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A B S T R A C T

Background and objectives: The diversity of eutherian reproductive strategies has led to variation in

many traits, such as number of offspring, age of reproductive maturity and gestation length. While

reproductive trait variation has been extensively investigated and is well established in mammals, the

genetic loci contributing to this variation remain largely unknown. The domestic dog, Canis lupus

familiaris is a powerful model for studies of the genetics of inherited disease due to its unique history

of domestication. To gain insight into the genetic basis of reproductive traits across domestic dog

breeds, we collected phenotypic data for four traits, cesarean section rate, litter size, stillbirth rate and

gestation length, from primary literature and breeders’ handbooks.

Methodology: By matching our phenotypic data to genomic data from the Cornell Veterinary Biobank,

we performed genome-wide association analyses for these four reproductive traits, using body mass

and kinship among breeds as covariates.

Results: We identified 12 genome-wide significant associations between these traits and genetic loci,

including variants near CACNA2D3 with gestation length, MSRB3 and MSANTD1 with litter size,

SMOC2 with cesarean section rate and UFM1 with stillbirth rate. A few of these loci, such as

CACNA2D3 and MSRB3, have been previously implicated in human reproductive pathologies, whereas
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others have been associated with domestication-related traits, including brachycephaly (SMOC2) and

coat curl (KRT71).

Conclusions and implications: We hypothesize that the artificial selection that gave rise to dog breeds

also influenced the observed variation in their reproductive traits. Overall, our work establishes the

domestic dog as a system for studying the genetics of reproductive biology and disease.

LAY SUMMARY The genetic contributors to variation in mammalian reproductive traits remain largely

unknown. We took advantage of the domestic dog, a powerful model system, to test for associations

between genome-wide variants and four reproductive traits (cesarean section rate, litter size, stillbirth

rate and gestation length) that vary extensively across breeds. We identified associations at a dozen loci,

including ones previously associated with domestication-related traits, suggesting that selection on dog

breeds also influenced their reproductive traits.

K E Y W O R D S : life history; artificial selection; tradeoff; preterm birth; prematurity; pregnancy

INTRODUCTION

Mammals exhibit wide variation in traits associated with reproduc-

tion [1–3]. For example, gestation length can range from 12 days in

the Gray dwarf hamster, Cricetulus migratorius, to 21 months in the

African bush elephant, Loxodonta africana [4–6]; neonate size can

range from <1 g in the shrew family (Soricidae), to more than a

metric ton in the baleen whales (Balaenopteridae) [4, 6]; and neo-

nates can be either precocial (e.g. cricetid rodents, rabbits and

canids) or altricial (e.g. hystricomorph rodents, ungulates and cet-

aceans) [1]. This variation in reproductive traits also extends to

methods of implantation [7], structure of the placenta [8, 9] and lac-

tation strategies [10, 11]. Not surprisingly, many reproductive traits

also exhibit substantial intraspecific variation [5]. For example, many

mammals exhibit intraspecific variation in gestation length, including

primates [12], rat and rabbits [13], as well as the domesticated cattle

[14] and thoroughbred horses [15]. Similarly, body fat percentages,

which are associated with the energetics of reproduction, vary greatly

between wild and captive baboons, and intraspecific variation among

captive lemurs can vary from 8 to 41% [16].

The existence of phenotypic variation in reproductive traits is

well established, and can inform our understanding of the factors

that shape patterns of survival and reproduction in both agricul-

tural [17–20] and human populations [21]. Not surprisingly, most

genome-wide association (GWAS) studies of reproductive traits

focus on economically important traits in domesticated species,

such as reproductive seasonality in rabbits [17], infertility in pigs

[18] and dairy traits in cattle [19]. GWAS studies focused on under-

standing human reproductive biology and its associated

pathologies have also shed light on the genetic basis of reproduct-

ive traits, including birth weight [22] and gestational duration or

length [23, 24]. For example, maternal variation in six genomic loci

(ADCY5, AGTR2, EBF1, EEFSEC, RAP2C and WNT4) is associated

with gestational duration and preterm birth [24]. While these

studies contribute to our understanding of the genetic architecture

of reproductive traits, we still understand very little about the mo-

lecular pathways underlying this variation and are unable to ex-

plain the majority of the heritability in reproductive traits [25–27].

