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Abstract

In vivo imaging techniques can be integrat-
ed with classical histochemistry to create an
actual histochemistry of water. In particular,
Magnetic Resonance Imaging (MRI), an imag-
ing technique primarily used as diagnostic tool
in clinical/preclinical research, has excellent
anatomical resolution, unlimited penetration
depth and intrinsic soft tissue contrast.
Thanks to the technological development, MRI
is not only capable to provide morphological
information but also and more interestingly
functional, biophysical and molecular. In this
paper we describe the main features of several
advanced imaging techniques, such as MRI
microscopy, Magnetic Resonance
Spectroscopy, functional MRI, Diffusion Tensor
Imaging and MRI with contrast agent as a use-
ful support to classical histochemistry.

Introduction

Technological developments have allowed
new approaches to overcome the classical his-
tochemistry issues. In particular, magnetic
resonance imaging (MRI) is widely used in the
clinical practice as powerful and, non-invasive
diagnostic tool; however, it has a substantial
relevance also in preclinical and pharmaceuti-
cal research.1

MRI is based on the principles of Nuclear
Magnetic Resonance (NMR), that measures
the absorption of electromagnetic radiation in
molecules immersed in a strong magnetic
field. These radiations are the cause of nuclear
spin transitions in certain atoms (typically 1H
or 13C) and the information on the molecular
structure are deduced by observing the behav-
ior of atomic nuclei.
At first, MRI was used as a tomographic

imaging modality able to produce images of a

section of the human body starting from NMR
signal. In particular, since the human body is
mainly composed by water, MRI exploits the
abundance of hydrogen atoms into the body to
produce images. 
As a morphological technique, MRI conju-

gates high space resolution ith high soft tissue
contrast and sensitivity to alterations of tissue
parameters. Moreover, MRI is able to provide
not only morphological and structural informa-
tion, but also functional. More recently it has
further evolved toward imaging of molecular
events (molecular imaging) that represents a
challenge for imaging techniques. Finally, an
advanced MRI technique, namely Magnetic
Resonance Spectroscopy (MRS) allows in vivo
monitoring of metabolites that can be quanti-
fied, enabling parametric mapping of their
concentration.2

Under certain situations, the potential
offered by in vivo imaging appears to be supe-
rior to those offered by traditional histology: it
is non-invasive, it avoids substances or treat-
ments that strongly interfere with the tissue
structure and surrounding environment and it
provides the possibility of analyzing hydrated
tissues. With this technique it is possible to
perform sophisticated studies in living sys-
tems , with the opportunity to observe several
reactions that take place inside living cells:
this gives the opportunity to achieve an actual
histochemistry of water, since the hydrogen
nuclei contained in the water molecule are
able to produce the magnetic resonance signal.
Moreover, using appropriated MRI technique,
in particular functional MRI (fMRI) and diffu-
sion tensor imaging (DTI) it is also possible to
characterize/quantify physical parameters of
tissues.
Here, our aim is to describe the main fea-

tures of advanced in vivo imaging techniques,
such as MRI microscopy, MRS, fMRI, DTI and
MRI with contrast agent.

MRI microscopy
MRI microscopy is intended as a magnetic

resonance technique for imaging of small
objects or isolated organs at high spatial reso-
lution (up to about 100 µm). Although it was
clear from the beginning3 that the resolution of
imaging experiments on small objects (�1 mm)
could approach microscopic values (around 10
µm), it was only in the second half of 1980s
that this field started to develop. Some impor-
tant applications of MRI microscopy were
obtained in the field of material science4 but
relevant results have also been obtained in the
biological field on living plants, animal cells
and tissues.5 The first MRI images of a single
cell, a frog ovum with a diameter of 1 mm, was
obtained at 400 MHz6 and clearly distinguished
between nucleus and cytoplasm. Single cell
images have also been obtained on the L7 neu-

