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Purpose: To improve image quality and resolution of dynamic susceptibility
contrast perfusion weighted imaging (DSC-PWI) by developing acquisition and
reconstruction methods exploiting the temporal regularity property of DSC-PWI
signal.
Theory and Methods: A novel regularized reconstruction is proposed that
recovers DSC-PWI series from interleaved segmented spiral k-space acquisition
using higher order temporal smoothness (HOTS) properties of the DSC-PWI
signal. The HOTS regularization is designed to tackle representational insuffi-
ciency of the standard first-order temporal regularizations for supporting higher
accelerations. The higher accelerations allow for k-space coverage with shorter
spiral interleaves resulting in improved acquisition point spread function, and
acquisition of images at multiple TEs for more accurate DSC-PWI analysis.
Results: The methods were evaluated in simulated and in-vivo studies. HOTS
regularization provided increasingly more accurate models for DSC-PWI than
the standard first-order methods with either quadratic or robust norms at the
expense of increased noise. HOTS DSC-PWI optimized for noise and accuracy
demonstrated significant advantages over both spiral DSC-PWI without tempo-
ral regularization and traditional echo-planar DSC-PWI, improving resolution
and mitigating image artifacts associated with long readout, including blurring
and geometric distortions. In context of multi-echo DSC-PWI, the novel methods
allowed∼4.3× decrease of voxel volume, providing 2× number of TEs compared
to the previously published results.
Conclusions: Proposed HOTS reconstruction combined with dynamic spiral
sampling represents a valid mechanism for improving image quality and res-
olution of DSC-PWI significantly beyond those available with established fast
imaging techniques.
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1 INTRODUCTION

MRI-based dynamic susceptibility contrast (DSC) per-
fusion weighted imaging (PWI)1 can estimate essential
brain perfusion parameters, which have significant util-
ity in many clinical applications. DSC-PWI may inform
the diagnosis of transient ischemic attack2 and assess
“tissue-at-risk” in acute stroke patients.3 In brain tumor
patients, DSC-PWI parameters have been used to differ-
entiate between glioma grades,4 to distinguish between
recurring tumors and treatment effects,5 and to evaluate
the response to anti-angiogenesis drug therapy.6,7 Among
the various hemodynamic parameters that may be esti-
mated with DSC-PWI, relative cerebral blood volume
(rCBV) in particular has been prognostic in patients with
high-grade glioma.8

DSC-PWI faces several challenges in acquisition and
interpretation of the data, which existing methods can
mitigate only partially. The acquisition must capture rapid
dynamic T2* changes caused by the passage of the intra-
venously administered contrast agent (CA) bolus, calling
for imaging at high (near-second) temporal resolution,
typically attained at the expense of spatial resolution and
coverage. Next, the longer TE is required to sensitize sig-
nal to T2* values present in tissue, but much shorter TE
is simultaneously desirable to avoid errors in the arte-
rial input function (AIF) and, hence, in the quantitative
perfusion analysis.9 Additional errors may arise in tumor
imaging, where leaky vasculature leads to CA accumula-
tion in the extravascular space, shortening T1 relaxation
time and introducing signal dependencies unaccounted
for by DSC-PWI models.10,11 Multi-echo DSC-PWI imag-
ing demonstrated significant promise to mitigate these
errors12–14 by virtue of direct dynamic T2* mapping,
thereby eliminating the T1 effects from the analysis,15,16

and permitting optimization of individual TEs for AIF
and tissue. However, collecting images at several TEs
to address the above issues makes DSC-PWI even more
data-demanding, further exacerbating its resolution and
coverage limitations.

The standard DSC-PWI acquisition approach is
single-shot EPI, which reaches the required imaging speed
at the expense of image quality degradations. Higher res-
olution EPI is hampered by point spread function (PSF)
widening due to the T2* decay during its long readout.
The long readout also leads to prominent geometric
image distortions and signal voids. These effects may be
somewhat alleviated using non-Cartesian trajectories that
cover k-space more efficiently, e.g., single-shot spirals.17

However, limitations of the single-shot acquisition per-
tain to spiral imaging as well,18 further emphasizing that
a more efficient sampling alone cannot improve existing

tradeoffs between imaging speed and image quality in
DSC-PWI.

Acquisition and reconstruction are tightly coupled
in the context of fast imaging and require a simultane-
ous design for optimal results. In the case of DSC-PWI,
segmenting k-space acquisition over N repetitions can
be used to shorten readout and gain improvements in
image quality and resolution, but only at the expense of
the corresponding N-fold reduction in temporal resolu-
tion. To preserve temporal resolution, the reconstruction
should be able to restore an image from each individ-
ual shot (i.e., from N-fold undersampled data); there-
fore, an upper bound on the associated image quality
improvement is set by the undersampling level manage-
able by a given reconstruction technique. For example,
a combination of multi-shot EPI and parallel imaging
can reduce T2* blurring and susceptibility distortions12

but only moderately, given the relatively low accelera-
tions attainable with parallel imaging.19 In some dynamic
MRI applications, additional accelerations were attained
using various assumptions about temporal signal behav-
ior.20 For example, exploiting temporal signal model-
ing has empowered accelerated cardiac perfusion and
functional imaging,21 with particularly promising results
achieved by a combination of compressed sensing (CS)
methods with non-Cartesian sampling trajectories, e.g.,
spiral and radial.22–24 Yet, the utility of similar approaches
for DSC-PWI remains unclear, especially in a view of
representational insufficiency of the standard models
(e.g., in total variation [TV]-based temporal regulariza-
tion),25 which may limit achievable accelerations in appli-
cations with rapidly varying temporal dynamics such
as DSC-PWI.

