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Abstract: In this paper, we investigate modification of transmission spectra of long-period fiber
grating structures with an acoustic shock front propagating along the fiber. We simulate transmission
through inhomogeneous long-period fiber gratings, π-shift and reflective π-shift gratings deformed
by an acoustic shock front. Coupled mode equations describing interaction of co-propagating modes
in a long-period fiber grating structures with inhomogeneous deformation are used for the simulation.
Two types of apodization are considered for the grating modulation amplitude, such as uniform and
raised-cosine. We demonstrate how the transmission spectrum is produced by interference between
the core and cladding modes coupled at several parts of the gratings having different periods. For the
π-shift long-period fiber grating having split spectral notch, the gap between the two dips becomes
several times wider in the grating with the acoustic wave front than the gap in the unstrained grating.
The behavior of reflective long-period fiber gratings depends on the magnitude of the phase shift
near the reflective surface: an additional dip is formed in the 0-shift grating and the short-wavelength
dip disappears in the π-shift grating.

Keywords: long-period fiber grating; optical spectrum; fiber optics sensor; shock wave; shock front

1. Introduction

In the past two to three decades, fiber gratings have been intensively studied for
applications in optical communications and sensing [1–3]. In the later domain, fiber Bragg
gratings have also been used for detection of acoustic and ultrasound waves [4–6]. More
recently, the scientific community focused their attention on the development of sensors
able to detect deformations caused by shock waves working at frequencies from hundred
kHz up to several GHz; examples of such acoustic shock waves are explosive detonation
waves. In this context, fiber Bragg gratings have already proved their potential and several
papers have been published in literature [7–11], while the interaction of a shock wave front
with a fiber Bragg grating was also studied [12]. It would be of interest to investigate if
similar methods could be used for long-period fiber gratings (LPFGs) and to analyze the
difference between acoustic effects in short and long-period gratings. However, the use
LPFGs for ultrafast applications is discussed only in scarce works related to the detection
of ultrasound waves [13–15]. In general, the mechanism of detection relies on the effect of
acoustic pressure on the grating that can be further amplified if the LPFG is bent. In fact,
different configurations, included interferometric ones, can be employed for detection. So
far, no theoretical work has been published regarding the effect of shock waves on LPFG
transmission spectra.
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Conversely, the interaction of ultrasound with grating sensors can be used to identify
leakage of medical gas delivery systems in health care facilities. This issue has a tremendous
financial impact, which is even more demanding in the current pandemic situation.

For the case of step-changed acoustic fronts, calculating transmission spectra is similar
to the problem of inhomogeneous step-changed LPFGs where some part of the grating is
strained, while the strain sensitivity of LPFGs has been analyzed in Ref. [16]; meanwhile,
the properties of inhomogeneous LPFGs with apodization, chirp, and phase shift have
been investigated in Refs. [17–21], and the step can be produced by concatenating two
LPFGs with different periods [22,23], modulation amplitudes [24,25], and some phase shift
between them [26]. Inhomogeneous gratings can be formed by heating part of the fiber
grating and are used as gain-flattening filters [27].

The spectral response of LPFGs can be controlled by adding a phase shift in the middle
of the grating [19,28,29], while the phase shift is formed by a section of fiber without grating,
mechanically, or by the changes in its refractive index [30,31]. In contrast to homogeneous
LPFGs, a pass band is created in the resonance notches of the phase-shifted LPFGs as a
result of interference between two parts of the grating. The phase-shifted LPFGs have
been used for sensing, in particular, for the measurements of temperature and refractive
index [32], twist [33], strain [34], bending [23], as gain-flattening filters in erbium-doped
fiber amplifiers [35,36], and optical differentiators [37]. Unique response characteristics of π-
phase-shifted fiber Bragg gratings for ultrasonic detection have been described [38]. Higher
sensitivity of the phase-shifted LPFG may be also advantageous when it is employed for
the detection of acoustics waves.

The standard LPFG works in transmission and requires access to both end-sides of
the fiber: one brings the light from a source and the other returns the remaining light to a
photo-detector. In terms of sensing, it is more convenient to create a sensing head having
access to a single end of the fiber. This can be attained by using a reflective surface at the
end of the optical fiber with the LPFG in a self-interference Michelson configuration [39–46],
and the size of the sensing head is halved in this case. An arbitrary phase shift can be
introduced in the center of the grating, if a gap is added between the LPFG and the mirror.
We can also expect different behavior of such a structure under the influence of an acoustic
wave front.