ron isolated from the sea hare Aplysia califor-
nica5 and researchers have shown that water
in nucleus has T2 and diffusion coefficient
that are strongly different from those of water
contained in cytoplasm,7 suggesting that MRI
models of tissue compartmentalization cannot
be limited to the consideration of intra and
extracellular compartments. MRI microscopy
was also performed on cell aggregates, as
tumor spheroids4 or isolated tissues and
organs for example brain slices imaged at
20×20×300 µm space resolution.8 To date,
large projects have been implemented to
obtain information on the most widely used
laboratory animals by MR microscopy.9 For
instance, a study used MRI microscopy as a
rapid, non-invasive technique for the pheno-
typing of mouse mutants.10 As shown in Figure
1 A,B, MRI can offer a number of advantages
over traditional histology. For example it is
able to produce non-invasive datasets and an
accurate calculation of volumes without distor-
tions and consequently the morphometric
techniques may be used to allow the identifica-
tion of novel phenotypes.10 It’s clear that the
MRI techniques can not compete with the res-
olutions of optical techniques but their advan-
tages are: accessibility to MRI parameters at
microscopic level, the possibility to follow
dynamic events in a meaningful physiological
manner and the accessibility to functional and
metabolic parameters through localized spec-
troscopy.11

In vivo magnetic resonance 
spectroscopy
While MRI maps the spatial distribution of
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mobile nuclei, the in vivo MRS can be used to
obtain further detailed chemical information
from localized volumes of interest within the
well-defined compartmental structures of the
studied system. Therefore, MRS is able to pro-
vide spatially localized chemical information at
a tissue resolution level: for this reasons it can
be considered as a new histochemical tech-
nique. It is clear that the intrinsic features of
this technique make lipids, carbohydrates and
various metabolites mapping possible and, for
this reason, MRS has a potential in  additional
to the classic histochemistry.
Certainly the greatest advantage of this new

form of histochemistry is represented by the
possibility to carry out localized spectroscopic
evaluations. Indeed, by selecting a specific
voxel is it possible to analyze the spectrum of
the compounds present inside it. This
approach appears innovative compared to tra-
ditional histochemistry since this analysis can
be performed avoiding extraction procedures
or tissue processing allowing to limit the arti-
facts due to these processes. Many metabo-
lites, that are not directly visible with the stan-
dard procedures, can be studied by means of
localized spectroscopy approaches. Using
these approaches it is also possible to obtain
selective imaging, identifying peaks linked to a
given compound in a specific tissue area.
Indeed, MRS allows to compare spectra
obtained from normal tissue with spectra
derived from pathological tissue. Moreover,
metabolic changes arising from pathological
conditions and visualized by MRS may not be
detected through anatomical images (obtained
by conventional MRI) since metabolic changes
may precede anatomic changes. Thus, MRS is
used for diagnostics, to observe disease pro-
gression, monitor therapeutic treatments, and
to understand the pathogenesis of diseases.12 

The quality of the information obtainable by
MRS in vivo, is not only determined by the sig-
nal-to-noise ratio (SNR); the separation
between peaks is crucial for detection and
classification. As the distance between peaks
of different chemical species (normally
expressed in parts per million, ppm) increases
linearly with the resonance frequency (or with
the applied magnetic field), proper imaging is
required. For example, water (resonance at 4.7
ppm) and fat (resonance of CH2 and CH3

groups at about 1.4 ppm) are separated by 660
Hz at 4.7 T and by 280 Hz at 2 T. In studies on
brain, most of the metabolites of interest have
resonance frequencies contained in a few ppm
(for example lactate 1.35 ppm, N-
Acetylaspartate 2.0 ppm, Choline 3.2 ppm),
thus high fields are mandatory to resolve the
different signal components. A further advan-
tage of high fields for 1H-MRS spectroscopy is
that efficient water suppression requires
selective excitation of water molecules fol-

lowed by spoiler gradients; selective excitation
of water molecules is easier if the distance
between water and metabolites peaks is high-
er. In biological studies, nuclei of interest are
mainly 1H and 31P, the first one mainly used in
brain studies and the second one in muscle

studies. Several papers reported 1H-MRS stud-
ies in different brain pathologies, as stroke,
tumors13 and neurological diseases14 (Figure 2
A-C); MR spectra of brain tumors generally
report increased lactate and decreased N-
Acetylaspartate content,15 indicating neuronal