To address this challenge, we studied the genetics of reproduct-

ive traits using the domestic dog as a model system. The dog is

well-suited to this question, because the domestication bottleneck

followed by intense artificial selection and inbreeding imposed over

the past 300 years has led to the generation of more than 340

recognized breeds that exhibit dramatic morphological variation

[28–30]. Domestic dog breeds also show substantial variation in

their reproductive traits. For example, Pomeranians and Norfolk

Terriers typically have only 2 pups per litter, whereas Dalmatians

and Rhodesian Ridgebacks typically sire 8–9 pups per litter [31].

Similarly, 80–90% of French Bulldogs and Boston Terriers are born

via cesarean section due to cephalopelvic disproportion, whereas

only 2–3% of Australian Shepherds and Shar Peis require cesareans

[31]. Recent analyses have begun to study the genetic mechanisms

that underlie the remarkable morphological variation between

modern dog breeds in diverse traits such as snout length, ear

erectness and tail curliness [32–35], as well as genetic disease [36].

To gain insight into the genetic basis of reproductive traits

across domestic dog breeds, we collected phenotypic data for four

reproductive traits, namely cesarean section rate, litter size, still-

birth rate and gestation length. We synthesized data from the pri-

mary literature and breeders’ handbooks to obtain coverage of

between 23 (gestation length) and 97 (cesarean section rate)

dog breeds, as well as body mass data from 101 dog breeds. By

matching our phenotypic data to genome-wide genotypic data

from the Cornell Veterinary Biobank, we performed GWAS ana-

lyses and identified 12 genetic loci that are significantly associated

with these reproductive traits (using log body mass as a covariate).

Some of these variants are in or near genes previously implicated

in human reproduction-related pathologies, whereas others are in

or near genes associated with domestication-related traits. For

example, we found that variation in a gene previously identified

to be involved in brachycephaly is also significantly associated with

rates of cesarean sections and that variation in genes previously

linked to coat phenotypes, such as curliness, is also associated

with litter size. These results suggest that selection for breed-spe-

cific morphological traits during dog domestication may have also
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influenced variation in reproductive traits. More broadly, our re-

sults illustrate that the domestic dog is a promising and tractable

system for studying the genetics of reproductive traits.

METHODS

Genotypic and phenotypic data

To identify single nucleotide polymorphisms (SNPs) that are sig-

nificantly associated with reproductive traits, we used a previously

published data set containing 160 727 SNPs from 4342 individual

dogs across 162 breeds genotyped using the Illumina 173k

CanineHD array that were downloaded from http://datadryad.

org/resource/doi: 10.5061/dryad.266k4 [32]. Following the ori-

ginal authors, SNPs with a genotyping rate (i.e. the proportion

of genotypes per marker with non-missing data) below 95% and

heterozygosity ratios (i.e. the ratio of the number of heterozygous

SNPs divided by the number of non-reference homozygous SNPs)

below 0.25 or above 1.0 were removed. To reduce potential error

stemming from SNP misidentification in our analyses, we

included only SNPs with a minor allele frequency (MAF) >0.05,

since SNPs with very low MAFs are more prone to error due to the

small number of samples that have the called nucleotide.

Application of these two filters removed 10 893 SNPs, which re-

sulted in a final data set that contained 149 834 variants.