In this work, we investigate modification of transmission spectra of long-period fiber
grating structures with an acoustic shock front propagating along the fiber. We simulate
transmission through homogeneous long-period fiber gratings, π-shift, and reflective
gratings with propagating acoustic shock front producing non-uniform deformation along
the optical fiber. Coupled mode equations describing interaction of co-propagating modes
in a long-period fiber grating structures with inhomogeneous deformation are written and
used for the simulation. We consider the influence of smoothness of the acoustic front and
the magnitude of the phase shift on the spectra of various types of LPFG structures.

2. Long-Period Fiber Grating Structures

The long-period fiber grating has periodical modulation of its refractive index with
period between 100 and 1000 µm (Figure 1a). The transmission spectrum of a LPFG is
a function with several dips centered at resonance wavelengths, which are determined
by the grating period and propagation constants of the core and cladding modes. The
homogeneous LPFGs have symmetric dips with some sidelobes.

The phase-shifted LPFG has a section with modified fiber structure, where the grating
has an additional space between the grating lines or changed propagation constants of the
core and cladding modes (Figure 1b). Each spectral notch of the phase-shifted LPFG is split
into two dips. The influence of the phase shift on the spectrum is strongest when it is in the
center of grating. The relation between the amplitudes of the dips is determined by the
magnitude of the phase shift. The amplitudes are equal for π phase shift; here, we consider
only π-phase-shifted LPFGs in the center of the grating.
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Figure 1. Scheme of LPFG structures deformed by an acoustic shock front: (a) homogeneous,
(b) π-sift, (c) reflective, (d) reflective π-shift.

The reflective LPFG has a reflective coating at the end face of the optical fiber near
the grating. If the grating ends exactly at the end face, no phase shift is introduced for
the propagating modes (Figure 1c). Such a grating works as a single homogeneous LPFG
with doubled length. However, its behavior deformed by acoustic wave differs from the
homogeneous LPFG, because the acoustic wave covers the unwrapped grating starting
from its center, not from one side.

If there is some space between the grating and the end face, a phase shift is formed
(Figure 1d). We obtain a grating that is equivalent in unwrapped form to a phase-shifted
grating or a cascaded grating, and again, when an acoustic wave propagates through the
grating, it starts from the center of the unwrapped grating.

We assume that a longitudinal compressive shock front of acoustic shock wave propa-
gates along the fiber and deforms the grating starting from z = L (Figure 1). The speed
of the acoustic shock wave is defined by the speed of sound in the silica fiber. When the
shock front propagates along the fiber with the LPFG, the grating is divided into two parts;
one part is deformed and its period is decreased and the refractive index is changed due
to strain-optic effect, while, in a homogeneous grating, this would shift the resonance
wavelengths of the spectral peaks. The shift can be positive or negative for different
cladding modes depending on specific fiber structure parameters [47,48]. The other part is
unaffected and its period is not changed.

The front of the shock wave may have different profiles, which is determined by the
time profile of the initial impact and by diffusion of the shock front due to dispersion of
the speed of sound in the fiber and surrounding material. Assuming that the initial shock
front is described by the step function, it can be represented as a Fourier transform of
waves with different frequencies. These waves propagating in a dispersive medium have
different speeds and arrive to the grating in different moments. The resulting sum of the
waves is some smoothed stepwise function. The magnitude of smoothing is determined
by the dispersion of the medium and the distance from the source to the grating. We
consider only the effect of the leading edge of compression of the shock wave, which
is much sharper compared to the trailing edge of expansion. Slow expansion has space
distribution larger than the grating length and covers the whole grating, which acts as a
homogeneous structure in this case.

The strain can be strong enough so that the wavelength shift is large and resonances
of cladding mode with adjacent mode numbers can overlap. This is an alternative kind
of interference, because cladding modes with different mode numbers do not interfere
themselves; indeed, it would take place only interference between them when they couple
back to the core mode. Another situation is possible when the LPFG excites modes of
different types [49]: the overlap of resonances of different types of modes. We will not
consider this situation in this paper.
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The refractive index modulation in a fiber with a LPFG can be written as follows:

n(r, z) = n0(r){1 + g(r)σ(z)[1 + cos(2πz/Λ0)]} (1)

where n0(r) is the refractive index of the fiber without the grating, σ(z) is a slowly varying
envelope of modulation amplitude of the induced refractive index, g(r) is the function
describing radial dependence refractive index modulation (in photoinduced gratings,
g(r) = gco for r ≤ rco and g(r) = 0 for r > rco), and Λ0 is the grating period.