                             Views and Comments

Figure 1. A) Sagittal sections of MRI microscopy and a similar neurofilament histology
section in the same brain, showing visible white-matter anatomy. B) Detail through the
cerebellum showing the correspondence of structures between histology and MRI
microscopy. Adapted from Cleary et al., Neuroimage 2011;56:974-83 with permission. 

Figure 2. In vivo T2-weighted MR images A) coronal and B) axial showing regions of
interest (ROI) for 1H-MRS experiments. Here, the ROI is centered in the right dorsal
hippocampal region of the rat brain. C) Quantification of neuro-metabolite signals from
in vivo 1H-MRS in the right dorsal hippocampal region of the Stress-induced Sleep
Perturbation (SSP) model. D) 1H-MRS voxel location on a T2-weighted MRI and the
corresponding 1H-MRS spectra from a control mouse and E) from a mouse with large a
glioblastoma. 1HMRS spectra from glioblastoma are characterized by increased lipid sig-
nals. tCr,  total creatine; Glx,  glutamate + glutamine; Ins ,  myo-Inositol; Tau,   Taurine;
tCho,  total choline; NAA,   N-acetyl-aspartate; Glu ,  glutamate; MM,   macromolecules;
Lac,  Lactate; GABA, gamma-aminobutyric acid. A, B and C panels were adapted from Lee
et al., PLoS One 2016;11:e0153346 with permission; D and E panels were adapted from
Park et al., PLoS One  2014;9:e94755 with permission. 
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loss. The lipids are the most easily detectable
compounds given their high hydrogen content.
A clear visualization of areas rich in lipids is
permitted by the ability of MRI to differentiate
between the hydrogen atoms linked to carbon
atoms (of the lipid molecules) and the hydro-
gen atoms linked to the protons of the water
molecules. Adipose tissues are widely repre-
sented in the human body and constitute the
environment in which a large number of neo-
plastic lesions develop. Indeed, in tumors there
might be  lipids signals (Figure 2 D,E) that are
absent in healthy tissue.13,16 In this contest, the
type of adipose tissue in a particular area and
also the composition of lipid accumulation,
may represent two important factors in the
genesis and progression of cancer. Studies on
lipids in cancer revealed that the presence of
accumulation of poly-unsaturated fatty acid
lipids correlates with the presence of apoptotic
cell death.17 The composition of fatty acids in
periprostatic tissue is altered in patients with
aggressive prostate cancers,18 the characteri-
zation of adipose tissue in close proximity to
colorectal tumors showed an alteration of
monounsaturated fatty acids related to the
stage of the tumor. 19

To date, another important application of
1H-MRS is the measurement of hepatic lipid
content. Indeed, lipid content, together with
intracellular muscular lipid content, has been
correlated with insulin resistance, a predictor
for the clinical onset of type 2 diabetes melli-
tus.20 The assessment of lipid concentration by
1H-MRS is used to  develop  hepatic lipid-low-
ering drugs in clinical trial and in preclinical
research. Also the measurement of intramy-
ocellular and extramyocellular  lipid content is
possible by 1H-MRS, and the major advantage
is the avoiding of manual cleaning of extramy-
ocellular adipose tissue.20 This technique
allows not only a non-invasive approach, but it
also removes the quantification errors origi-
nated from manual extramyocellular cleaning. 
Also carbohydrates are identifiable with