Phenotypic reproductive trait data for litter size (number of

pups), cesarean rate, stillbirth rate and gestation length across

128 breeds were collected from a variety of breeder’s handbook

and primary journal articles [31, 37–47] (see also Supplementary

File S1). We also included body mass as a control trait. Each breed

was assigned the average breed value for each phenotype; the full

list of the values for all four reproductive traits and body mass

across the 128 breeds is provided in Supplementary Table S1. For

the body mass control, our collected trait values overlapped with

the genotypic data [32] for 101 breeds corresponding to 3384 in-

dividuals (Table 1). For the reproductive traits, our collected

cesarean section rate trait values overlapped with the genotypic

data for 95 breeds (3194 individuals), our litter size trait values for

60 breeds (2617 individuals), our stillbirth rate values for 56

breeds (2590 individuals) and our gestation length values for 23

breeds (1908 individuals) (Table 2). Finally, we note that while we

replicate some of the signals for the body mass GWAS from

Hayward et al. [32], where they use individual phenotype values,

we instead assigned breed averages (Supplementary Fig. S1). We

performed this analysis in order to validate that breed averages are

a useful proxy for individual phenotype values when testing the

genetic architecture of complex traits.

Genome-wide association analyses

To test SNPs for associations with the four reproductive traits of

interest, we conducted a GWAS analysis for each individual trait

using log body mass as a covariate, and accounting for kinship, as

well as for body mass as a proof of concept. For each phenotype,

we first log transformed all breed-average phenotype values. We

then performed a Shapiro–Wilk test of normality (Table 2) for the

distribution of log phenotypes for each phenotype and normalized

using a Box–Cox transformation when necessary (cesarean sec-

tion rate, litter size). All GWAS analyses were run using a linear-

mixed model as implemented in the program GEMMA, version

0.94 [48]. Numerous studies have shown that the vast majority of

morphological, ecological and physiological traits vary as a func-

tion of an organism’s body mass [49–51] as well as a function of

kinship [32, 33]. Most notably for the purpose of this study, body

mass has been previously shown to be strongly correlated with

litter weight [52–54], neonate weight [52–55] and gestation length

[6, 52, 53, 56, 57].

To ensure our analysis reflected the reproductive trait of interest

and not SNPs associated with body mass, we used log body mass

as a covariate for all reproductive trait analyses. To be able to do

so, we pruned our genotypic data so that they included only dog

breeds (and individuals) for which we had both body mass and

reproductive trait of interest values (see Supplementary Table S1).

To account for population stratification, we calculated a kinship

matrix of the included breeds using GEMMA and included it as a

random effect in each association analysis. Each value of a kinship

matrix describes the probability that a particular allele from two

randomly chosen individuals at a given locus is identical by des-

cent [58]. Finally, to control for inflated P-value significance from

the testing of multiple hypotheses, we used a significance thresh-

old of P = 3.3� 10�7 (Bonferroni cutoff of �= 0.05, N = 149 834)

for all analyses. All reported P-values are Wald’s P-values as

calculated in GEMMA [48].

Finally, to validate variants significantly associated with at least

one reproductive life history trait in the domestic dog, we per-

formed a permutation analysis. For each trait, we randomly

permuted the assignment of breed-specific phenotypes while

holding body mass constant for each breed across 1000 permu-

tations. In each permutation, we used the transformed phenotype

Table 1. Numbers of breeds and individ-

uals with overlapping phenotypes and genotypes

included in our analysis

Trait Number of

overlapping

breeds

Number of

overlapping

individuals

Body mass 101 3384

Cesarean section rate 97 3194

Litter size 60 2617

Stillbirth rate 57 2590

Gestation length 23 1908
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value for each breed. Specifically, we used the log phenotype trans-

formation for gestation length and stillbirth rate, and normalized

the log phenotype transformations for cesarean section and litter

size (Table 2). We then regressed the randomly assigned repro-

ductive phenotypes onto log body mass and assigned the residual

for each breed as the phenotype for all of the individuals of that

breed. Next, using GEMMA [48], we performed an association test

for each variant to obtain a single permuted P-value. The permu-

tation P-value in Table 3 corresponds to the number of times that a

single permuted P-value was less than the empirical P-value from

the original analysis. Any variant with a permutation P-value

>0.05 was acknowledged as a potential false positive association.

