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Introduction

Articular cartilage (AC) is a highly specialized and organ-
ized tissue that enables painless motion in diarthrotic 
joints. Although cartilage cells (chondrocytes) make up 
only 1% of the tissue volume, their high metabolic activity 
provides the unique composition of extracellular matrix 
(ECM). Major components of the ECM are collagen fibres 
(approximately 15%) and proteoglycans (about 12%). The 
principal collagen in AC is type II collagen, comprising 
80% of all fibres. AC also contains small amounts of col-
lagens types IX, XI, III, VI and XII.1 Proteoglycans that 
form large molecules (aggrecans) consist of glycosamino-
glycan (GAG) subunits containing negatively charged 
chondroitin sulphate and keratan sulphate chains that bind 
water, up to 50 times their weight. This mechanism endows 
AC with high resistance to mechanical stress and load dis-
tribution.2 The unique structure of cartilage allows it to 
resist mechanical forces ranging from 1 to 4 MPa.3 The 
presence of collagen fibres and proteoglycans also enables 

minimum friction at the articular surface.4 Non-collagenous 
protein fibres such as cartilage oligomeric protein (COMP), 
tenascin and fibronectin account for less than 5% of the 
wet weight of AC.

Variations in cell morphology and specific ECM compo-
sition and organization allow us to distinguish four cartilage 
zones: superficial, transitional, middle (radial) and deep (cal-
cified). The superficial zone, which has high water content 
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and collagen concentration, is the major barrier responsible 
for resisting shear forces. Deeper zones with higher concen-
trations of proteoglycans allow for the equal distribution of 
mechanical stress, thus protecting the subchondral bone 
from increased loading.5 Excessive loads that damage colla-
gen and proteoglycan fibre networks, thereby causing water 
loss, result in numerous morphological and biochemical 
changes in cartilage structure. AC is devoid of blood and 
lymphatic vessels and nerves; for this reason, it has a 
decreased ability to self-renew after injury. Cartilage injuries 
are thought to be very common, but their true incidence is 
unknown. Curl et al. (1997) reported chondral lesions pre-
sent in 63% of patients who undergo knee arthroscopy.6

Many attempts have been made to restore injured AC to 
recover joint function, but cartilage resurfacing remains a 
formidable challenge. Treatment options for symptomatic 
cartilage lesions range from conservative treatments (non-
steroidal anti-inflammatory drugs (NSAIDS), analgesics 
and physical therapy) to the most advanced cell-based tissue 
engineering methods. The aim of conservative treatment is 
to reduce symptoms; however, evidence of the efficacy of 
such treatments in improving joint structure is controver-
sial.7 A more aggressive intervention involves various surgi-
cal approaches, all of which seek to fully restore or 
regenerate the cartilage, with its unique properties. Advances 
in imaging methods have led to much better recognition of 
the frequency and types of injuries, thus resulting in more 
accurate planning of the treatment algorithm.8,9 Both com-
puted tomography (CT) and high-resolution magnetic reso-
nance imaging (MRI; 1.5 tesla or greater) are useful for 
evaluating joint structures. Moreover, MRI allows physi-
cians to assess the cartilage and monitor the results of carti-
lage repair procedures.10–12 In case of full-thickness, 
symptomatic cartilage lesions in young patients, surgical 
intervention is recommended since untreated isolated inju-
ries may progress and lead to joint degeneration and prema-
ture osteoarthritic changes.13 Osteoarthritis (OA) is now 
considered a civilization disease. It is estimated that 80% of 
the population have radiographic evidence of OA by the age 
of 65 years, although only 50% of these present clinical 
symptoms.14,15 OA changes in the elderly are exacerbated 
due to decreased capacity of chondrocytes to synthesize 
ECM components and age-related limitations in maintain-
ing tissue homeostasis.16–18 The clinical symptoms of OA 
(pain, stiffness, crepitus, effusions and restricted range of 
motion) make OA the leading cause of disability and 
impaired quality of life in the world.