localized spectroscopy approaches and MRS
has important advantages over conventional
approaches in the study of metabolism alter-
ation in several humans disease.21 Glycogen is
an important energy reservoir in the human
body and it is  abundant in the liver and skele-
tal muscles. Brain glycogen concentration is
lower than in other organs,22 making it difficult
the  study its physiological role and the evalu-
ation of its concentration in vivo. MRS, in par-
ticular 13C-MRS, is able to measure glycogen
content and turnover in both physiological and
pathological contexts in the living brain non-
invasively.23,24 Several studies reported that
alterations in brain glycogen metabolism are
related with brain injury, hypoxia and
ischemia.20 Furthermore, MRS allows the
assessment of the metabolic profile of many

hepatic metabolites in vivo, which cannot be
accurately measured using invasive biopsy
techniques, due to the instability of these com-
pounds and the invasiveness of biopsies. In
addition, the non-invasive features of MRS,
combined with the large hepatic blood flow,
allows repeated measurements in the same
patients, facilitating long-term longitudinal
studies with real-time monitoring of metabolic
alterations.21

Finally, among macromolecules, proteins
are less easily measurable by MRS. In tissues,
however protein accumulations, such as in
fibrotic tissues, can appear with negative
images by virtue of a poor hydration and the
scarcity of lipids.
It has been already mentioned the intrinsic

low sensitivity of MRS due to the low concen-
tration of metabolites;  a different application
of MRS has been explored for which the SNR is
also more critical, namely Diffusion weighted
MRS (DW-MRS).25 The use of diffusion gradi-
ents in imaging as well as in in vitro spec-
troscopy is well established; diffusion gradi-
ents produce a decrease in the signal intensity,
more marked for the molecules diffusing
faster. A measurement of the signal intensity
as a function of the diffusion gradients charac-

teristics (namely the b factor, dependent on
gradient duration, intensity and distance
between gradient pulses) provides quantita-
tive value for the diffusion coefficients. The
technique has been applied to the detection
and characterization of brain damage after
ischemic insult as well as in the tracking of
axonal fibers in brain white matter.26 In DW-
MRS, diffusion gradients are used in in vivo
experiments with the aim of measuring the
diffusion coefficient of different metabolites.25

DW-MRS gives information on the size and
possibly on the shape of the compartment in
which the metabolite is contained and on
shape and size of cells, although the interpre-
tation of results is not simple. Several studies
have been performed on experimental models
of focal cerebral ischemia all reporting a
decrease by 25-30% of the apparent diffusion
coefficient of brain metabolites (N-
Acetylaspartate,  Creatine and Choline). In the
experimental model of global ischemia, the
decrease amounted to 40%.25 These findings
are not immediately understandable in the
light of cell swelling and increased intracellu-
lar water (that occurs in ischemic regions).
Increased intracellular tortuosity due to
swelling of cell organelles, disaggregation of

                                                                                             Views and Comments

Figure 3. Procedures to analyze fMRI data: acquisition of Echo Planar Images (EPI), reg-
istration of EPI to a common MRI brain template, overlapping to brain atlas to correctly
label different brain region and addition of the activation maps; the final result is shown
in the last panel.
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polyribosomes, increased number of cytoplas-
mic fibrillary structures could explain this
observation.25

The “histo-physic” 
Functional MRI (fMRI) and Diffusion

Tensor Imaging (DTI) are advanced MRI in
vivo techniques allowing the evaluation of
parameters that could be defined as physical.
DTI provide information about mobility of
water and fiber orientation within the sample,
while fMRI measures the brain activity by
detecting changes associated with blood flow.
These approaches have the advantage of being
quantitative and they allow a real functional
imaging monitoring, for example, the time
course of specific parameters during stimula-
tion test. The next chapter describes the main
features and applications of fMRI and DTI. 