To gain insight into the genetic elements putatively involved with

the traits of interest, we mapped all SNPs found to be significantly

and marginally associated with each trait of interest using custom

perl and R scripts to the CanFam3.1.87 dog genome assembly [59,

60]. Transcript IDs were mapped to gene names using

bioconductor biomaRt interface to the ENSEML biomart [61]. If

the significant SNP was outside gene boundaries, we reported

the nearest upstream or downstream gene. Manhattan plots and

quantile–quantile plots were generated using R 3.1.2 [62] with the

qqman package [63]. Calculation of the l inflation parameter, a

metric of any existing systematic bias in the data set, was calculated

using the GenABEL R package [64] and was used to interpret Type I

error rate in the multiple testing of GWAS analyses [65].

RESULTS

To identify SNPs that are significantly associated with four repro-

ductive traits in domestic dog breeds, we conducted across-breed

GWAS analyses using a multivariate linear-mixed model imple-

mented in the program GEMMA [48]. Number of individuals and

distribution of breed varied with analysis (Supplementary Table S1).

After filtering for MAF (MAF< 0.05; 10 804 SNPs were excluded),

149 834 ; 834SNPs were included in the GWAS analysis for each

reproductive trait. To control for inflated P-value significance from

the testing of multiple hypotheses, we used a significance threshold

of P = 3.3� 10�7 (Bonferroni cutoff of � = 0.05, N = 149 834; 834)

for all analyses. To validate our GWAS approach and analytical

choices, we first used our collected values for body mass, a trait

whose genetic associations have been previously extensively

studied in dogs [32]. However, whereas Hayward et al. [32] used

individual body mass measurements in their analyses, we assigned

the breed-average body mass as the phenotype for all individuals in

a breed to test whether we could replicate their inferred associations

for a complex trait when we used average breed value as a proxy. As

expected, our analysis recovered the major genes associated with

dog breed body mass variation, including IGF1 (P = 2.1� 10�31),

SMAD2 (P = 1.2� 10�17) and IGF2BP2 (P = 5.1� 10�11)

�10�11Þ(Supplementary Fig. S1 and Table S2).

Genetic loci that significantly associate with cesarean

section rate

To examine whether there is variation in cesarean section rate

among breeds, we first identified cesarean section rate values

for a total of 97 of the 162 dog breeds with genotypic data

(Supplementary Table S1). The cesarean section rate values were

derived from a British survey across 151 breeds covering 13 141

bitches, which had whelped 22 005 litters over the course of a

10 year period [30]. The frequency of cesarean sections was

estimated as the percentage of litters reported to be born by

cesarean section. Among the 97 breeds with overlapping genetic

data, the median cesarean section rate is 17.1%, with a minimum

of 0% in Curly Coated Retrievers and Silky Terriers and a max-

imum of 92.3% in Boston Terriers (Supplementary Fig. S3A).

To identify SNPs that are significantly associated with the

observed variation in cesarean section rate across domestic dog

breeds, we conducted an across-breed GWAS analysis using

149 834149; 834 SNPs and cesarean section values across 95

dog breeds (Fig. 1A, Supplementary Fig. S2A). As outlined in

the ‘permutation analysis’ section of the Methods, we additionally

performed a breed-specific permutation and present those vari-

ants with a permutation P-value >0.05 as suggestive associ-

ations. We identified four significant SNPs (Supplementary

Table S3), all of which mapped to genes, namely sparc-related

modular calcium-binding protein 2 (SMOC2, uncorrected

P = 2.0� 10�7, Perm P = 0.011), two linked SNPs (uncorrected

P = 3.08� 10�7, Perm P = 0.001 and uncorrected

P = 1.61� 10�7, Perm P = 0.001, respectively) that mapped to

MAT2B, and a fourth that mapped to the intergenic region be-

tween the CD36 glycoprotein and a lincRNA (uncorrected

P = 9.7� 10�8, Perm P = 0.024) (Fig. 1A, Table 3).