Currently available surgical procedures are classified as 
palliative (debridement, lavage), reparative (marrow stimu-
lation techniques) or restorative (osteochondral grafting, 
autologous chondrocyte implantation (ACI)).19 The choice 
of the strategy is based on lesion location, patients’ physical 
demands and pre-operative status.20 Each factor should be 
carefully assessed since each surgical method has its own 
specific limitations. Lavage of the joint and debridement are 

considered first-line treatment options in smaller lesions in 
order to wash out and remove debris, loose cartilage frag-
ments and inflammatory mediators.21 Marrow-stimulating 
techniques, such as microfracture or subchondral bone drill-
ing, attempt to restore the cartilage surface by creating a 
blood clot from subchondral bone blood vessels. These tech-
niques are recommended for small lesions in patients 
<40 years of age, given that the success rate of this interven-
tion is highly age-dependent.22 Moreover, microfracture ena-
bles further treatment with ACI due to its high failure rate 
(26%) compared with 8% failure rate in patients treated pre-
viously with debridement alone.23 At present, the most 
advanced methods are based on injecting cells with chondro-
genic potential into the lesion site. However, the cell types 
most appropriate for harvesting and seeding have yet to be 
determined. First experiences with cartilage resurfacing 
using autologous cells date back to the early 1980s.24 ACI is 
a two-stage procedure. The first step includes debridement of 
the lesion site and harvesting of cartilage slices from non-
weight-bearing areas of the joint. Then, cells are cultured to 
multiply the number of cells to provide sufficient number of 
cells to fill the defect.25 During the second stage of treatment, 
chondrocytes are implanted into the lesion and covered with 
periosteal flap (first-generation ACI) or resorbable mem-
branes (second-generation ACI). The application of proper 
biomaterial cover may enhance cell proliferation and differ-
entiation.26 Despite improvements in surgical techniques, 
some challenges remain, mostly related to the limited num-
ber of chondrocytes available for cell culture, preservation of 
the cells’ chondrogenic potential and re-differentiation of 
cells during tissue formation after implantation. The use of 
recently investigated mesenchymal stem cells (MSCs) and 
induced pluripotent stem cells (iPSCs) could help to over-
come these limitations.

The exploration of source of 
pluripotency

Stem cell–based therapy is a promising tool for degenera-
tive diseases associated with age and/or environmental fac-
tors. The term ‘stem cell’ was first used by Ernst Haeckel at 
the end of 19th century.27 This scientific term describes an 
ancestor cell giving rise to a multicellular organism or fer-
tilized egg and eventually developing into a new being.27 
Nowadays, the term ‘stem cell’ describes an undifferenti-
ated, self-renewing population of pluripotent cells able to 
form tissues derived from primary germ layers. This ability 
is one of the most desired in regenerative medicine.

Pluripotency is the main characteristic of embryonic 
stem cells. The use of stem cells in medicine has been the 
subject of much controversy, given the ethical debate sur-
rounding the use of human embryos.28 In 2006, Takahashi 
and Yamanaka29 successfully developed a technique to 
retrieve iPSCs from adult mouse fibroblasts by changing 
cell fate. The following year, they obtained human 
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pluripotent stem cells by cell transduction using selected 
transcription factors SOX2 (SRY (sex determining region 
Y)-box 2), c-MYC (v-myc avian myelocytomatosis viral 
oncogene homolog), KLF4 (Kruppel-like factor 4) or 
OCT3/4 (octamer-binding transcription factor 3 and 4).30 
That discovery was a breakthrough in stem cell research 
and gave hope of obtaining a tool for gene therapy and tis-
sue engineering. Moreover, this technique resolved the 
ethical concerns associated with the application of human 
embryos in regenerative medicine.28,31–33

However, obtaining iPSCs is not a simple process and 
presents many obstacles and dangers. Some transcriptional 
factors used during the cell reprogramming process 
(c-MYC, OCT3/4) have an oncogenic potential due to the 
possibility of non-specific integration of lentiviral vectors 
with genomic DNA. Currently, scientists are working on 
developing non-viral, safe protocols to derive repro-
grammed cells, thus decreasing risks of spontaneous can-
cerogenesis and teratoma formation after treating patients 
with iPSC cell–based therapies.34–36

The promising potential of iPSCs in many pathological 
and degenerative conditions has been widely described.35 
An increased incidence of OA among the ageing societies 
of the developed countries has been observed.37–39 It is well 
established that OA substantially decreases the quality of 
life and gradually leads to disability. Although standard 
methods of treatment bring temporary relief of symptoms 
and provide a short-term solution, in most cases, the end 
result is joint replacement.33,40,41 The primary goal of 
improving quality of life has been partly achieved. 
However, these treatment procedures are not without prob-
lems, and important side effects – primarily decreased 
mobility can negatively affect the quality of life.42

The aim of this review is to present a methodology for 
generating chondrocytes from iPSCs based on current 
knowledge of cartilage development. This new approach to 
AC and OA treatment based on cell therapy has a great 
potential to support or replace current standard procedures.

