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Abstract

Supervised machine learning applications in health care are often limited due to a scarcity of

labeled training data. To mitigate the effect of small sample size, we introduce a pre-training

approach, Patient Contrastive Learning of Representations (PCLR), which creates latent

representations of electrocardiograms (ECGs) from a large number of unlabeled examples

using contrastive learning. The resulting representations are expressive, performant, and

practical across a wide spectrum of clinical tasks. We develop PCLR using a large health

care system with over 3.2 million 12-lead ECGs and demonstrate that training linear models

on PCLR representations achieves a 51% performance increase, on average, over six train-

ing set sizes and four tasks (sex classification, age regression, and the detection of left ven-

tricular hypertrophy and atrial fibrillation), relative to training neural network models from

scratch. We also compared PCLR to three other ECG pre-training approaches (supervised

pre-training, unsupervised pre-training with an autoencoder, and pre-training using a con-

trastive multi ECG-segment approach), and show significant performance benefits in three

out of four tasks. We found an average performance benefit of 47% over the other models

and an average of a 9% performance benefit compared to best model for each task. We

release PCLR to enable others to extract ECG representations at https://github.com/

broadinstitute/ml4h/tree/master/model_zoo/PCLR.

Author summary

ECGs are a rich source of cardiac health information. Many recent works have shown that

deep learning can extract new information from ECGs when there are a sufficient number
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of labeled data. However, when there are not enough labeled data or a clinician scientist

does not have the resources to train a deep learning model from scratch, options are lim-

ited. We introduce Patient Contrastive Learning of Representations (PCLR), an approach

to train a neural network that extracts representations of ECGs. The only labels required

to train PCLR are which ECG comes from which patient. The resulting ECG representa-

tions can be used directly in linear models for new tasks without needing to finetune the

neural network. We show PCLR is better than using a set of handpicked features for four

tasks, and better than three other deep learning approaches for three out of four tasks eval-

uated. Furthermore, PCLR is better than training a neural network from scratch when

training data are limited. PCLR is one of the first attempts at releasing and evaluating a

pre-trained ECG model with the purpose of accelerating deep learning ECG research.

This is a PLOS Computational Biology Methods paper.

Introduction

Scarcity of labeled training data prevents the full clinical impact of supervised machine learn-

ing in health care. As one example, sudden cardiac death (SCD) kills over 450,000 Americans

per year [1], yet large observational datasets, which contain millions of patient records, typi-

cally only have data for a small number of SCDs. Unlike machine learning applications outside

of health care, it is not routinely possible to significantly increase the number of cases by label-

ing more data points because the prevalence of the disorder of interest is often very low. The

resulting lack of statistical power is a significant impediment to the development of accurate

risk models [2].

An approach that has proven successful when there are few labeled training examples for a

given task of interest is pre-training: neural networks are first trained on a large corpus of data

for a set of related tasks, and then the pre-trained models are fine-tuned on the task of interest.

Pre-training allows models to learn from large datasets to improve performance on smaller,

potentially more important datasets. There are many explanations for why pre-training

improves performance in small datasets, including pre-training acting as a regularization [3]

and pre-training as learning salient features [4]. Pre-training has proven successful across

many domains, including health care [5]. The ideal pre-training strategy is:

• Performant: it maximizes performance on limited training data

• Expressive: it can be used to develop models for multiple tasks

• Practical: it is easy-to-use for those unfamiliar with deep learning

In the past, pre-training strategies in health-care have focused on the first goal, with a few

notable exceptions that also consider the third goal [6]. As larger groups of clinical researchers

adopt machine learning approaches to more tasks, expressivity and ease-of-use have become

more critical. Clinical scientists often do not have the resources, or expertise, needed to retrain

deep learning models for their specific task, although they do have the greatest insight into

model deployment needs. We therefore develop and validate Patient Contrastive Learning of

Representations (PCLR) for 12-lead ECGs to satisfy all these objectives. We demonstrate the
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effectiveness of PCLR using two large hospital system data sets over four distinct ECG tasks.

PCLR yields feature vectors optimized for linear models, making them easily used by clinical

researchers out-of-the-box (Fig 1).

How does PCLR do this? PCLR is a uniquely clinically-driven modification of SimCLR [7]:

a contrastive learning approach that builds expressive representations of high-resolution data.

However, where SimCLR is graded on whether a model can resolve artificial data augmenta-

tions, PCLR is graded on whether it can resolve patient identity over time. PCLR maps ECGs

acquired at different times from a given patient to the same region within a contrastive latent

space. The success of PCLR compared to disease-specific approaches (see Results) shows that

patient-centric latent representations are a new direction for deep learning research deserving

attention. As Sir William Osler said, “The good physician treats the disease; the great physician

treats the patient who has the disease.” PCLR is a step for deep learning towards Osler’s

dictum.