To simulate the process of propagation of acoustic shock front through the LPFG, we
assume that the amplitude of the front profile is described by the following function, which
changes the strain from one level to another with controllable smoothness defined by the
parameter η:

s(z) =
s0

2

[
1 + tanh

z− z0

η

]
(2)

Here, z0 is the position of the shock front. Figure 2 illustrates the dependence of the
amplitude of the shock front on the longitudinal coordinate. The shock front compresses
the fiber, and each point of the fiber is displaced by u(z) in −z direction:

u(z) =
z∫

−∞

s(z) dz (3)

Figure 2. Longitudinal coordinate dependence of amplitude of the shock front.

The refractive index modulation in the deformed fiber takes the form

n(r, z) = n0(r){1 + g(r)σ(z + u(z))[1 + cos(2π(z + u(z))/Λ0)]} (4)

The period of the deformed grating is determined by the function s(z)and decreases a
result of strain: Λ(z) = Λ0(1− s(z)).

In addition to displacement of the fiber grating, the refractive index of the fiber is
modified due to strain-optic effect by

∆ns(r, z) = n0(r)pa(r)s(z) (5)

where pa is the effective strain-optic coefficient pa = n2

2 (p12 − ν(p11 − p12)), p12 and p11
are the strain-optic coefficients, and ν is the Poisson’s ratio. In contrast to fiber Bragg
gratings, the dependence of the refractive index and the strain-optic coefficient in the right
part of the Equation (5) on radius cannot be neglected. Otherwise, the core and cladding
modes would have identical sensitivity to strain, and their contributions in the wavelength
shift, as we show below, would cancel each other.
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The dielectric permittivity and its change in the deformed and strained fiber can be
expressed from Equation (4) as

ε(r, z) = n0(r)
2(1 + 2pas(z)){1 + 2g(r)σ(z)[1 + cos(2π(z + u(z))/Λ0)]}

∆ε(r, z) = 2n0(r)
2{pas(z) + g(r)σ(z)[1 + cos(2π(z + u(z))/Λ0)]}

(6)

Here we have neglected the terms of the second order of smallness in the change of
dielectric permittivity.

3. Coupled Mode Equations

The long-period fiber gratings couple modes propagating in the same direction. We
consider the case of one core mode that is coupled to the forward propagating cladding
modes. The interaction with backward propagating modes may occur only at the endface
of the fiber for reflective LPFGs. The coupling coefficient between two co-propagating
modes is defined as the following overlap integral over the fiber cross-section:

Kµν(z) =
ωε0

4

∫
∞

E∗µ(r, ϕ)∆ε(r, z)Eν(r, ϕ)dS (7)

where ∆ε(r, z) is the perturbation of dielectric permittivity in the fiber as a result of grating
inscription and propagating acoustic wave, Eµ(r, ϕ) and Eν(r, ϕ) are the transverse distri-
butions of electric field of HE1µ and HE1ν modes, respectively, ω is the frequency, and ε0 is
the dielectric constant of vacuum.

The coupled mode equations that describe the amplitudes of modes can be written as

dAµ

dz
= i∑

ν

Kµν Aν exp
(
i(βν − βµ)z

)
(8)

where βµ and βµ are the propagation constants of the µ-th and ν-th modes. We represent
the coupling coefficient, taking into account that the perturbation of dielectric permittivity
depends on coordinate z, as

Kµν(z) = γµν(z) + κµν(z)[1 + cos(2π(z + u(z))/Λ0)] (9)

The two coupling constants γµν(z) and κµν(z) describe mode coupling due to strain
and modulation in the grating, respectively:

γµν(z) =
ωε0

2
pas(z)

rcl∫
0

n0(r)
2E∗µ(r)Eν(r)2πrdr (10)

κµν(z) =
ωε0

2
σ(z)

rcl∫
0

n0(r)
2g(r)E∗µ(r)Eν(r)2πrdr (11)