Chondrogenesis

The formation of cartilage from mesenchymal cells during 
embryogenesis is a multistep process regulated by several 
different groups of proteins. Most of these proteins belong 
to the transforming growth factor (TGF-β) family of pro-
teins, including TGF-β1, TGF-β2 and TGF-β3, bone mor-
phogenic proteins (BMPs) and wingless- and int-related 
proteins (WNTs), among many others.43–47 The origin of the 
process can be found in skeletal blastemas’ mesenchymal 
precursor cells, which are able to differentiate into muscles, 
cartilage, tendons or perichondrium.44,46 The cartilage line-
age formation includes four steps: (1) cell migration, (2) 
aggregations of mesenchymal–epithelial cell interactions, 
(3) condensation and (4) chondrocyte differentiation.

After appearance of three germ layers of embryos, pre-
cursor mesenchymal cells migrate to the determined field 

of primeval limb formation called the lateral mesenchymal 
plate (LMP). The cartilage anlage is created by dense, 
elongated LMP cells. Formed nodules are able to differen-
tiate into chondroblasts or chondrocyte cells. The further 
development and differentiation of cartilage tissue yield 
the beginning of primary bones and joints.48,49 Chondro-
genesis is a complex, multicellular process involving many 
biomolecules, both in vitro (Table 1) and in vivo. Some of 
these proteins (i.e. Noggin, BMP) have antagonist proper-
ties or can work as silencers or enhancers depending on 
their concentration or expression level (e.g. retinoic acid 
and WNT).50

Milestones at cartilage construction

Many protocols using different concentrations of various 
growth factors have been established to induce chondro-
genesis in vitro. One approach is to create a universal 
procedure to obtain cells, which will allow the patients 
to fully recover their activities of daily living with less 
invasive procedures.83 During the cell culture process, 
functionality, molecular profile and methods of cell 
expansion must be properly assessed due to the limited 
proliferation in primary cell cultures.84 The main prob-
lems to be solved when working with models of AC are 
as follows: (1) appropriate cell population should be 
chosen for further differentiation protocols, (2) a small 
quantity and low concentrations of prochondrogenic 
growth factors should be used to decrease costs of the 
procedure, (3) cell culture expansion to scale up the bio-
process and (4) neutral biomaterial for cell and organism 
microenvironment should be employed.50,85

To date, only a few protocols have been developed to 
obtain appropriate amounts of cells for cartilage autolo-
gous grafts.86 These procedures include biomaterial scaf-
folds or free-scaffold three-dimensional (3D) cell culture 
(micromass, spheroid and pellet culture).86,87

The appropriate cell population

MSCs – including bone marrow stem cells (BMSCs), adi-
pose stem cells (ASCs) and synovial-derived stem cells 
(SDSCs) – have been identified as the most suitable cell 
populations for cartilage regeneration.88–91 The main limi-
tations of utilizing MSCs in clinical research are their age-
related decreased ability to proliferate and the limited 
number of the desired cell populations obtained from 
patients’ tissue; as a result of these limitations, the costs of 
using such cells are high due to the need for intensive cell 
culturing and advanced surgical techniques. A related issue 
is the need for optimization of cell culture protocols in 
order to obtain viable cells.83

The iPSCs seem to have the features appropriate for 
clinical applications. Newly developed protocols make it 
easier to obtain safe and stable cell lines that possess the 
same characteristics as human embryonic stem cells 
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(hESCs). Described protocols involve (1) Cre/lox- 
mediated excision from the host genome; (2) delivery of 
non-integrating with genome episomal vectors, containing 
plasmids that harbour reprogramming factors; (3) adenovi-
ral transduction; (4) reprogramming proteins linked to the 
cell-penetrating peptide (CPP) and (5) transposase-medi-
ated excision.34,92 Application of these findings should 
enable us to obtain safe iPSCs.

Induction chondrogenesis of iPSCs

Oldershaw’s group (Oldershaw et al.93) established a three-
stage protocol for differentiation of hESCs into chondro-
cytes using various different matrices and growth factors 
(WNT-3a, activin, follistatin, BMP4, fibroblast growth 
factor 2 (FGF2), growth and differentiation factor 5 
(GDF5) and neurotrophin 4 (NT4)). Yang et al.40 simpli-
fied Oldershaw et al.’s93 protocol by using only six growth 
factors (excluding NT4) and only one type of matrix in a 
two-stage process. Both of these protocols have been 
shown to be capable of producing – in only 2 weeks – 
chondrocyte-like cells with higher COL2A1 (Collagen 
type II, alpha 1) and SRY (sex determining region Y)-box 
9 (SOX9) expression and decreased pluripotent marker 
expression compared to control cell lines.40,93