Brief ECG background

The ECG measures the electrical activity of the heart and is one of the cardiologist’s oldest

tools. An ECG is typically recorded using 10 different electrodes placed at different parts of the

body. The voltage difference between 12 different combinations of the electrodes is typically

measured for 10 seconds. The 12 voltage difference measurements are called ECG leads. Five

different waves are commonly noted in each healthy heartbeat, which are labeled P, Q, R, S,

and T (Fig 2). The duration and maximum height of each peak can be measured, and each has

different clinical implications.

Related work

Deep learning on ECGs. There is a growing body of work that applies techniques from

deep image classification to 12-lead ECGs in the presence of large labeled datasets. [8] train a

residual network in a cohort containing millions of labeled ECGs to classify cardiac blocks and

other arrhythmias with high accuracy, and we use their model as a baseline for comparison.

Residual networks have also been shown to outperform automatic labeling systems [9], and

even physician labels [10], and to triage patients [11]. Latent features of the ECG have also

been shown to be useful for a wide range of tasks, such as to regress age from the ECG as a

marker of cardiac health [12], or to predict incident atrial fibrillation (AF) [13], or one-year

mortality [14]. We contribute by reducing the need for labels, and by focusing on extracting

generally expressive representations from ECGs rather than a representation optimized for a

single task.

Fig 1. Example workflow using PCLR. A clinical researcher uploads ECGs to a service which returns a PCLR representation for

each ECG. The representations can then be used by the clinician in models standard to clinical research workflows, including, for

example, Cox proportional hazards models.

https://doi.org/10.1371/journal.pcbi.1009862.g001
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Contrastive learning. Contrastive learning is a self-supervised learning method that

requires training data only to be labeled with notions of positive pairs (data that go together)

and negative pairs (data that are distinct). The SimCLR procedure introduced by [7] shows

that contrastive learning yields reduced representations of data that are linearly reusable in

new tasks. Many papers have recently experimented with the SimCLR procedure in the medi-

cal domain. [5] used the SimCLR procedure in dermatology and X-ray classification tasks.

They defined positive pairs as both modified versions of the same image and images from dif-

ferent views of the same skin condition. [15] experimented with SimCLR using many different

definitions of a positive pair, including MRI images from different patients that show the same

area of the body. [16] defines positive pairs across modalities, between an X-ray image and its

associated text report.

A few works utilize the value of subject-specific information by defining positive pairs

using non-overlapping segments of temporal signals [17], [18]. These approaches are shown to

be especially beneficial in the low-label regime. [6] apply the SimCLR procedure to 12-lead

ECGs, defining positive pairs by different leads from the same ECG or as different non-over-

lapping time segments within a single ECG. They show improved performance in rhythm clas-

sification tasks compared to other pre-training strategies in both transfer learning and

representation learning regimes. PCLR builds on these works by defining positive pairs across

different ascertainments from the same patient rather than segments of the same ascertain-

ment. PCLR does not require segments to be taken from the ECGs, or augmentations that

modify the ECGs, which means that the model trains on the unmodified data seen at

Fig 2. Idealized ECG heartbeat with waves labeled.

https://doi.org/10.1371/journal.pcbi.1009862.g002

PLOS COMPUTATIONAL BIOLOGY Patient contrastive learning for electrocardiogram modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009862 February 14, 2022 4 / 16

https://doi.org/10.1371/journal.pcbi.1009862.g002
https://doi.org/10.1371/journal.pcbi.1009862


evaluation time. Furthermore, compared to other ECG contrastive pre-training work, PCLR

was trained with millions rather than tens of thousands of ECGs.

[19] apply a different contrastive learning procedure introduced by [20] in lumbar MRIs,

but notably define positive pairs in the same way that PCLR does—as pairs of MRIs from the

same patient at different times. [20] also make use of image domain specific data augmenta-

tions, such as random rotations. We build on this work by demonstrating that with a large

dataset of ECGs, a contrastive loss based on patient identity across different ECGs across time

is highly performant, expressive, and practical. Unlike all of the other approaches, PCLR does

not utilize augmentations and instead relies on the shared underlying biology of different

ECGs taken from the same patient.

Materials and methods

Ethics statement

The datasets for model training and evaluation was approved by the Institutional Review

Board (IRB) at both hospitals from which the data were collected, with a waiver of informed

consent.