Functional MRI
The term fMRI generally indicates MRI

experiments that monitor the neuronal
response to a given stimulus. fMRI started in
1990, when Ogawa et al.27 demonstrated that
MR images acquired with Gradient Echo
sequences can reflect a new kind of contrast
dependent on the blood oxygenation level
(blood oxygenation level dependent, BOLD).
Indeed, BOLD response measures hemody-
namic changes (local blood volume and flow or
changes in susceptibility) occurring during
neuronal activation. An increase in the signal
intensity is attributable to a decrease in the
local concentration of the intrinsic oxy-hemo-
globin contrast agent; such an increase can be
due either to an increase in blood flow or in
oxygen consumption. In fact deoxy-hemoglo-
bin has paramagnetic properties while oxy-
hemoglobin does not; deoxy-hemoglobin, con-
tained in blood vessels, disturbs the homo-
geneity of the static magnetic field. A local
decrease in the concentration of deoxy-hemo-
globin produces an increase in the signal
intensity in T2* weighed sequences. 
At first fMRI was used to map brain activity

evoked from its sensory, motor, cognitive, and
emotional tasks in healthy individuals In the
last years this technique has been applied to
neurological/neurobehavioral disorders, as
epilepsy, multiple sclerosis, Alzheimer’s dis-
ease, stroke and cerebral tumors. fMRI has
several advantages compared to other func-
tional imaging techniques (e.g., positron emis-
sion tomography): it is easy to perform, is
reproducible, can be performed with the major-
ity of existing MR scanners and it has superior
temporal and spatial resolution.28

In animals, fMRI has been extensively used
to detect cerebral activation both in anaes-
thetized and in awake animals,29,30 but the pro-
cedures to analyze these results are quite com-
plicated. Indeed, to analyze fMRI data of ani-

mals several steps are required: starting to an
Echo Planar Image ( EPI, a fastest acquisition
MRI method), we have to register our EPI to a
common MRI animal brain template, then we
overlay the brain atlas to correctly label differ-
ent brain region and finally we can add the
activation maps. All these procedures are
shown in Figure 3. 
The functional activation of the olfactory

bulb as a consequence of odors stimuli has
been reported31 and investigated also at very
high space resolution. Recently, in a fMRI
study, Tambalo et al. investigated the function-
al response to somatosensory stimulation of
the forepaw in DA Dark Agouti rats with exper-
imental autoimmune encephalomyelitis
(EAE), a widely accepted preclinical model of
chronic multiple sclerosis (MS).32 Alterations
of the functional response of EAE mice (in the
relapsing and chronic phases) were found and
this finding was in line with human fMRI stud-
ies showing that cortical reorganization occurs
in MS patients.33 These results provide addi-
tional support to the validity of the DA EAE rat

model for fMRI studies and for the develop-
ment of innovative therapies in EAE/MS
research.32 In animals, fMRI can also be per-
formed using exogenous paramagnetic or
superparamagnetic contrast agents. When
confined in the vascular space, they create a
strong inhomogeneity in the static magnetic
field and consequently a decrease in signal
intensity. The activated regions, where an
increase in local blood volume (and contrast
agent concentration) occurs, are reflected by
MR images as low signal intensity pixel.
Particularly relevant are studies performed
with ultrasmall superparamagnetic iron oxide
particles (USPIO)34-36 that are characterized by
a long blood half time (2-3 h). These tech-
niques appear consequently more sensitive
compared with BOLD, and less unfavorable at
low static magnetic fields (2 T). Such tech-
niques have been widely used in the so called
“pharmacological MRI”37 where the effect of
stimulatory or inhibitory drugs on brain hemo-
dynamics are studied. For example it has been
applied to study the changes in cerebral blood

                             Views and Comments

Figure 4. A) Basic schematic diagram of a magnetic nanoparticle’s structure; a magnetic
nanoparticle consists of magnetic core and biocompatible coating. B) In vivoMR Images
of USPIO-labeled stem cells (2.5x103) PRE and POST intra-muscle injection. 
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volume induced by administration of cocaine
or bicocculine (an antagonist of GABA) in the
different parts of the brain. 38