In this work, we present a novel approach to
high-resolution, high-quality DSC-PWI based on the
multi-shot, multi-echo spiral acquisition. The multi-shot
sampling with shorter readout is made possible by a
combination of spiral interleaves, pseudo-randomly dis-
tributed in time, and a reconstruction tailored to support
the high undersampling levels of such acquisition. For
the latter, we propose a regularized method that exploits
higher order smoothness properties of the DSC-PWI
temporal signal to attain the required performance, as
compared to the standard first-order temporal regulariza-
tion methods.22,23,26 To solve the problem of B0 blurring
afflicting the spiral imaging, we enhance our reconstruc-
tion with time segmented B0 correction, for which the B0
map is estimated from the multi-echo data themselves. In
the following, we describe the rationale for the proposed
acquisition and reconstruction approaches, validate them
in simulations and in vivo data, and compare the proposed
method with clinical DSC-PWI.
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2 THEORY

2.1 Problem formulation

MRI signal detected by a receiver coil with sensitivity
profile C(r) at time t is given by

s̃(t) = ∫
ROI

C(r)̃f (r)e(R∗2(r)+i𝜔(r))(t+TE)e−2𝜋i⟨k(t),r⟩dr, (1)

where ̃f (r) is a continuous function of the object’s
transverse magnetization at location r immediately after
radiofrequency excitation, R∗2 = 1∕T∗2 is the observed
transverse relaxation rate, 𝜔(r) is the main field inho-
mogeneity, time variable t is defined with respect to the
echo time TE, and k(t) is the k-space trajectory.27 Absorb-
ing contributions of R∗2(r) and 𝜔(r) at TE into a signal
function,

f (r) = ̃f (r)e(R∗2(r)+i𝜔(r))TE
, (2)

and ignoring R∗2(r) decay during the readout, we can sim-
plify the signal equation as follows:

s̃(t) = ∫
ROI

C(r)f (r)ei𝜔(r)te−2𝜋i⟨k(t),r⟩dr. (3)

(The effects of this standard simplification in the con-
text of the proposed multi-echo acquisition are explored
further in the paper.) The field map contributions remain
explicitly accounted for, which permits deblurring with
pre-measured B0 field map in non-Cartesian acquisi-
tions.27

MRI signal is sampled at the discrete time points
tm, with acquired data contaminated by identically
independently distributed (i.i.d.) complex Gaussian
noise 𝜂m:

sm = s̃ (tm) + 𝜂m

Following the formalism of Ref.27, we can represent the
sought magnetization vector in the basis of Dirac delta
functions:

f (r) = n
∑

fn𝛿 (r − rn) ,

which, when substituted into the signal equation, leads to

s̃(t) = n
∑

C (rn) fnei𝜔nte−2𝜋i⟨k(t),rn⟩
, (4)

and then to the matrix formulation of the forward problem:

s = Ef + 𝛈 (5)

Here, the column vector s contains the sampled data, and
the entries of the encoding matrix E are given by

Em,n = C (rn) ei𝜔ntm e−2𝜋i⟨k(tm),rn⟩
.

In the case of single-coil acquisition, the coil sensitivity
term C(r) can be absorbed into the magnetization vector
in Equation (2). In the case of multi-coil acquisition, s
represents a column vector comprising stacked data vec-
tors from all coil channels, and the encoding matrix is
expanded using the known coil sensitivities following the
conventions of Ref.28 In dynamic imaging, MR signal can
be expressed in a similar form as

s = Ef + 𝛈, (6)

where the vectors contain stacked single image counter-
parts from all time frames, and the block-diagonal encod-
ing matrix E contains the encoding matrices from individ-
ual time frames on its main diagonal, all reflected by the
overbar in the notation. Noise-optimized reconstruction of
the time series can be achieved by enforcing consistency
with the data in the least squares sense:

f = arg min
f
||Ef − s||2, (7)

where || ⋅ ||2 is the 𝓁2 norm, an instance of 𝓁p norm defined
in general form as

||x||p =
(∑

|xi|
p
)1∕p

, p ≥ 1. (8)

While the estimation is typically well-posed for fully sam-
pled or moderately undersampled (in case of multi-coil
formulation) data, reducing the sampling density to gain
spatial and/or temporal resolution deteriorates condition-
ing of the inversion problem leading to aliasing and noise
amplification. To alleviate these, the data fidelity term
can be augmented by penalty terms ℜ

𝑗

that regularize
inversion:

f = arg min
f

(
||Ef − s||22 + 𝑗

∑
𝜆
𝑗

ℜ
𝑗

(f)
)
, (9)

with the regularization coefficients 𝜆
𝑗

providing balance
among them. The regularizers are given by

ℜ
𝑗

x = |
|Ψ𝑗

x||X
𝑗

(10)

Here, Ψ
𝑗

are operators whose design is guided by prior
information (i.e., signal model), and whose effect is mea-
sured by norms or semi-norms in spaces X

𝑗

. The norm is
usually chosen to be 𝓁2 for noise-optimal reconstruction
(as it provides maximum a posteriori estimation [MAP]
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under the assumption of Gaussian noise29), or 𝓁1 for pro-
moting sparsity30 in CS MRI.31 Provided that Ψ

𝑗

x is a
sparse vector, the latter is more forgiving to deviations of
signal from the model than the former, thereby introduc-
ing less bias towards the model.