The first significantly associated SNP is in the intron between

exons 13 and 14 of SMOC2, a gene that is associated with dog

brachycephaly and whose variation accounts for 36% of facial

length variation in dogs [35, 66]. In humans, SMOC2 is highly

expressed in endometrium as well as other reproductive tissues,

including the fallopian tubes, ovaries and cervix (Fig. 2) [67]. The

second and third SNPs are nearby the MAT2B gene. Although not

previously associated with reproductive traits, this gene has been

shown to play a major role in intramuscular preadipocyte differ-

entiation in domestic pigs [68]. Finally, the fourth significant SNP

Table 2. Shapiro–Wilk test of normality

for the log transformed distribution of values

for each phenotype

Trait Shapiro–Wilk P-value

Cesarean section 0.026

Gestation length 0.491

Litter size 0.007

Stillbirth rate 0.145
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is in the intergenic region between the CD36 gene and a lincRNA

(ENSCAFG00000034312). The protein product of CD36 is the

fourth major glycoprotein of the platelet surface and serves as a

receptor for thrombospondin in platelets [69]. Other known func-

tions include transport of long chain fatty acids [70]. However, we

believe that this variant is more likely a replication of a previous

association between the nearby FGF4 retrotransposon and

chondrodysplasia across breeds [71].

Genetic loci that significantly associate with litter size

To identify SNPs that are significantly associated with variation in

litter size among breeds, we retrieved litter size data from 10 810

litters of 224 breeds registered in the Norwegian Kennel Club [37].

For these data, we were able to obtain average number of pups per

litter values for 60 of the 162 dog breeds with overlapping genetic

data (Supplementary Table S1). Among these 60 breeds, median

litter size is 5.55 pups, with a maximum 8.9 in Rhodesian Ridgebacks

and a minimum of 2.4 in Pomeranians (Supplementary Fig. S3B).

To identify SNPs that are significantly associated with the

observed variation in litter size across domestic dog breeds, we

conducted an across-breed GWAS analysis using 149 834

149; 834SNPs and litter size data from 60 dog breeds (Fig. 1B,

Supplementary Fig. S2B). We identified three independently

associated regions containing 13 SNPs (Table 3, Supplementary

Table S4) intersecting three genes, namely RNA Terminal

Phosphate Cyclase-Like 1 (RCL1, uncorrected P = 2.6� 10�8,

Perm P = 0.001), Myb/SANT SNA Binding Domain Containing 1

Table 3. Summary of genes that contain or are adjacent to the SNPs that are associated with variation

in reproductive traits across dog breeds

Associated trait Chromosome Base pair Mapped gene Empirical

P-value

Permutation

P-value

Associated domesticated

trait

Cesarean section 1 55983871 SMOC2 6.69e-09 0.002 Brachycephaly (Dogs)

Cesarean section 4 46570650 MAT2B 3.08e-07 0.001 Intramuscular

preadipocyte differenti-

ation (Pig)

Cesarean section 4 46592551 MAT2B 1.61e-07 0.001 Intramuscular

preadipocyte differenti-

ation (Pig)

Cesarean section 18 20272961 CD36 7.9e-11 0.017

Gestation length 6 57457184 HFM1 1.16e-07 0.014 Fertility and milk pro-

duction (Cattle)

Gestation length 20 35206774 CACNA2D3 3.13e-07 0.01 Blastocyst development

(Cattle)

Gestation length 24 23382682 1.64e-08 0.08

Gestation length 24 36399705 SLC9A8 6.75e-11 0.003

Gestation length 24 36400728 SLC9A8 6.75e-11 0.003

Gestation length 28 25752710 PCGF5 2.13e-07 0.003

Litter size 1 93219668 RCL1 5.73e-08 0.001

Litter size 3 61055458 MSANTD1 2.59e-07 0.001

Litter size 3 61062626 MSANTD1 1.91e-08 0.001

Litter size 3 61155415 MSANTD1 3.02e-10 0.001

Litter size 3 61209777 MSANTD1 3.02e-10 0.001

Litter size 3 61220065 MSANTD1 1.97e-09 0.001

Litter size 10 7884978 MSRB3 3.065e-07 0.001 Ear erectness (Dog)

Litter size 10 7920882 MSRB3 1.27e-07 0.001 Ear erectness (Dog)

Litter size 10 8070103 MSRB3 1.61e-08 0.001 Ear erectness (Dog)