We have assumed here that only HE1µ modes without azimuthal structure interact,
because the fiber is straight and has no birefringence and the grating is radially symmet-
ric. The coupled mode equations are obtained by ignoring quickly oscillating terms and
describe slowly varying amplitudes of two co-propagation modes:

dA
dz = i[γco−co(z) + κco−co(z)]A + i

2 κco−ν(z)B exp(−i2δz)
dB
dz = i[γν−ν(z) + κν−ν(z)]B + i

2 κco−ν(z)A exp(i2δz)
(12)
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where A and B denote the amplitudes of co-propagating modes HE11 and HE1ν, respec-
tively, and the detuning parameter is

δ(z) =
1
2
(βco − βν)−

(
1 +

u(z)
z

)
π

Λ0
(13)

For obtaining Equation (12), we use the equality of coupling constants κco−ν = κν−co.
The resonance condition for mode coupling is

δ + (γco−co − γν−ν + κco−co − κν−ν)/2 = 0 (14)

The effective refractive indices n(eff) = β/k0 depend on wavelength (k0 = ω/c is the
wavenumber in vacuum) and can be approximately written in a range of tens of nanometer
around one of the cladding mode dips as n(eff)(λ0) + ∆λdn(eff)/dλ. Then, we write for the
detuning parameter

δ =
π∆λ

λ0

[
−n(eff)

co − n(eff)
ν

λ0
+

(
dn(eff)

co

dλ
− dn(eff)

ν

dλ

)]
− u(z)

z
(15)

For simulation, we use parameters of SMF-28 fiber at wavelength λ0 = 1550 nm: core
radius rco = 4.2 µm, cladding refractive index ncl = 1.4440, core refractive index nco =

1.4494, and the effective refractive index of the core mode n(eff)
co = 1.4465. Integrating over

the fiber cross-section, we obtain the following approximations for the coupling constants:

γco−co(z) = (1 + αco−co)ncl pas(z)k0

γν−ν(z) = (1 + αν−ν)ncl pas(z)k0

κco−co(z) = 0.78 nclσ(z)k0

κν−ν(z) = 0

κco−ν(z) = χν nclσ(z)k0

(16)

The coefficient 0.78 in the self-coupling constant κco−co is obtained as the self-overlap
intergal of the core mode over the fiber core. The overlap integrals γco−co and γν−ν are
equal to ncl pas(z)k0 with some small corrections αco−co and αν−ν, which are caused by
several effects induced by deformation and strain in the fiber [12]. The cross-coupling
coefficient κco−ν depends on mode number via χν: χν = 0.030, 0.055, 0.076, 0.092 for
ν = 2, 3, 4, 5, respectively (see Appendix A).

As follows from Equation (14), when the fiber is strained, the wavelength shift of a
spectral dip is determined by the difference of self-coupling constants depending on strain:

γco−co − γν−ν = (αco−co − α ν−ν)ncl pas(z)k0 (17)

We take αco−co − α ν−ν = −0.01, which is close to the first and largest overlap inte-
gral for the compression of the core refractive index profile under the deformation (see
Equations 21 and 35 in [12]). As compared to fiber Bragg gratings, the effect of changing
phase of the strained grating is smaller, because the period is smaller by several orders of
magnitude. The mechanical displacement of the long-period grating end under strain is of
the same order as the grating period.

4. Simulation of Uniform LPFG

We begin simulation with a uniform grating having constant modulation amplitude of
induced refractive index along the length of the fiber. Let the grating has a period of 430 µm.
Then the resonance of the fifth mode HE15 is centered at 1550 nm. At this wavelength, we
can find the effective refractive index of the fifth cladding mode n(eff)

co = 1.44306. We choose
such amplitude of refractive index modulation σ = 1.48 · 10−4 that the transmission in the
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center of resonance is equal to zero. This corresponds to the coupling constant between the
core the fifth cladding mode κco−5 =1.6 · 10−4 µm–1. All parameters that we used in the
simulation are listed in Table 1. The numerical simulation was made in Matlab (R2012b).

Table 1. Parameters used in simulation.

Parameter Designation Numerical Value

Wavelength λ0 1550 nm
Core radius rco 4.2 µm

Core refractive index nco 1.4494
Cladding refractive index ncl 1.4440

Strain-optic coefficient pa 0.22
Grating length L 40 mm
Grating period Λ 430 µm

Refractive index modulation σ 1.48 · 10−4

Effective refractive indices n(eff)
co 1.44649

n(eff)
5

1.44306
Coupling coefficient κco−5 1.6 · 10−4 µm–1

Strain correction αco−co − α ν−ν –0.01

The transmission spectra of a regular LPFG are shown in Figure 3 for different values of
strain in stepwise acoustic front (η = 0) located in the center of the grating (z0 = L/2). The
spectrum of the uniform grating without strain is shown in the lower plot. This spectral shape
is a dip with minimum transmission in the center and represents the standard LPFG notch.

