given resolution value, summarizing 727 

the 100 runs in a single heatmap. The heatmap represents a squared matrix in which columns and 728 

rows are the individuals. The value indicates how many times a pair of individuals were grouped 729 

in the same community. Thus a value of 100 means that the pair of individuals were always in the 730 

same community. The heatmaps were generated using ComplexHeatmap55 (2.14.0) library from 731 

R. 732 

Wilcoxon test 733 

We performed a no-paired one-side Wilcoxon rank-sum test using the R function wilcox.test() 734 

(alternative = "greater") to determine whether the distribution of ARI values was significantly 735 

greater for (1) between communities, which quantifies the consistency of individual membership 736 

across runs at each resolution, than (2) communities vs super populations, which measures the 737 

similarity between the communities and the predefined super populations.  738 

Community networks for a given resolution  739 

We built three-dimensional (3D) community networks by calculating the average x, y, and z 740 

coordinates across individuals within each community. To do this, we first utilized the 741 
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Fruchterman-Reingold algorithm to determine the 3D layout of individuals and computed the x, 742 

y, and z coordinates for each community by averaging across the coordinates of individuals in that 743 

community leveraging the ucie package in R56.  We assigned colors to communities based on two 744 

different methodologies (see below). 745 

Color coding 746 

We employed two methodologies for assigning colors to communities that use CIELab color 747 

space, a three-dimensional color model aimed at accurately representing the diverse range of colors 748 

observed by the human eye in a consistent and unbiased manner. The first method allowed us to 749 

obtain distinct colors that clearly differentiate each community in a network using the 750 

distinct_colors() function from the chameleon package. However, is it possible for colors to 751 

provide information about the genetic closeness of communities? For the second methodology, we 752 

first explored different resolutions to identify the one where all communities are present 753 

simultaneously. Then, we leveraged the Fruchterman-Reingold algorithm's capability to assign 3D 754 

relative positions based on community connections, and we used the data2cielab() function from 755 

the ucie package that retrieves the corresponding color for each community based on its placement 756 

in a three-dimensional space. Communities are checked for any omissions, as the highest 757 

resolution may not encompass all. They are then aggregated by averaging their positions across 758 

the resolutions where they appear. The latter method enabled us to observe genetically close 759 

communities with colors that are more similar, and vice versa (Figures S5 and S6). 760 
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Visualizing communities as resolution changes  761 

Finally, we developed a shiny app to make our results more interactive and allow engagement with 762 

scientists and thee general public alike. The shiny app allows us to see the different communities 763 

that emerge at different resolution values and their geographic distribution across the analyzed 764 

genetic similarity metrics (IBD, PCA, GRM common and GRM rare). Each pie chart shows the 765 

proportion of the individuals that belong to each community. A slider allows users to try different 766 

resolution values while displaying the number of detected communities and their community 767 

network composition. We also offer the option to change the resolution plot and map colors, so 768 

that similar colors indicate closeness between communities.   769 

Our browser has a “Customize” panel where users can upload the output files generated with our 770 

GG-NC pipeline to analyze and visualize results on their own genetic datasets. Since our goal is 771 

to make a user-friendly app, we also offer a video tutorial in two languages (English and Spanish) 772 

that explains and exemplifies the applications of our browser.   773 

Community detection on variants associated with particular traits and 774 

diseases. 775 

Using autosomal biallelic SNPs, we removed variants with more than 10% missingness. We also 776 

removed samples with more than 10% of missingness and related individuals. We kept variants 777 

inside the genomic coordinates of genes associated with the following traits:  778 

● Altitude (7 genes): EPAS1, EGLN1, PPARA, CBARA1, VAV3, ARNT2, and THRB38. 779 

● Type 2 diabetes (15 genes):  HNF4A, RREB1, GCKR, POC5, ANKH, WSCD2, KCNJ11, 780 

PAM, TM6SF2, LPL, PLCB3, SLC30A8, PNPLA3, HNF1A, and  GIPR36. 781 
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● Skin pigmentation (38 genes): OCA2, SLC24A5, SLC45A2, TYR, MFSD12, DDB1, 782 

TMEM138, HERC2, IRF4, BEND7, PRPF18, MC1R, ASIP, TYRP1, SMARCA2, VLDLR, 783 

SNX13, GRM6, ATF1, WNT1, SILV, OPRM1, EGFR, ZNF804B, PDE4B, RIPK5, 784 

PA2G4P4, PPARGC1B, AHR, AGR3, TRPS1, BNC2, EMX2, TPCN2, DCT, ATP11A, 785 

SLC24A4, and KIAA093037. 786 

We pruned variants for linkage disequilibrium in Plink (v1.90b6.21) (with  --indep-pairwise 50, 5, 787 

0.1).  The first 20 PCs were estimated for each subset of variants using smartpca (v13050) from 788 

Eigensoft (v6.0.1)57,58 (using numoutlieriter: 5, numoutlierevec: 10, outliersigmathresh: 6, and 789 

qtmode: 0). 790 

IBD network modifications 791 

Aiming to improve the visualization of the networks shown in this paper we modified the IBD 792 

network generated, iteratively removing individuals (nodes) that were only connected to a single 793 

node or were completely disconnected. Further, we removed individuals that were isolated from 794 

the overall network (forming communities of <25 members even at the low resolution of R=-795 

2)(Supplementary Tables 2 and 3). The results of the network without outlier removal can be seen 796 

on our web browser. In the manuscript, we present stability results on the IBD network after outlier 797 

removal (Figure 3); however, stability results are qualitatively the same on the full network (Figure 798 

S12).  799 

ADMIXTURE and PCA analysis 800 

For consistency, only individuals included in the final IBD network were considered for 801 

ADMIXTURE and PCA analyses (Figure 4). We removed variants with more than 10% 802 
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missingness and MAF < 0.05. We pruned variants for linkage disequilibrium in Plink (v1.90b6.21) 803 

(with  --indep-pairwise 100, 10, 0.1). 804 

ADMIXTURE (V1.3.0) was run from K=5 to K=25 estimating the cross-validation error. Results 805 

were plotted using pong (v1.5)59. The first 20 PCs were estimated using smartpca (v13050) from 806 

Eigensoft (v6.0.1). Results were plotted using R.   807 
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