Litter size 10 8085469 MSRB3 3.55e-08 0.001 Ear erectness (Dog)

Litter size 10 8095399 MSRB3 5.41e-08 0.001 Ear erectness (Dog)

Litter size 10 8100127 MSRB3 5.41e-08 0.001 Ear erectness (Dog)

Litter size 10 8134640 MSRB3 2.12e-08 0.001 Ear erectness (Dog)

Stillbirth rate 25 42482266 ENSCAFG00000010704 1.03e-07 0.001

Stillbirth rate 27 2539211 UFM1 2.01e-07 0.049
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(MSANTD1, see Table 3 for a full list of nearby linked SNPs and

their association statistics) and methionine sulfoxide reductase

B3 (MSRB3, see Table 3 for a full list of nearby linked SNPs and

their association statistics).

The RCL1 SNP is found in the intron between exons 7 and 8.

RCL1 functions in the maturation of 18s RNA [72] and is

associated with cervical cancer; one role of the gene in this cancer

pathology is thought to involve the regulation of insulin receptors

[72]. Additionally, a rare missense variation in RCL1 was recently

associated with depression [73]. The second SNP in the intergenic

region downstream of MSRB3, whose protein product catalyzes

the reduction of methionine-R-sulfoxides to methionine and

Figure 1. Genome-wide association results for reproductive traits in domestic dogs. Manhattan plots showing the statistical significance of each SNP as a

function of genomic position for (A) cesarean section rate (n = 3, 194 individuals, n = 97 breeds), (B) litter size (n = 2617 individuals, n = 60 breeds), (C) stillbirth

(n = 2590 individuals, n = 57 breeds) and (D) gestation length (n = 1908 individuals, n = 23 breeds). Horizontal line indicates the significance threshold at

P = 4.3� 10�7. Significant SNPs are labeled with the intersecting or nearest gene. Significant SNPs whose permutation P-values were above the 0.05 threshold.

Plots were generated in R using the qqman package

Figure 2. Gene expression in human female reproductive tissues of genes that contain or are adjacent to SNPs associated with reproductive traits in domestic

dogs. Raw data were obtained from the Human Protein Atlas database [67]
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repairs oxidatively damaged proteins [74, 75]. In humans, MSRB3

mutations are associated with deafness [76]. Epigenetic changes

of MSRB3 in the fetus during pregnancy may affect length of ges-

tation, with increased DNA methylation correlated with increased

gestational age [77, 78]. Furthermore, MSRB3 shows an increase

in mRNA expression in ripe (at term) versus unripe human uterine

cervix, implying that MSRB3 functions to ripen the cervix before

the onset of labor [79]. In previous morphological studies in dogs,

MSRB3 is associated with ear erectness [33]. We additionally point

out that this association is nearby the HMGA2 gene that has been

previously associated with body mass in several different organ-

isms (domestic dog [32], pigs [80], mice [81, 82]). The last SNP

that is significantly associated with litter size is located down-

stream of MSANTD1, which is part of a gene network believed

to aid in cell-to-cell signaling and interaction, hematological sys-

tem development and function and immune cell trafficking [83].

MSANTD1 has been identified in two independent studies as a

candidate gene for the determination of black coat color in goats

[84, 85].

Genetic loci that significantly associate with stillbirth rate

To examine whether there are SNPs that are significantly

associated with variation in stillbirth rate among breeds, we

retrieved data for stillbirth rates for 57 of the 162 dog breeds

(Supplementary Table S1). The data covers 10 810 litters of 224

breeds registered in the Norwegian Kennel Club and defines peri-

natal mortality as the sum of stillborn puppies and puppies that

died during the first week after birth [38]. Among these 57 breeds

with overlapping genomic data, the median stillbirth rate is 4.2

pups, with a maximum rate of 12.3% in Saint Bernards and a

minimum of 0% in Basenjis and Italian Greyhounds

(Supplementary Fig. S3C).