Figure 3. Transmission coefficient of grating for LP05 cladding mode, when the acoustic front is in its
center z0 = L/2, for different strains s0 = 0, 6, 12, and 18 mstrain.

The acoustic front propagating through the grating divides the grating into two parts
with different parameters. Such a grating is equivalent to a step-changed grating [22],
and these parts have different resonance wavelengths. The core and cladding modes
coupled at the two sections interfere and form an interference spectrum in transmission.
It is symmetric, because the step is in the center of the grating. The spectrum shifts to
shorter wavelengths with an increasing amplitude of the acoustic front due to decreasing
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average period of the grating. We can also see that the presence of the shock front in the
fiber leads, first, to formation of a broader notch and, second, to splitting of the dip. For
high strains, the spectrum completely splits into two dips. Each dip corresponds to its own
homogeneous part of the grating.

Figure 4 shows the influence of smoothness parameter η on grating spectrum. The
plots are presented for three magnitudes of the parameter η = 0, 12.5 to 25 mm for the
case of acoustic front in the center of the grating and strain s0 = 18 mstrain. It can be seen
that two separate peaks merge in one, when the smoothness becomes comparable with the
grating length.

Figure 4. Transmission of grating for LP05 cladding mode, when the acoustic front is in its center
z0 = L/2, for η = 0, 12.5, and25 mm (s0 = 18 mstrain).

Figure 5 shows evolution of grating spectra with z0 moving through the LPFG for
three values of smoothness η: 0, 10 mm, and 20 mm (s0 = 18mstrain). The dip transits
continuously and smoothly from one wavelength to another, when the smoothness is
20 mm. In this case, interference effects are not observed. For η ≈ 10 mm, the shifting
process in wavelength is accompanied by the appearance of a three-prong fork shape and
splitting of the spectrum, when the front is in the middle of the grating. For step-changed
shock front with η = 0, one dip splits into several smaller disappearing dips, and a new dip
appears at a shifted wavelength with multiple interference fringes around the main dips.

Figure 5. Evolution of transmission spectra with transition point z0 moving through the grating for
three magnitudes of smoothness η: (a) 0, (b) 10 mm, and (c) 20 mm (s0 = 18 mstrain).

Let us consider the dependence of spectral characteristics of the LPFG with an acoustic
front in its center. When the length increases, the transmission loss grows overall. The
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spectrum is wide for short grating lengths and forms a band centered at 1530 nm (as
illustrated in Figure 6). Then, for lengths above 40 mm, two dips are formed at the
wavelength corresponding to the strained and non-strained parts of the grating. Further
increasing length results in more narrow dips and the appearance of higher sidelobes. This
behavior is similar to the behavior of spectra of uniform long-period gratings. Something
like a spectral standing wave with increasing number of sidelobes is formed between two
main dips.

Figure 6. Evolution of transmission spectra with increasing grating length, when the acoustic front is
in its center z0 = L/2, for η = 0 mm and s0 = 18 mstrain.

In practice, some apodization can be applied to gratings to produce a smoother
spectrum. This is described in our case by the function σ(z). As an example, we calculated
the transmission spectrum of the LPFG with raised-cosine apodization (Figure 7). It is
similar to the spectrum of the uniform grating but has no spectral sidelobes on long-
wavelength side and dipper sidelobes on short-wavelength side. For the stepwise wave
front, the transition of the dip from the initial wavelength to the shifted wavelength is
asymmetric and irregular, as compared to uniform grating. There is also an effect of loss
concentration at z0/L = 0.23 and wavelength 1497 nm. For η = 25 mm, one main dip
is formed closer to the center wavelength, and it is accompanied by smaller dips on the
short-wavelength side. Compared to Figure 5, no interference fringes are seen on the
long-wavelength side of the picture.

Figure 7. Evolution of transmission spectra for raised-cosine grating and two magnitudes of smooth-
ness (a) η = 0and (b) 25 mm (s0 = 24 mstrain).
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5. Simulation of π-Shift LPFG

The structure of π-shift LPFG is shown in Figure 1b. We assume that the phase shift
is in the center of the grating. For the simulation of transmission, we divide the whole
structure into two parts. Then, we obtain solution of the coupled mode equations in the
first part, which gives us the amplitudes of the core and cladding modes. Next, we add a
phase shift to one mode and solve the coupled mode equations in the second part of the
grating. Finally, we find transmission coefficient from the amplitudes of the modes at the
end of the grating.