As a rule, increasing the degree of data undersampling
biases the solution towards the regularizing model; there-
fore, a proper selection of the regularizers is critical for
highly accelerated imaging. The lack of an appropriate
model, for example, confines spatially regularized tech-
niques to low accelerations before reconstruction accuracy
is affected.32 Temporal regularization (i.e., when Ψ

𝑗

act in
the temporal dimension only) has demonstrated promise
to enable higher accelerations. The temporal variation
models often may be learned from the data themselves
(e.g., in the form of a low-rank representation) if a sub-
set of k-space locations is sampled repeatedly,33,34 but such
trajectory designs affect acquisition efficiency. In the fol-
lowing, we assume that such a model is not available and
use general knowledge about the signal behavior in the
temporal dimension.

2.2 Higher-order temporal smoothness
(HOTS) regularization

The signal in DSC-PWI can be assumed to vary smoothly in
the temporal dimension. Indeed, the gradient echo-based
acquisition causes the signal to follow the change in
T∗2 -relaxation rate, ΔR∗2, with respect to its value prior to
the CA injection exponentially:

f (r, t) = f (r, 0)e−TE⋅ΔR∗2(r,t)
, (11)

which, in turn, relates nearly linearly to tissue CA concen-
tration Ct(t)35:

ΔR∗2 ∝ Ct(t) (12)

The latter can be modeled as

Ct(t) = CBF ⋅ (CA(t) × r(t)) , (13)

where CA(t) is AIF, CBF is the cerebral blood flow, r(t)
a tissue residue function representing the fraction of CA
in the tissue vasculature at time t,36 and * denotes con-
volution operation. Since CA(t) can be represented as
a linear combination of infinitely differentiable gamma
variate functions,37 its convolution with a bounded func-
tion r(t) ensures that Ct(t) and, hence, the signal curve
(Equation 11) is at least as smooth (i.e., has the same
number of derivatives).

For purposes of the regularization design, it is con-
venient to think that the signal curve belongs to a space

of functions possessing sufficiently many derivatives and
equipped with a norm that measures both the size and reg-
ularity of a function. In mathematical terms, it belongs to
the Sobolev space of functions W d

p ,38 i.e., whose (d−1)st

derivative is absolutely continuous and whose dth deriva-
tive raised to the power p ≥ 1 has a finite integral. (The
latter implies that the function belongs to the space Lp,
a continuous counterpart of 𝓁p (Equation 8), equipped
with the norm ||x||p =

(∫ |x(t)|pdt
)1∕p). It is an established

result that functions belonging to the Sobolev space are
best described by piecewise polynomials (splines) of order
d in the sense that they minimize the worst-case error of
such signal approximation from finite measurements.38–41

In other words, in the absence of more specific model-
ing information about the signal behavior in the temporal
dimension other than its differentiability, such functions
can best be locally represented by polynomials of order d.
In turn, it suggests that the discrete differential operator
Δd annihilating the polynomials of order d is the natu-
ral choice as a penalty functional for a class of d-times
differentiable functions.

We should point out that the reasoning above rational-
izes the common use of the first difference (d = 1) (e.g., in
temporally constrained (p = 2)26 or TV-based CS (p = 1)
reconstructions22,23), but does not necessarily limit the
order of the differential operator in the regularizers. It is
reasonable to assume that for applications with rapid con-
trast dynamics, modeling it with higher order polynomials
(d> 1) may provide a more accurate model for reconstruc-
tion of the undersampled DSC-PWI data. We will explore
it further in the paper, along with effects of the higher
order differential operators on the noise performance of
the reconstruction. An additional aspect, considered in our
regularization design, that affects both accuracy and noise
performance is the selection of the regularizing norms in
Equation (10), with 𝓁1 norm favoring the former and 𝓁2
norm optimizing the latter.

3 METHODS

3.1 Image reconstruction algorithm

We solve the problem in Equation (9) using iteratively
reweighted least squares method that converges to a solu-
tion of a general 𝓁p problem through a series of 𝓁2
sub-problems42 with nth iteration solving:

f
(n+1)

= arg min
f

(
||Ef − s||22 +

‖
‖
‖

WnΔdf‖‖
‖

2

2

)
(14)

where Wn is a diagonal reweighting matrix updated
according to the chosen norm in the regularization term
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(Equation 10) and Δd is a discrete difference operator act-
ing pixelwise in the temporal dimension. For a temporal
waveform x, operator is defined recursively using forward
differences as follows:

Δxi = xi+1 − xi, Δdx = Δ
(
Δd−1x

)
, d > 1.

For 𝓁2 norm, the reweighting matrix is the identity. For 𝓁1
norm, the exact updates are given by

diag (Wn) =
|
|
|
|
Δdf

(n)|
|
|
|

−1∕2
. (15)

The singularity of the updates for small residual values can
be mitigated either by truncation or by selecting a modified
variant of 𝓁1 norm. In this paper, we select a norm defined
in Ref.43 as

||x||𝓁1∕𝓁2 =
∑

i

(√

1 + |xi∕𝜎|2 − 1
)

. (16)

This function is a smooth approximation of the Huber
loss function, which is strongly convex when close to the
minimum, while providing 𝓁1 behavior for larger values,
ensuring continuous derivatives and making the mini-
mization problem well-posed.44 The sequence of corre-
sponding reweighting matrices is given by

diag (Wn) =
(
|
|
|
|
Δdf

(n)|
|
|
|

2
+ 𝜎

2
n

)−1∕2

, W1 = Id. (17)

One reasonable choice for the parameter 𝜎 is

𝜎n = 0.6 ⋅ std
(

Δdf
(n)
)

, (18)

As was shown in Ref.43, this choice is consistent with
assumption on the joint probability density for the noise
in the data, for which a maximum likelihood solu-
tion is equivalent to the one minimizing the norm in
Equation (16).