Diffusion Tensor Imaging
Another advanced MRI technique that

allows the evaluation of some physical charac-
teristics is the Diffusion Tensor Imaging
(DTI). DTI can be used to characterize the dif-
fusion of water as a function of spatial loca-
tion. The two most common diffusion tensor
MRI parameters are mean diffusivity (MD)
and fractional anisotropy (FA). MD is a meas-
ure of the directionally averaged magnitude of
diffusion and is related to the integrity of the
local brain tissue. FA represents the degree of
diffusion anisotropy and reflects the degree of
alignment of cellular structure.39 The diffusion
of water within the tissues may be altered by
changes in the tissue microstructure due to
different pathological processes of the central
nervous system, including demyelination,
axonal damage, inflammation, oedema and
ischaemia.

DTI is now becoming widely available in
clinical scanners and human clinical studies
are actively being performed. On the other
hand, high-resolution DTI technology and
applications to animal studies for basic neuro-
science research have started only recently. In
vivo DTI allows to monitor the longitudinal
evolution of axonal injuries and the efficacy of
interventions in various disease models.
Finally, with this technique, we can correlate
the findings with histology to investigate dis-
ease mechanisms.40

In vivo “staining” (contrast agent)
The basic contrast in the MR images mainly

results from regional differences in the intrin-
sic relaxation times T1 and T2, each of which
can be independently chosen to dominate
image contrast. In some cases, there is not
enough endogenous contrast to characterize
tissues or detect blood flow; on these occa-
sions, the imaging capability can be enhanced
by the use of contrast agents (CA).41 CA alter
the image contrast following intravenous
injection. The degree and location of the con-
trast changes provide substantial diagnostic
information. Certain contrast agents are pre-
dominantly used to shorten the T1 relaxation
time and these are mainly based on low-mole-
cular weight chelates of the gadolinium ion
(Gd3+), while the most widely used T2 short-
ening agents are based on iron oxide (FeO)
particles. Depending on their chemical compo-
sition, molecular structure and overall size, the
in vivo distribution volume and pharmacoki-
netic properties vary widely between different
contrast agents and these largely determine
their use in specific diagnostic tests. T1 CA
consist mainly of paramagnetic complexes

while T2 CA mostly use superparamagnetic
ions. Paramagnetic CA contain metal ions that
have unpaired electrons and thus a permanent
magnetic moment, like Manganese (Mn2+) or
Gadolinium (Gd3+). The magnetic moment of
the paramagnetic atom interacts with the
much smaller magnetic moment of the protons
in adjacent water molecules, reducing their
longitudinal and transverse relaxation time,
resulting in a positive contrast.41 The effect on
T1 relaxation time is evident at low concentra-
tions, but at higher concentrations the effect
on T2 relaxation time becomes significant, and
the signal intensity in T2 weighted acquisi-
tions decreases.42 Paramagnetic metal in their
ionic form are cytotoxic, so they must be com-
plexed with chelating compounds, influencing
the chemistry of the ions by reducing in vivo
toxicity, altering the bio-distribution and
affecting the efficiency in shortening T1 and
T2. An MRI technique that involves the use of
paramagnetic CA is Dynamic contrast-
enhanced magnetic resonance imaging (DCE-
MRI):43-45 it is the acquisition of
serial MRI images before, during, and after the
administration of an MR contrast agent, as
Gd3-DTPA. DCE-MRI gives information about
physiological tissue characteristics. Indeed,
the concentration of the CA is measured as it
passes from the blood vessels to the extracellu-
lar space of the tissue and as it goes back to
the blood vessels. Many researchers have
established the utility of the DCE-MRI in the
diagnosis of several kinds of tumors. It appears
to provide information in the assessment of
carcinomas, according to their stromal con-
tent;44 it can successfully demonstrate the
nature of a lymphoma and is helpful for mak-
ing a differential diagnosis from other lesions. 
Superparamagnetic CA are iron oxide