PCLR pre-training

PCLR uses a deep residual convolutional neural network to build representations of ECGs. In

pre-training, the network learns to build representations of ECGs specific to an individual and

is therefore rewarded when representations of different ECGs from the same person are simi-

lar. The network is penalized when representations of ECGs from different people are similar.

For example, if patient A has ECG xi taken in 1988 and ECG xj taken in 2001, then (xi, xj) is a

positive pair. If patient B has ECG xk, then both (xi, xk) and (xj, xk) are negative pairs.

PCLR pre-training has four components (Fig 3):

Fig 3. PCLR pre-training procedure for a pair of ECGs from the same patient (left) and from different patients (right).

https://doi.org/10.1371/journal.pcbi.1009862.g003
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1. An ECG selection module which selects pairs of ECGs from individuals. For example, it

could select ECG xi from an individual in 1988, and ECG xj in 2001 from the same

participant.

2. An ECG encoder f(�), which produces a compact representation of each 12-lead ECG. Given

ECG xi, it outputs the encoding f(xi) = hi. When used in linear models, we refer to this

representation as PCLR.

3. A projection head g(�), which projects ECG representations into the space where the con-

trastive loss is applied. For example, g could be applied to hi, giving the projection zi = g(hi).
[7] showed that pre-training with a non-linear projection head improves the usefulness of

the learned representation.

4. A contrastive loss function which is used to train the ECG encoder and projection head. The

contrastive loss function ℓi,j is low when the cosine similarity is high between projections of

ECGs from the same patient, zi and zj. ℓi,j also encourages the cosine similarity to be low

between ECGs coming from different patients, e.g. zi and zk.

ECG selection module. Random pairs of ECGs from each individual are selected in every

batch (S2 Text) regardless of time or changed health between the ECGs’ acquisitions. We find

the random selection approach effective, and leave more advanced strategies to future work.

ECG encoder. To facilitate our comparisons, we used the same encoder architecture

developed by [8] (Fig 4). We note that our approach will work with any encoding architecture,

not just that of [8]. In order to adapt it to representation learning, one dimensional global aver-

age pooling (GAP) [21] was applied to the output of the final residual block in the Ribeiro

architecture, yielding a 320-dimensional representation for each ECG. We chose 320 dimen-

sions because it allowed us to adapt and compare against a proven ECG encoder architecture

with minimal change. We used the same embedding architecture, and thus the same

Fig 4. The ECG encoder architecture. Designed by [8] with modifications including global average pooling (GAP). Conv means 1D convolution, BN
means batch normalization, Max Pool means 1D max pooling, ReLU means rectified linear unit, and Res-block means residual block.

https://doi.org/10.1371/journal.pcbi.1009862.g004
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representation dimension, for all of the pre-training approaches we compared, so we believe

that the relative performance of the methods would stay the same at different dimensions.

Projection head. The projection head follows the encoder and is solely used in pre-train-

ing. [7] showed that a non-linear projection head improves the quality of the representations

from the encoder. Our projection head was a fully connected layer with 320 units followed by

a ReLU activation followed by another 320 unit fully connected layer (Fig 5). The full tensor-

flow model summary is in S1 Text.

Contrastive loss function. The contrastive loss function guides the outputs of the projec-

tion head to be similar for ECGs that come from the same patient and distinct for ECGs from

different patients. We used the normalized temperature-scaled cross entropy loss with temper-

ature parameter τ = 0.1. For a pair of ECGs from the same patient, (xi, xj), a positive pair, the

encoder followed by the projection head yield projections g(f(xi)) = zi and g(f(xj)) = zj. Given a

batch of N patients and letting sim denote the cosine similarity yields loss

‘i;j ¼ � log
exp½simðzi; zjÞ=t�

P2N;k6¼i
k¼1

exp½simðzi; zkÞ=t�
:

In a single minibatch of N patients, the loss is computed between all positive pairs. Let p1 be

the index of patient p’s first ECG in a minibatch, and p2 be the index of patient p’s second ECG

in the minibatch. Then the loss for the batch is

Lbatch ¼
XN

p¼1

‘p1 ;p2
:

PCLR pre-training optimizer details. During pre-training the mini batch size was 1,024

ECGs drawn from 512 patients. The model was trained for 50 epochs using the Adam opti-

mizer [22]. The learning rate started at 0.1 and was decayed every epoch according to a half-

period cosine schedule with period 50 epochs [23].