To allow for correction of off-resonance blurring
common for spiral trajectories, we incorporated the
pre-measured B0 field map into the data consistency term
in Equation (9), and used time-segmented approximation
with min-max interpolation for its efficient computation.27

The iterations continued until the residual error relative to
the data fell below a preset tolerance.

3.2 Implementation details

Image reconstruction was implemented in MATLAB 2018
(The MathWorks, Inc.) and run on a 32-core PC with

256 Mb of RAM. The 𝓁2 problems in Equation (14) were
solved using conjugate gradient descent with tolerance set
to 10−8 using gridding approximation of the matrix–vector
multiplication.28 The time-segmented approximation for
B0 correction was implemented using Matlab Parallel
Computing toolbox to run the computations in parallel.
The reweighing updates stopped when the relative change
in the Frobenius norm of W (Equation 15) between suc-
cessive reweighting iterations dropped below 10−3. The
regularization parameters were optimized in simulations
based on the minimization of the root-mean-squared error
with respect to ground truth, and then guided the recon-
struction of the in vivo data. The perfusion processing
was performed in JIM software package (Xinapse Sys-
tems Ltd) to determine AIF and hemodynamic perfusion
parameters. JIM software was also used for image pro-
cessing tasks including volume co-registration and brain
extraction.

3.3 Data acquisition design

Figure 1 illustrates the proposed acquisition and recon-
struction design. The pulse sequence consists of fat sup-
pression, slice excitation, and spiral-out readout blocks
(Figure 1A). Instead of using one long, single-shot read-
out, we opt for a trajectory that covers k-space with
N shorter, N-fold undersampled spiral interleaves. For
each slice, the interleaves are acquired in the bit-reversed
order45 generated by an algorithm that inverts a binary
representation of each number from 0 to N-1 to gener-
ate a pseudo-random distribution in both temporal and
TE dimensions (Figure 1B) and provides a high degree of
sampling incoherency to ensure efficiency of the tempo-
ral regularization, as codified in the CS theory.46 Thanks
to the shorter readout per echo, several echoes can be
acquired during the same acquisition window, with the
last echo selected to match the target TE.47 It should be
noted that readout shortening also decreases TR per slice
(TRS) correspondingly, thereby allowing acquisition of a
larger number of slices in each TR to cover the targeted vol-
ume and/or achieving higher temporal resolution. The vol-
ume is acquired multiple times including several dummy
repetitions to reach the steady state, pre-contrast data col-
lection for baseline image reconstruction, and time frames
to track the CA passage after its injection. The pre-contrast
stage is chosen to be sufficiently long for acquisition of
the fully sampled, high-SNR baseline image (Figure 1C).
After acquisition, the fully sampled, high-SNR baseline
images are reconstructed using iterative conjugate gradi-
ents. In addition to their intended use in the calculations
of perfusion maps, we use the baseline images to esti-
mate the required calibrations. Namely, we use the highest
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Time Frame #

1-2-4-3

5-6-8-7

3-4-1-2

2-1-3-4

8-7-6-5

4-3-2-1

6-5-7-8

7-8-5-6

HOTS Recon

HOTS Recon

HOTS Recon

...
...

...

...

TE1

TE2

TE3

TE4

HOTS Recon...
...
...

Time

Baseline
Recon

HOTS Reconstruction

...
Dynamic k-Space Acquisition

CA Bolus Propagation

Source Images

R2* Fit R2* Fit R2* Fit

...
Dynamic R2* Maps

(A) (B)

(C)

F I G U R E 1 Acquisition and reconstruction design of the proposed method. (A) Pulse sequence diagram. After chemical fat saturation,
the slice is selectively excited, and the free induction decay is sampled by the spiral-out interleaves at several TEs. The pulse sequence is
repeated for each slice, after which it returns to the first slice and proceeds to acquire the next time frame, now with a new set of interleaves.
(B) Periodic ordering of k-space coverage by spirals on the example of eight-interleaf acquisition. Sequence n1-n2-n3-n4 corresponds to the
time frame numbers, in which a given spiral interleaf is acquired for echoes 1 through 4, respectively. (C) Diagram of the acquisition timing,
HOTS reconstruction, and R2* mapping for subsequent perfusion processing. HOTS, higher order temporal smoothness.

SNR (first echo) baseline images to calculate the coil sen-
sitivities as described in Ref.19 Further, the evolution of
the image phase sampled at different TEs can be used
for the B0 mapping.48 In our particular implementation,
we estimate the B0 map using the graph-cut technique,49

thereby taking advantage of all TEs and regularized phase
unwrapping to increase robustness of the mapping. The
coil sensitivities and B0 map are supplied to reconstruct
dynamic series solving Equation (9) with a given tempo-
ral penalty on a per-echo basis (Figure 1C). Finally, all
multi-echo images are fit by the exponential model yield-
ing baseline and dynamic R2* maps, which in turn can
be used for the perfusion processing described in the next
section.