The spectrum of a π-shift LPFG has a transmission maximum in the center of the
grating with two rejection bands on the sides, while the maximum is the result of destructive
interference is caused by the introduction of the phase shift at the center. The same phase
shift produces two rejection bands that are formed by constructive interference at the side
wavelengths. The maximum between the two rejection bands is largest when the phase
shift is at the center of the grating; if the amplitude of modulation in the grating is the same,
the two rejection bands are shallower, compared to the single band the uniform grating.

When the acoustic front propagates through the phase-shifted LPFG, the fiber grating
is divided at first into three sections: unstrained before phase shift, unstrained after
phase, strained after phase. After the wave passes the phase shift, the three sections are
the following: unstrained before phase shift, strained before phase, and strained after
phase shift.

Evolution of the LPFG’s spectrum with the front moving along the grating is presented
in Figure 8. We can see from the figure that the acoustic front shifts the two dips of the
π-shift LPFG to the short-wavelength side of the spectrum. For small strain, the shift
is accompanied by flow of intensity of one dip into another. With increasing strain, the
gap between the dips becomes several times wider than for unstrained grating, while
for high strain, the transition of the dips becomes discontinuous; they dissolve at the
initial wavelengths and appear at the new wavelengths. The sensitivity of the π-shift
LPFGs to the acoustic wave is similar to that of the uniform LPFGs; at the same time, the
regular spectrum with a continuous shift of the dips is destroyed at lower strains due to
narrower dips.

Figure 8. Evolution of transmission spectra with transition point z0 moving through the π-shift LPFG
for different strains: (a) s0 = 9, (b) 18, and (c) 24 mstrain (η = 0).

Figure 9 shows how the spectra are changed as a result of smoothing of the acoustic
wave front. The smoothness parameter in this simulation is 10 mm. It can be seen that the
rejection bands become smoother and wider when compared to the stepwise front when
the front covers half of the grating. At the same time, the gap between the bands is almost
unchanged and is not widened.
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Figure 9. Evolution of transmission spectra with transition point z0 moving through the π-shift LPFG
for smoothness η = 10 mm (strain s0 = 18).

6. Simulation of Reflective LPFG

The reflective LPFG is formed by making a mirror near the end of the grating. De-
pending on the space between the end of the grating and the mirror, we can obtain the
structure that works as either uniform, phase-shifted, or cascaded LPFG. In Figure 10, an
equivalent scheme of reflective LPFG is shown with the right side produced by reflecting
the left side in the mirror, which is in the center of the figure. Thus, when an acoustic wave
propagates through the fiber, the resulting structure represents five sections: non-deformed,
deformed, phase shift, deformed, non-deformed. Thus, the simulation was carried out for
the LPFG with the account of these five sections. In the equivalent scheme, the acoustic
wave propagates from the center to the sides.

Figure 10. Equivalent scheme of reflective LPFG structure with π-shift.

When the phase shift is zero, the initial grating is uniform, and its spectrum contains
one notch at 1550 nm (Figure 11a); the incoming acoustic wave introduces a phase shift in
the middle of the grating and compresses the fiber. As a result, the notch is shifted to shorter
wavelengths and split into two when the new notch appears at the initial wavelength,
and additional interference dips appear on both sides of the spectrum. When the acoustic
front covers the whole grating, the LPFG becomes uniform again and the single notch is
reconstituted in a shifted wavelength.

For the reflective π-shift LPFG, the initial spectrum coincides with the spectrum of
transmissive π-shift LPFG with two symmetric dips (see Figure 11b). When the acoustic
front propagates through the grating, the short-wavelength dip quickly disappears and
appears back when the larger part of the grating is strained by the front. The long-
wavelength dip shifts almost unaffected. Thus, the reflective π-shift LPFG has a more stable
spectral dip that can be used as a signal for sensing applications. In terms of wavelength
versus strain sensitivity, different kinds of LPFGS are similar.
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Figure 11. Evolution of transmission spectra with transition point z0 moving through the reflective
LPFG for strain s0 = 18 with (a) zero phase shift and (b) π-shift.