To test if any SNPs are significantly associated with the

observed variation in stillbirth rate across domestic dog breeds,

we conducted an across-breed GWAS analysis using 149 834

SNPs and stillbirth rate data from 56 dog breeds (Fig. 1C,

Supplementary Fig. S2C). We identified two significantly

associated SNPs (Table 3, Supplementary Table S5); both inter-

sect genes, Ubiquitin fold modifier 1 (UFM1, uncorrected

P = 2.01� 10�7, Perm P = 0.049) and near a novel gene

(ENSCAFG0000010704, uncorrected P = 1.03� 10�7, Perm

P = 0.001). The UFM1 SNP has been previously associated with

coat color variation in the domestic dog [86], but not with repro-

ductive life history trait variation.

Genetic loci that significantly associate with gestation

length

To examine whether there is variation in gestation length among

breeds, we identified individual gestation length averages by

breed predominantly in breeder handbooks. Utilizing breeders’

handbooks, we were able to identify gestation length means for

a total of 23 of the 162 dog breeds that we had genotypic data for

(Supplementary Table S1). Among these 23 breeds, the median

gestation length is 62.2 days, with a maximum length of 65.3 in

beagles and a minimum of 60.1 in the Alaskan Malamute

(Supplementary Fig. S3D).

To identify SNPs significantly associated with the observed vari-

ation in gestation length across domestic dog breeds, we conducted

an across-breed GWAS analysis using 149 834 SNPs and gestation

length data from 23 dog breeds (Fig. 1D, Supplementary Fig. S2D).

Our analysis identified five significantly associated SNPs (Table 3,

Supplementary Table S6) that mapped to four genes, namely solute

carrier family 9 (SLC9A8, uncorrected P = 3.7� 10�11, Perm

P = 0.001), calcium channel, voltage-dependent, alpha-2/delta

Subunit 3 (CACNA2D3, uncorrected P = 3.1� 10�7, Perm P = 0.013

and polycomb group ring finger 5 (PCGF5, P = 6.75� 10�11, Perm

P = 0.003).

The first SNP resides in intron 78 of SLC9A8, an integral trans-

membrane protein that exchanges extracellular Na+ for intracel-

lular H+. SLC9A8 serves multiple functions [87] and is expressed

ubiquitously (Fig. 2) [67]. Knockout male mice have impaired

luteinizing hormone-stimulated cAMP production and are infer-

tile, despite normal morphology of their reproductive system

and normal behavior [88]. The second SNP is found in the intron

between exons 26 and 27 of CACNA2D3. This gene is involved in

regulating the influx of Ca2+ ions entering the cell upon mem-

brane polarization [89], a critical process relevant to many func-

tions, including fertilization and development [90]. In previous

studies in humans, CACNA2D3 is differentially methylated in the

amnion between normal and pre-eclamptic pregnancies [91] and

in blood between extreme preterm and term infants at birth [92,

93]. Additionally, CACNA2D3 is one of four genes recently

described as influencing cranial morphology in human popula-

tions [94]. In other domesticated animals, CACNA2D3 is

downregulated by Colony Stimulating Factor 2 (CSF2) in the

trophectoderm of pregnant cattle, which increases the ability

of the preimplantation embryo to advance to the blastocyst

stage [95]. In the closely related wolf, CACNA2D3 is under diver-

sifying selection associated with environmental adaptations to

altitude [96–98]. Finally, the last SNP mapped to PCGF5, a gene

previously shown to be necessary for neural differentiation in

embryonic growth cell in humans [99].

DISCUSSION

Mammals exhibit a great deal of variation in their reproductive

traits, yet remarkably little is known about the genetic basis of

these traits. To begin to address this, we used GWAS analyses

to examine the genetic basis of four reproductive traits (cesarean

section rate, stillbirth rate, litter size and gestation length) across

up to 97 domestic dog breeds. We identified several significant

genetic associations for each trait (Fig. 1, Table 3).
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Four of the 12 genetic regions that we found to be associated