Obtaining a chondrocyte-like cell population through 
embryonic body (EB) formation or micromass pellet cul-
ture has also been described.94 During this process, stem 
cells start to spontaneously differentiate into three germ 

layers.95 Stimulation of mesenchymal cells found in 
formed EB, with chondrogenic factors such as TGF-β, 
BMP2 or BMP4, resulted in the expression of type II col-
lagen and aggrecan. The main disadvantage of this proce-
dure is the time-consuming intermediate step, that is, the 
EB culture.96 Another disadvantage of these methods is 
the non-homogeneous differentiated cell population. 
However, this problem can be solved by cell selection 
based on the increased expression of green fluorescent 
protein (GFP), which causes concomitant transfection of 
the cells with GFP-col2 plasmid.97

The modification of in vitro culture systems and 
medium environment can also result in improved chon-
drocyte stability or may induce increased chondrogenic 
markers in stimulated cells during propagation. For 
example, culturing dermis isolated adult stem cells 
(DIAS) under hypoxic conditions increases GAGs and 
type II collagen expression compared to normoxia.98 
Additionally, one study found that differentiating cord 
blood MSCs in a membrane system under hypoxia dem-
onstrated increased wet mass and more homogeneous 
histological architecture compared to pellet cell culture 
and standard air condition.99 Another important factor 
involves the ingredients used in the cell culture medium. 
Expansion of fresh isolated chondrocytes in monolayer 
at lower glucose concentrations (1 mM) improves the 
stability of propagated cells. However, 3D cell culture in 
the presence of higher glucose concentrations (10 mM) 
increases the amount of ECM proteins.84

Table 1. Growth factors involved in in vitro chondrogenesis process.50

Enhancers of chondrogenesis Inhibitors of chondrogenesis

Activin51

Bone morphogenic proteins (BMPs)45

C-1-1 transcription factor52

Dexomethasone53

Fibroblast growth factors (FGF2, FGF2-4, FGF2-8)54

Growth and differentiation factor 5 (GDF5)55

Histone deacetylases (HDAC1–4)56

Homeodomain (HOX) transcription factors (BARX2, 
NKX3-2, MSX1, PAX1, PAX9)57

Insulin-like growth factor-1 (IGF1)58

Lymphocyte enhancer–binding factor-1 (LEF1) transcription 
factor59

Matrix metalloproteinases (MMP-1)60

NCAM61

PGE262

Protein kinase C (PKC) family63

Retinoic acid64

SMAD transcription factors65

SRY-type high mobility group box (HMG-box) DNA-binding 
domain SOX) transcription factors66

Sonic hedgehog signalling protein (SHH)67

TGF-β family48

Wingless- and int-related protein (WNT) signalling 
molecules (WNT1, WNT-3a, WNT-5a, WNT-7)68,69

Actin70

Activator protein (AP-1)71

Epidermal growth factor (EGF)72

Fibroblast growth factors (FGF2, FGF-4, FGF-8)73

Homeodomain (HOX) transcription factors (MSX2)74

Indian hedgehog (IHH)75

Leukaemia/lymphoma-related factor76

Matrix metalloproteinases (MMP-2, MMP-13)77,78

Noggin79

Retinoic acid80

Rho GTPases family81

RUNX282

WNT signalling molecules (WNT1, WNT-3a, WNT-5a, WNT-7)68,69

 
 
 
 
 
 
 

NCAM: neural cell adhesion molecule; PGE2: prostaglandin E2; TGF-β: transforming growth factor-β; RUNX2 : Runt-related transcription factor 2.
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Many studies have demonstrated the influence of phys-
ical factors in the chondrogenesis process. One such study 
was carried out with human ASCs under in vitro stimula-
tion of low-intensity ultrasound (LIUS) (continuous 
1 MHz wave for 10 min/day). Compared to the control 
group, the treated cells displayed increased expression of 
cartilage differentiation markers such as Col2A (mostly), 
Col2B, aggrecan and Col10.43 The chondro- and osteoin-
ductive properties of appropriate frequencies (1 Hz, 
100 Hz) have also been confirmed in human and swine 
umbilical mesenchymal cells.100 However, in vivo studies 
on damaged rabbit joint model did not confirm enrich-
ment of collagen type II by BMSC stimulated by low-
intensity pulsed ultrasound.101

Due to the physiology of the joints and the water-rich 
ECM of cartilage, chondrocytes are subject to high pres-
sure, a condition that permits the exchange of nutrition and 
metabolism products by diffusion due to the avascular 
nature of AC.102 Based on this observation, some research-
ers have proposed using hydrostatic pressure to create a 
specific microenvironment similar to cartilage tissue. The 
results are ambiguous. Some studies have demonstrated 
that using only hydrostatic pressure for differentiation of 
cells can cause lack of influence on aggrecan, SOX9 and 
type II collagen expression.102,103 The differentiation pro-
cess is complicated and depends on many factors, which is 
why adding 1 ng/mL TGF-β3 to cell culture medium and 
applying hydrostatic pressure caused up-regulation of 
Sox9 expression and increased production of ECM pro-
teins in porcine tissue–derived stem cells.103