nanoparticles (SPION) that exhibit superpara-
magnetism. By applying an external magnetic
field, as is produced by an MRI machine, the
magnetic moments of the nanoparticle align in
the direction of the applied field. Once the
magnetic field is removed, they no longer
exhibit any residual magnetic interaction and,
as a consequence, the magnetic moments of
the nanoparticles return to be randomly orient-
ed (Brownian motion).46 SPION, thanks to
their superparamagnetic properties, are effec-
tive contrast agents in MRI. When SPION are
present in tissue, they disturb the local mag-
netic field homogeneity and the large suscepti-
bility differences between the iron oxide crys-
tals and nearby protons, leading to a rapid
dephasing of surrounding protons, resulting in
a decrease in transverse (T2) relaxation
times.46 The shorter transverse relaxation time
results in a darker image (negative contrast)
observed in the vicinity of the SPION; this is
referred to as negative contrast. The magnetic
properties of SPION can be manipulated by

controlling the size of core (magnetite or
maghemite), the nature of their biocompatible
coatings (hydrodynamic size), the polydisper-
sity and the surface charge. A schematic illus-
tration of nanoparticle’s structure is showed in
Figure 4A. 
The hydrodynamic and the crystals size are

measured by trasmission electron microscopy,
X-ray diffraction or dynamic light scattering,
while surface charge is measured by zeta
potential, which is based on the study of the
electrophoretic mobility. The nanoparticles can
be classified according to their diameter in: i)
ultra-small superparamagnetic iron oxide
nanoparticles (USPIO - diameter less than 50
nm); ii) superparamagnetic iron oxide
nanoparticles (SPION - d greater than 50 nm
but less than 1 µm); and iii) micron-sized par-
ticles of iron oxide (MPIO - diameter higher
than 1 µm). SPION have been used as MRI
contrast agents since 1990.47 Currently, they
are clinically used for liver imaging, spleen
imaging, tumor imaging, lymph nodes imag-
ing, central nervous system imaging and blood
pool agent.48 Due to their safety, biodegradabil-
ity and efficiency as MRI contrast agent,
SPION represent efficient cell labels for cellu-
lar imaging. Although not initially developed
for cellular imaging, recently they have been
successfully adapted for labeling and tracking
stem cells and nanovesicles.49 In example,
SPION are the most widely used contrast
agents for the detection of stem cells in vivo
(Figure 4B). In context of stem cells as thera-
peutic approach for several diseases (i.e., neu-
rodegenerative disease), SPION-labeled stem
cells have the potential to increase our knowl-
edge and understanding of post injection stem
cell behavior and migration processes.50,51 This
studies supports the idea that SPION-based
MRI could be applicable as non-invasive imag-
ing approach for cells tracking, leading to a
better understanding of physiological and
pathological mechanisms related to cells
migration.

Criticisms in the use of MRI histo-
chemistry
Disadvantages are in the higher cost of

magnets and electronics. In general, the cost
of scanners increases proportionally to the
generated static magnetic field beause: for
example, the cost of a scanner operating at 7 T
is about 33% higher than the same instrument
operating at 4.7 T. 
Among the limitations of the method there

is the possibility to analyze a limited number
of elements. Indeed, MRI can only be per-
formed on isotopes with a nuclear spin result-
ing “not null” and with a sufficiently high nat-
ural abundance to be detected. The most
exploited element for diagnostic purposes is
hydrogen, whose resonance signal allows to
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highlight the contrast between the different
types of tissues, discriminating with precision,
and to obtain information on a large number of
organic compounds. However, it should also be
mentioned the possibility of analyzing carbon,
phosphorus and fluoride. 
Despite the limitations illustrated above,

advanced MRI techniques, in particular MRS
and fMRI, can represent a complement and a
support to conventional histochemical tech-
niques.
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