with reproductive trait variation have been previously identified to

be involved in diverse traits associated with dog domestication

(Table 3), such as brachycephaly and coat curl and color, suggest-

ing that selection for signature traits of dog breeds may have also

directly or indirectly influenced variation in reproductive traits. For

example, one of the variants that we found to be associated with

cesarean section rate is in an intron of SMOC2, a gene previously

associated with brachycephaly in dogs [35, 66]. Brachycephaly, the

shortening and widening of the muzzle and skull, is present in

several ‘fighting’ breeds such as Boxer, Boston Terrier and

Bulldog, and is thought to have been originally artificially selected

on the basis that a shorter and wider cranial shape would enhance

the dog’s biting power [100]. Interestingly, one of the traits that

associated with brachycephaly is cephalopelvic disproportion

[31], a significant medical condition that can result in the death

of both the litter and the bitch due to the inability of the pups to

pass through the pelvic canal. The negative effects of

cephalopelvic disproportion are alleviated by cesarean section,

which not only allows these breeds to reproduce but also enables

the continued application of artificial selection for the most ex-

treme cranial morphology [66]. Whether the SMOC2 variant

identified directly influences parturition and birth timing in dogs

(in humans, SMOC2 is highly expressed in several reproductive

tissues; see Fig. 2 and Ref. [67] or indirectly leads to adverse preg-

nancy outcomes (e.g. brachycephalic cranial morphology leading

to cesarean section) remains unknown. It is highly likely, however,

that the association between SMOC2 and brachycephaly came

first, paving the way for the subsequent association of both with

cesarean section rate.

Several of the significantly associated genes that we identified in

dogs appear to also be associated with reproductive phenotypes in

humans. This suggests the possibility that the artificial selection that

gave rise to dog breeds may have also contributed to the observed

variation in their reproductive traits. For example, a member of the

gene family for a subunit of the voltage-dependent calcium channel

complex, CACNA2D3, which is associated with gestation length in

our study, has been shown to be both differentially methylated in

amnion between normal and pre-eclamptic human pregnancies [91],

and in blood between extreme preterm and term infants at birth [92,

93]. Similarly, expression of MSRB3, which is associated with litter

size in our study, is elevated in ripe (at term) versus unripe human

uterine cervix and may be involved in the onset of labor [78], and

SMOC2 is also known to be expressed in human reproductive tissues

(Fig. 2) [67].

There are several caveats to our analyses and results. To begin

with, as is true of all GWAS studies, our findings will need to be

replicated in other cohorts and our hypotheses about the variants

and genes involved will need to be functional validated. Furthermore,

our set of reproductive phenotype data is breed averages rather than

individual values, which would allow more precise association ana-

lyses. Additionally, it should be noted that some of the values of our

reproductive phenotypic data may not be always precise. For ex-

ample, there is likely variability across breeds for total litter size

and ultimately 1 week viability (stillbirth). Similarly, the cesarean sec-

tion phenotype is largely determined by the owner and the veterinar-

ian. In this way, it is an elective phenotype measurement but is

informed by the breed-specific likelihood of a healthy delivery.

However, cesarean section rates for some breeds are extremely high

(e.g. 92.3% in Boston terrier), which seems to indicate that cesarean

section procedures are necessary to preserve the health of both the

mother and the pups. Therefore, we assume that these rates reflect

veterinarians’ information and knowledge of potential breed-specific

birthing risks.

Previous analyses of traits, such as body mass, in the domes-

tic dog have found that much of the variation can be explained

by a few large-effect loci [101, 102]. While our results show that

our approach and use of breed-specific average trait values are

sufficiently powered to detect traits determined by a few causal

variants of large effects, we still lack knowledge of the underlying

genetic architecture of the four reproductive traits analysed in

this study. The results of a recent GWAS of gestation length in

humans [24] suggest that, at least in humans, variation in ges-

tation length is likely explained by many small-effect variants; if

that is the case, approaches based on breed averages may fail to

detect variants of low effect due to the lack of sufficient pheno-

typic stratification. Finally, as is true for most complex traits in

the domestic dog, the reproductive traits studied here are likely

to have also been influenced by the rapid and strong artificial

selection imposed during the recent breeding history of the do-

mestic dog.

supplementary data

Supplementary data is available at EMPH online.
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