3.4 Perfusion Processing

The R∗2 changes with respect to the baseline value,

ΔR∗2 = R∗2 − R∗2,0, (19)

were converted into CA concentration Ct(t) using the pro-
portionality relationship between them.36 When evaluat-
ing methods in a single-echo regime (i.e., without R∗2 map-
ping), a ΔR∗2 surrogate was estimated from the apparent
signal changes with respect to the baseline for a given TE:

ΔR∗2 = − ln
(

S(t)
S(0)

)

∕TE. (20)
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After the conversion, cerebral blood volume measures
were obtained as an area under the Ct(t) curve normalized
either by the area under the AIF curve (CBV, quantita-
tive processing) or by the averaged signal in white matter
region of interest (ROI; rCBV, semi-quantitative process-
ing to bypass AIF estimation). Additionally, in quantitative
experiments, mean transit time (MTT) was determined
from the tissue residue function obtained by deconvolving
AIF from Ct(t) (Equation 13) as previously described.36

Finally, the cerebral blood flow was determined using the
central volume principle36:

CBF = CBV
MTT

(21)

3.5 Simulation studies

We first evaluated the acquisition and reconstruction
methods in digital phantom experiments (Figure 2). The
data acquisition was simulated for a realistic digital brain
model50 (Figure 2A) with tissue parameters at 3 T51 and
coil sensitivities obtained in a separate scan of a phan-
tom object. The temporal changes (Figure 2B) were sim-
ulated using Equations (11) and (13) with AIF obtained
from an in vivo exam and tissue-specific residue func-
tion r(t). Depending on the tissue type, the residue func-
tion was mono-exponential, boxcar, or constant function
for white matter (WM), gray matter (GM), and vessels,
respectively.52 All trajectories were designed for a sys-
tem with slew rate of 20 000 G/cm/s, maximum gradient
of 5 G/cm, sampling rate 4 us/sample, and field-of-view
22 cm as described in53 (http://mrsrl.stanford.edu/~brian/
vdspiral/). The k-space data were computed using direct
signal calculations with Equation (1). In simulations, we
first compared the resolution loss due to intra-readout T2*
decay for our four-echo and previously described two-echo
spirals17 by simulating the fully sampled k-space coverage.
To ensure equivalent comparisons, we assumed a realis-
tic 2× parallel MRI acceleration in the two-echo trajectory

design to attain spirals with the last TE approaching that
of the in vivo four-echo acquisition protocol and with the
same nominal resolution. We simulated both standard and
proposed MRI acquisitions, exactly matching most param-
eters of in vivo acquisition except for TEs, whose selection
was guided by the minimal possible second TE of the stan-
dard protocol (TE= 3, 42 ms for a standard two-echo proto-
col and additional TE= 16, 29 ms for our protocol). To eval-
uate performance of the acquisition schemes for dynamic
R2* values, we performed WM/GM-specific Monte Carlo
(MC) simulations. Multiple instances (n = 1000) of signals
generated from ground truth R2* values (Figure 2B) were
corrupted with i.i.d. Gaussian noise and fit to obtain mul-
tiple R2* estimates. Means and SDs were evaluated across
the MC R2* estimates.

We also carried out a series of MC experiments to
separately characterize the estimation bias (accuracy) and
noise (precision) in the images and R2* maps for differ-
ent reconstruction schemes. The preliminary results of the
MC experiments also guided the selection of a manageable
undersampling level (R = 8) (and, hence, the number of
interleaves), for a given coil array. Each individual recon-
struction scheme was defined by the order of smoothness
model (d = 1,2,3) and the type of the regularization norm
(p = 1,2). One-hundred realizations of complex-valued
i.i.d. Gaussian noise were added to the simulated k-space
data to yield the MC samples. The dynamic image series
from reconstruction of each such dataset was processed
to yield the maps of interest. For either a single image in
the series or a quantitative map, we assessed the recon-
struction bias by taking a pixelwise mean across all the
reconstructed MC samples Y k,

⟨Y⟩ = 1
K

K∑

k=1
Yk,

and subtracting it from the ground truth reconstructed
from the noiseless, fully sampled data. To yield the rel-
ative bias measures, the difference was normalized per

0

10

20

30

40

50

60

White Matter
Gray Matter
Vessels

Time Frame #

D
R

2*
, s

-1

0 10 20 30 40
(A) (B)

F I G U R E 2 Data used in the
simulation studies. (A) Digital brain model.
(B) Temporal waveforms modeling the CA
passage through vessels and brain tissues.
The simulations assumed the
proportionality of the tissue CA
concentration and ΔR2* (R2* change with
respect to its baseline value prior to CA
injection). CA, contrast agent.

http://mrsrl.stanford.edu/%7Ebrian/vdspiral/
http://mrsrl.stanford.edu/%7Ebrian/vdspiral/
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TE by the mean value of the corresponding ground truth
across all time frames. We also evaluated noise propaga-
tion by calculating maps of noise SD across MC samples as
follows:

𝜎 =

√
√
√
√ 1

K − 1

K∑

k=1
(⟨Y⟩ − Yk)2.