7. Conclusions

We have studied the spectral behavior of LPFGs deformed by propagating acoustic
shock front. Transmission of light through uniform, π-shift, and reflective LPFGs has been
simulated using coupled mode theory for co-propagating core and cladding modes with
inhomogeneous coupling coefficients. We have shown that, in general, a compressive
acoustic shock front propagating through various LPFG structures shifts the resonances of
cladding modes to shorter wavelength due to strain in the fiber. However, there are more
complex spectral effects, which depend on parameters of the acoustic wave and the grating,
such as front amplitude and smoothness, location of the front in the grating, magnitude of
the phase shift, and the grating length. The spectrum represents a result of interference
of the core and cladding modes interacting differently in different parts of the structure:
strained and unstrained, before and after phase shift.

When the smoothness of the acoustic front is compared to the grating length, the
notch of a uniform LPFG shifts continuously to shorter wavelengths. Otherwise, when
front is steep with smoothness parameter that is significantly less than the grating length,
the shifting notch splits into two dips with interference fringes around; indeed, LPFGs
with the raised-cosine profile have interference fringes at shorter wavelength side. The
spectral behavior of uniform LPFGs strained by a propagating shock front is similar to
Bragg gratings, but the spectrum of LPFG cannot be smoothed by using cosine apodization
at grating edges due to periodic dependence of transmission on the length of LPFG. The
period and length of LPFGs is larger than that of fiber Bragg grating, and characteristics of
the structure related to the smoothness of the shock front are changed proportionally.

For the π-shift LPFG having split spectral notch, the gap between the dips becomes
several times wider than the gap in the unstrained grating. Increasing smoothness of
the acoustic front results in continuous transition of the grating spectra with reduced
interference effects. The rejection bands become wider and the gap between the bands is
not widened.

The notch of the reflective LPFG without additional phase is shifted to shorter wave-
lengths with appearance of a new notch at the initial wavelength under the moving acoustic
front, while the long-wavelength dip of the reflective π-shift LPFG remains almost unaf-
fected by the acoustic front. The reflective π-shift LPFG has advantages for application in
sensors due to its more stable spectral characteristics and one fiber connection needed for the
sensor. In terms of sensitivity, different types of LPFG structures have similar parameters.

The results of this investigation can be used for creating LPFG sensors based on the
measurement of transmission spectra around one of the cladding mode resonances for
detecting shock waves. Furthermore, this analysis is crucial to assess the possibility to
implement long-period fiber gratings-based sensors in order to detect leakage of medical
gases in health care unities (pressure > 10 MPa), by detection of ultrasound waves (fre-
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quency < 100 kHz and 40–60 dB) produced in pipeline systems exhibiting different kinds
of anomalies.
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Appendix A. Calculation of the Cross-Coupling Coefficient

The coupling between the core mode and different cladding modes in the LPFG is
determined by the cross-coupling coefficient κco−ν (see Equation (16)). We represent this
coefficient as function of dimensionless constant χν expressed through the overlap integral:

κco−ν(z) = χν nclσ(z)k0 (A1)

χν =
ωε0

nclk0

rcl∫
0

n0(r)
2g(r)E∗co(r)Eν(r)πrdr (A2)

Assuming that the grating is written in the fiber core, we have g(r) = 1 for r ≤ rco
and g(r) = 0 for r > rco. The refractive index distribution n0(r) in the core is, therefore,
equal to nco and can be approximated as ncl. Then, we obtain

χν =
ωε0ncl

k0

rco∫
0

E∗co(r)Eν(r)πrdr (A3)

The electric fields of the modes are normalized to 1 W of power carried by each mode.
In this case, the mode fields satisfy the following orthogonality relation:

∞∫
0

E∗µ(r)Eν(r)2πrdr =
2δµνωµ0

βν
(A4)

where µ0 is the vacuum permeability, and δµν is the Kronecker delta. In Figure A1, the
electric fields of the core mode and four cladding modes are plotted.

By integration of the product of two electric fields over the fiber core, which is depicted
a gray rectangle in the figure, we can find the overlap constant χν for coupling of the core
mode with four cladding modes: χν = 0.030, 0.055, 0.076, 0.092 for ν = 2, 3, 4, 5, respectively.
The field amplitude in the core is highest for the core mode HE11 and grows with the mode
number for the cladding modes HE1ν. The overlap constant χν changes correspondingly.
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Figure A1. Electric field distributions of five fiber modes. The gray rectangle is the integration area
for calculating the overlap integral.
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