Biomaterials and scaffolds

A tissue-specific 3D microenvironment is created by the 
aforementioned ECM, a secreted cellular biopolymer. The 
ECM of AC consists mostly of various types of collagens 
(II, X, XI) and proteoglycans (GAGs). In the ACI proce-
dure, several billion chondrocytes are used to fill in the 
substantial cartilage loss. However, that technique had a 
number of defects from the very beginning. The disadvan-
tages included cell leakage from the flap site and graft 
hypertrophy. Another problem was the propagation of the 
monolayer of chondrocytes, whose morphology changed 
from round-shaped cells into fibroblast-like cells with a 
dramatic decrease in cell proliferation. However, this state 
was reversible when the cells were seeded onto 3D scaf-
folds. This confirmed the crucial role of spatial methods of 
cell expansion for future AC models.42,104,105

In general, the main features of biomaterials used as 
cell scaffolds in tissue engineering are (1) biocompatibility 
and biodegradability, yielding non-toxic degradation end-
products; (2) mechanical and physical properties similar to 
healthy tissue and (3) an appropriate microarchitecture 
created for cells to easily exchange oxygen, nutrition 
ingredients and ions through scaffold pores.106

Biomaterials can be classified by origin into (1) natural 
and (2) synthetic materials. Natural biomaterial include 
protein-based (collagen, fibrin) materials and polysaccha-
rides (alginate, chitosan, hyaluronic acid, cellulose). 
Natural biomaterials provide a more favourable environ-
ment for the cells. However, their application may be lim-
ited by the risk of disease transfer, ability to trigger 
immunological response, lack of mechanical strength or a 
too-heterogeneous architecture. Synthetic biomaterials 
include polylactic-co-glycolic acid (PLGA), polylactic 
acid (PLA) and polyethylene glycol (PEG). Synthetic bio-
materials are not as bioactive as protein-based ones, 
although they have higher mechanical strength. Moreover, 
they present a decreased risk of contamination by patho-
gens. The biggest advantage of synthetic materials is that 
their architecture can be adapted to obtain desirable prop-
erties during the fabrication process.105,106

For therapeutic targets, those biomaterials could form a 
few types of scaffolds such as hydrogels (whose viscoelas-
tic properties are closest to those of cartilage), meshes and 
sponges (highly porous and mechanically durable) and 
composites created for better integration with the native 
tissue by cross-linking various polymers, for example, col-
lagen + chondroitin 6-sulphate gels or PLA sponge + algi-
nate gels.107 New opportunities, such as 3D printers 
combined with high-resolution diagnostic equipment 
(MRI or CT), could be another step towards personalized 
medicine regeneration of injured tissues by printing indi-
vidually designed prostheses or applying ECM-based scaf-
folds suitable for cell seeding onto transplanted organs.108

ECM as a natural scaffold fulfils many crucial functions 
in cartilage development due to their complex composition. 
Chondrocytes are immersed in a dense protein and proteo-
glycans mixture, which leads to decreased cell functionality 
and repair ability. The various histological layers in cartilage 
structure have different amounts of GAGs, and this deter-
mines the specific shape of chondrocytes for each zone and 
also determines their phenotype. To obtain a suitable scaffold 
for cartilage regeneration, a few crucial biophysical and bio-
logical aspects must be observed. First, the scaffold stiffness 
has a significant influence on ECM organization, deposition 
of proteoglycans, chondrocyte proliferation and differentia-
tion of MSC into chondrocytes.109,110 Another aspect is 
appropriate pore size. Large pores enable easy exchange of 
gas and nutrition, but decrease cell adhesion and attachment 
to scaffold surface.111 Studies of collagen type II–based scaf-
folds (150–250 µm size pores) have shown increased Col2a1 
and Acan expression and an increased amount of GAGs in 
bovine AC.112

Conclusion

The iPSCs generated through innovative and tumour forma-
tion–free methods are a promising approach to the treatment 
of OA or AC injuries. Optimization of procedures and 
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knowledge of developmental biology allow for the estab-
lishment of cell differentiation protocols that yield fully 
functional chondrocyte-like cell populations. When the 
injury has been carefully and comprehensively assessed, the 
use of modern techniques such as 3D printing will enable 
physicians to apply less invasive procedures that offer faster 
recovery and, most importantly, a greatly improved quality 
of life.
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