In the absence of ground truth, the similarity of two signals
x and y was assessed using root-mean-squared distance
normalized by the averaged signal norms:

nRMSD =
||x − y||2

0.5 (||x||2 + ||y||2)
(22)

3.6 In vivo studies

Following informed consent according to the Institutional
Review Board policy at our institution, five human sub-
jects (four females, one male, age range 24–47 y) were
scanned on a 3.0T scanner (Discovery TM MR750, GE
Healthcare, Waukesha, WI) with an eight-channel head
coil. Structural T1-weighted IR-FLASH images were col-
lected first at 1 mm isotropic resolution. The segmented
eight-interleaf, four-echo spiral sequence (TR = 1.35 s,
TE = 3, 15, 27, 39 ms) was acquired for 20 consecutive
5 mm slices with matrix size 160× 160 (in-plane reso-
lution 1.375× 1.375 mm2) and flip angle 60◦. The tim-
ing of the trajectories followed the design in Figure 1.
A bolus injection (0.2 mmol/kg of gadodiamide, Omnis-
can, GE Healthcare) was performed 30 s into the scan
at a rate of 4 mL/s. An additional PWI dataset was
acquired in one of the subjects during a separate visit
using standard vendor EPI with 2× parallel MRI accelera-
tion. EPI sequence constraints allowed scanning with the
TE close to the third TE of the proposed pulse sequence
(TE = 29 ms) and fewer slices (18 vs 20), while match-
ing the remaining parameters of the two pulse sequences
(including nominal spatial resolution, matrix size, flip
angle, and TR) and locations of the overlapping slices.
The single-echo processing (Equation 20) was applied to
EPI data and HOTS reconstruction of the third echo to
compare both methods under identical conditions. The
fidelity of source images obtained with the proposed
method and EPI was assessed by measuring mutual infor-
mation (MI) between the source images and the cor-
responding structural images after co-registration.54 The
reconstruction time for the regularized approach was
76 min with B0 correction and 13 min without B0 cor-
rection (per slice per echo, all time frames reconstructed
simultaneously).

4 RESULTS

4.1 Simulation-based evaluations

Figure 3 illustrates the effects of readout shortening and
simultaneous increase of the number of echoes in the pro-
posed scheme, as compared to the previously published
two-echo acquisition.17 The shorter readout diminishes
the T2* filtering effect, significantly improving the image
resolution (Figure 3A, B). Increasing the number of echoes
improves noise properties of the dynamic R2* mapping
(Figure 3C). Indeed, as R2* mapping with two echoes has
near-optimal sensitivity to noise errors only for a very nar-
row R2* range centered around one “optimal” R2* value,55

the noise level varies significantly as R2* changes with the
CA passage (Figure 3D). Using the larger number of TEs
leads to a more optimal acquisition over a wider range of
R2* values positively affecting noise performance of the
dynamic imaging.

Figure 4 demonstrates results of MC-based evaluations
of the regularization approaches for reconstruction of the
multi-echo DSC-PWI images on the example of the last
echo. Several trends relating the regularization design to
image errors can be identified. Independently of the norm,
increasing the model order reduces the bias and simulta-
neously increases the noise level. For a given model order,
the quadratic norm (p = 2) yields a lower noise level than
the sparsity-promoting CS norm (p = 1) but at the same
time provides a less accurate reconstruction. The observed
trends (higher accuracy and lower precision with increas-
ing model order and going from p = 2 to p = 1) are most
conspicuous for the later echoes (Supporting Information
Figure S1, which is available online), i.e., for the image
series with more varying temporal dynamics.

Similar trends are observed for errors of R2* estima-
tion from the multi-echo images (Figure 5). The maps of
bias and noise errors for the peak contrast frame are shown
in Figure 5A. The spatial distribution of noise errors is
non-uniform across WM and GM and reflects the fact that
efficiency mapping depends on the R2* value in each tis-
sue (Figure 3C). The observed trends are supported by
quantitative error estimates averaged across all frames
(Figure 5B). The higher-order models (d = 2,3) signifi-
cantly improve R2* mapping accuracy (compared to the
standard first difference), with d = 3 providing the least
bias, but at the expense of precision, and d = 1 provid-
ing the lowest noise. (The trends continued to the fourth
order difference; results are not shown for brevity.) The
omnidirectional dependence of the noise and bias errors
on the model order and the norm necessitates a balanced
selection of the regularization design for DSC-PWI. The
simulation results suggest that the combination of the sec-
ond difference (d = 2) with CS norm (p = 1) is a viable
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higher-order regularization for DSC-PWI, which provides
the relative bias error close to that of d = 3 (3.2% differ-
ence) and the noise error approaching that of d = 1 (2.3%
difference).

4.2 In Vivo Evaluation

Figure 6 compares effects of several reconstruction designs
on the ΔR∗2 time course (Equation 19) from in vivo
studies. While the first order difference (d = 1) regu-
larizations recover the expected main and recirculation
peaks of the CA bolus propagation, these features are
notably broadened and reduced in maximum values, indi-
cating over-smoothing by this temporal model. Increas-
ing the model order and going from quadratic (p= 2) to
sparsity-promoting (p= 1) norm alleviates the effects. Nor-
malized distance measures (Equation 22) between theΔR∗2
time courses reconstructed with different combinations
of d and p values (Table 1) show that, as in the simula-
tions, the effect from the sparsity-promoting norm is least
pronounced for the highest (d = 3) model order, which
suggests that using CS norms becomes less important for
models capable of a more complete representation of the
dynamics in the temporal series. Again, (d= 2, p= 1) regu-
larization provides restoration of temporal dynamics clos-
est to the regularization that showed the highest accuracy
in simulations (d= 3, p= 1).

Figure 7 shows images reconstructed with and with-
out HOTS regularization (d= 2, p= 1). Reconstruction
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F I G U R E 5 MC-based
comparison of standard and
HOTS penalties with respect to
the accuracy and noise of the
dynamic R2* mapping. (A)
Representative bias and noise SD
maps (peak contrast frame #15).
(B) Bias and noise errors
estimated across all time frames
separately in WM and GM. GM,
gray matter; HOTS, higher order
temporal smoothness; MC,
Monte Carlo; WM, white matter.
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T A B L E 1 Pairwise similarity between temporal waveforms in GM/WM/AIF of in-vivo data reconstructed using reconstructions with
different regularization approaches (A vs. B) as assessed by normalized root-mean-squared distance (Equation 22).

Recon B

Recon A d = 1, p = 2 d = 2, p = 1 d = 2, p = 2 d= 3, p = 1 d = 3, p = 2

d = 1, p = 1 0.33/0.29/0.35 0.12/0.15/0.11 0.07/0.15/0.10 0.13/0.17/0.13 0.11/0.17/0.13

d = 1, p = 2 0.43/0.38/0.41 0.32/0.30/0.32 0.49/0.40/0.42 0.42/0.37/0.39

d = 2, p = 1 0.13/0.12/0.11 0.03/0.04/0.03 0.05/0.08/0.06

d = 2, p = 2 0.14/0.14/0.12 0.10/0.12/0.09

d = 3, p = 1 0.05/0.08/0.05

Abbreviations: AIF, arterial input function; GM, gray matter; WM, white matter.
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F I G U R E 7 A,B, Comparison of the multi-echo spiral images for the peak contrast frame and rCBV maps obtained without (A) and
with (B) HOTS regularization (d = 2, p = 1). Note unresolved spiral aliasing in (A) due to inability of parallel MRI alone to deal with the
targeted undersampling factors (R = 8) for all four echoes. Note much improved image quality for the regularized reconstruction (B). HOTS,
higher order temporal smoothness; rCBV, relative cerebral blood volume.

without regularization (i.e., with parallel MRI alone) is
not able to support the level of undersampling arising
in the proposed high-resolution, multi-echo DSC PWI
(Figure 7A). Enhancing reconstruction with the proposed
regularization permits higher acceleration, successfully
resolving the aliasing for all TEs and resulting rCBV maps
(Figure 7B). Finally, Figure 8 shows representative results
from full quantitative processing of the DSC-PWI series
estimated by the proposed method. The maps show excel-
lent depiction of GM structures and medullary veins.

Figure 9 compares the quality of source images
and perfusion maps obtained with standard (EPI-based)
method and HOTS-regularized reconstruction of the

matching TE of the spiral data. The source images
obtained with the proposed method exhibit significantly
improved fidelity compared to EPI, which is reflected in
21.7% increase in MI between the source images for the
proposed method and structural IR FLASH images com-
pared to MI between the EPI source images and their
corresponding IR FLASH images. The improvements per-
tain to image quality deficiencies commonly observed in
EPI imaging, and include a remarkable reduction in image
distortions, diminished signal pileups and signal dropouts,
all improving the fidelity of the rCBV maps. Of special
note, despite identical nominal resolution prescribed for
comparison purposes, the rCBV map from the proposed
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F I G U R E 8 Quantitative perfusion analysis maps and anatomical reference (source) images obtained with the proposed method in two
representative slice locations.

F I G U R E 9 Comparison of DSC-PWI
with standard (EPI) and HOTS-regularized
reconstruction of the matching TE of the
spiral data (the same volunteer with
matching injection protocol, acquisition
parameters and slice locations). Brain
contours generated from the brain extraction
processing of structural IR FLASH images
were overlaid onto source images to assist in
the evaluations. Note dramatic image quality
improvement with the proposed method
including diminished distortions, signal
pileups and dropouts, which propagate into
rCBV maps. Note an increase of apparent
image resolution and decrease of vessel
blooming with the proposed method.
DSC-PWI, dynamic susceptibility contrast
perfusion weighted imaging; EPI, echo
planar imaging; rCBV, relative cerebral blood
volume.
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method has much higher apparent resolution, thanks to
reduction of T2* filtering effects in its shorter readout. One
impressive effect from the improved PSF can be observed
in a dramatic reduction of vessel blooming in the new
perfusion map.

5 DISCUSSION

We have proposed herein a method that alleviates the chal-
lenges of DSC-PWI by engaging higher order temporal
smoothness property of DSC-PWI signal to enable effi-
cient multi-shot interleaved spiral acquisition over multi-
ple TEs. The ability of the method to restore highly under-
sampled data translates into remarkable improvements in
image quality and resolution as compared to the standard
single-echo, single-shot EPI-based DSC-PWI. While some
observed EPI artifacts can be alleviated by post-processing
(e.g., distortion correction using pre-acquired B0 maps),
the loss of image resolution and signal dropouts can be
only alleviated by engaging shorter readouts, which is
studied in this paper. The attained improvements are
especially important for multi-echo implementation of
DSC-PWI that may overcome many challenges associated
with single-echo methods,14,56 but typically at the expense
of image quality and resolution. For example, compared to
previously described spiral multi-echo DSC-PWI design,17

our method allows a significant resolution increase (from
96 × 96 to 160 × 160) while doubling the number of echoes
(from 2 to 4), enjoying a shorter readout, and allowing a
near 50% increase in the number of slices (from 13 to 20),
all leading to a multifold (∼4.3×) reduction of the voxel
size. The resolution gains may be particularly advanta-
geous for existing perfusion approaches that infer contrast
concentration from the image phase (Supporting Informa-
tion Figure S2) using dynamic quantitative susceptibility
mapping,57 which benefits significantly from higher reso-
lution imaging.

Our strategy of multi-shot acquisition, in which the
desired readout shortening simultaneously leads to sam-
pling a larger number of TEs, is tightly coupled with
the ability of the reconstruction to support the increased
undersampling factors of such datasets. To our knowledge,
this paper is the first to report the utility of temporally regu-
larized reconstruction to support the high undersampling
in DSC-PWI. Temporal TV regularization (d = 1, p = 1)
is a popular approach to accelerate many non-Cartesian
dynamic imaging applications, in which no more specific
prior information about signal other than its temporal reg-
ularity is available. Our results demonstrate that engaging
higher order temporal smoothness may be more benefi-
cial to support higher undersampling in applications with
rapid dynamic changes such as DSC-PWI. Higher order

differences studied in the paper (d = 2,3) provide increas-
ingly more accurate models for DSC-PWI, with further
accuracy gains afforded by CS (𝓁1) rather than quadratic
(𝓁2) norm. The observed trends in performance improve-
ment, along with previously published evidence on utility
of the total generalized variation in cardiac imaging,25

support that higher order differences may be beneficial
not only for previously described spatial58–60 but also for
temporal regularizations, thereby potentially benefiting a
wider range of dynamic applications. However, our results
on the regularization-dependent noise amplification sug-
gest that optimization of the reconstruction scheme for a
given application should consider desired spatial and tem-
poral resolutions (and associated undersampling factors),
trajectory properties, available SNR, and finally, desired
tradeoffs between accuracy and precision. Specifically, in
the context of DSC-PWI, using (d= 2, p= 1) appears to
be beneficial both from accuracy and noise points of view,
though using higher (d = 3) difference may also perform
adequately even without engagement of CS norm.

The applicability of other modern reconstruction
approaches to DSC-PWI may face a separate set of
challenges and requires additional investigation. The
multi-echo acquisition may allow estimation of dynamic
R2* maps from the undersampled data directly (i.e., with-
out reconstruction of source images).61 This may eliminate
the residual R2* blurring (Figure 3A, B) and allow tack-
ling higher undersampling factors. However, combining
the direct parameter mapping with temporal constraints
may lead to a very large non-linear joint optimization
problem, which may be challenging to solve both algorith-
mically and computationally. Next, the temporal dimen-
sion can also be parametrized using the prior knowledge
that contrast propagation dynamics can be modeled as a
linear combination of gamma-variate functions.62 In addi-
tion to the general feasibility concerns of the nonlinear
model-based approaches to DSC-PWI described above,
such model-based extension may face additional estima-
tion and convergence problems due to the large num-
ber of parameters (eight for modeling main CA bolus
propagation and first recirculation). Next, methods based
on the partial separability33,34 rely on full sampling of
k-space center in each temporal frame, which may require
the use of less efficient variable-density spiral trajecto-
ries. Finally, the use of other related methods based on
low-rank matrix completion63 faces the problem of exis-
tence of matrix completion algorithms for non-Cartesian
acquisitions.

One limitation of the reconstruction approach is its
potential sensitivity to motion, which may disrupt the tem-
poral continuity of the signal and invalidate the smooth-
ness assumption in restless subjects. Incorporating motion
correction into the reconstruction is a standard approach
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to alleviate such limitations, but may require modifica-
tions of reconstruction and/or acquisition for simulta-
neous64,65 or navigator-based66,67 estimation of motion
parameters. Deviation of the actual spiral k-space trajec-
tory from a nominal one due to system imperfections
may cause data inconsistencies between different spiral
interleaves, potentially affecting the smoothness model
and hence reconstruction performance, especially for later
echoes. This may be overcome by pre-calibrating the tra-
jectories and using the measured trajectories instead of
nominal ones.68–71 The current implementation does not
account for intrinsic blurring of spiral multi-echo images,
which are used to estimate the B0 map. Using joint esti-
mation may alleviate the problem, potentially leading to
more accurate self-calibrated B0 estimates.72 One interest-
ing extension may be the use of spiral-in trajectories to fur-
ther reduce the acquisition time per slice,73 attaining the
targeted time for the last echo, at the expense of one echo in
the echo train. Increasing the number of coil elements may
promote even higher accelerations.74 Combination of the
method with simultaneous-multi-slice imaging may fur-
ther improve slice resolution and coverage.75 This remains
a subject of future work.
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Figure S1. MC-based comparison of standard (d = 1,
p = 1,2) and HOTS (d> 1, p = 1,2) penalties on the rel-
ative bias and noise standard deviation of pre-contrast
(#8, left) and peak contrast (#15, right) images for all
echo times.
Figure S2. Top row: representative phase images for base-
line, peak contrast, and post-contrast frames of a HOTS
(d= 2, p= 1) time series reconstruction of in-vivo spiral
data (the third echo time). Bottom row: the correspond-
ing difference with pre-contrast phase. Note that bolus
propagation causes significant changes in the image phase
due to modulation of the tissue magnetic susceptibility by
paramagnetic contrast agent.
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