Applying PCLR to new tasks using linear evaluation

Training linear models on learned representations is known as linear evaluation. Linear evalu-

ation has been shown to be a useful indicator of the performance of more complex models

trained on learned representations [24]. Furthermore, linear evaluation allows us to test the

usefulness of PCLR to practitioners who lack the resources or expertise to train their own neu-

ral network and to facilitate integration into existing clinical models (e.g. Cox proportional

hazard analyses). We applied linear evaluation to PCLR in a similar procedure to SimCLR:

1. Apply the PCLR-trained ECG encoder to N ECGs to get 320 features for each ECG. This

results in an N × 320 feature vector, which we call PCLR. We then normalize each column

by subtracting its mean and dividing by its standard deviation.

Fig 5. The full architecture used in PCLR pre-training. The projection head, beginning at the first Dense (fully connected) layer, is applied to the

output of the ECG encoder.

https://doi.org/10.1371/journal.pcbi.1009862.g005
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2. Train a linear or logistic ridge regression model on PCLR. We use four fold cross validation

to select the optimal ℓ2 penalty from 10 values logarithimcally-evenly spaced between 10−6

and 105.

3. Evaluate the linear model on holdout data. We apply the ECG encoder to the holdout

ECGs, and normalize the resultant representations using the training summary statistics.

Cohort

We used ECGs and metadata from two hospitals: Massachusetts General Hospital (MGH) and

Brigham and Women’s Hospital (BWH). The data were ingested using the ML4H repository

[25]. We pre-trained the ECG encoder using PCLR in a pre-training cohort taken from MGH.

In the pre-training cohort, we extracted age, sex, and ECG sampling rate from each ECG. The

pre-training cohort is further described in Pre-training cohort from MGH. We built two

cohorts from BWH: a set for training supervised models from scratch, and a validation set.

The BWH datasets are further described in (BWH cohorts).

Choice of evaluation tasks. In order to evaluate PCLR and the baseline methods, four

tasks were chosen for their disparate biological bases: left ventricular hypertrophy (LVH) clas-

sification, AF classification, sex classification, and age regression. AF is marked on the ECG by

an irregular rhythm and missing P-waves. AF has been associated with a greatly increased risk

of stroke [26]. LVH is defined by an increase in left ventricular mass. LVH can be detected

from the ECG using voltage criteria with high specificity but low sensitivity [27]. LVH is asso-

ciated with an increased risk of cardiovascular diseases and death [28]. Age and sex detection

have been shown to be possible from the ECG by works including [12]. Taken together, age

regression, sex determination, and AF and LVH detection serve as useful benchmarks because

prior work have leveraged the ECG for these predictive tasks. Moreover, the prediction of AF,

by itself, is clinically important as its detection has important clinical consequences.

Data extraction. In both the pre-training and test cohorts, age, sex, heart rate, PR interval,

QRS duration, and QT interval are all reported as tabular fields. LVH and AF were defined

using a free text diagnosis field by checking for containment of keywords. The ECG waveforms

in both cohorts are recorded for ten seconds at either 250 Hz or 500 Hz with amplitudes repre-

sented in microvolts as 16 bit integers. All 12 leads of the ECG are recorded in their own fields.

As preparation for training the ECG encoder, we divided the amplitudes for each lead by 1,000

to get units of millivolts, convert to 32 bit floats, and then use linear interpolation to fit each

lead into 4,096 samples. Once each lead has been interpolated to the same length, we them into

a 4, 096 × 12 matrix with lead order {I, II, III, AVR, AVL, AVF, V1, V2, V3, V4, V5, V6}. The

ECG pre-processing code is available at https://github.com/broadinstitute/ml4h/tree/master/

model_zoo/PCLR.

Our overarching goal is to develop a method that would be easy for any health care provider

to use. As routine electrocardiograms can contain noise that typically arises from baseline

wander and muscle artifact [29], we strove to develop a method that would be robust to these

noise sources. We therefore chose to not pre-process the ECG signals to remove artifacts that

may be seen during routine electrocardiography. Given the size of our pre-training dataset

(which contains several million ECGs), this approach should help the model learn to be robust

to noise.

Pre-training cohort from MGH. Patients with only one ECG were filtered out in order to

make the PCLR contrastive loss more informative. That leaves 404,929 patients with 3,229,408

ECGs. 90% of the MGH patients were selected into a training set and the remaining 10% of

patients in the validation set. The summary statistics of the pre-training cohort are shown in
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S2 Appendix. The validation set is used to pick the checkpoint of the model with the best per-

formance during training.

BWH cohorts. We produced a test set from BWH (B-test) with 10,000 ECGs, and a series

of training sets of increasing size: 640, 1280, 2560, 5120, 10240, and 20480 sample. We called

these B-640, B-1280, etc. Each of the B-series is a subset of the one larger than it. For example,

B-1280 is a subset of B-2560. Not all features were defined in the presence of AF, so separate

AF datasets (AF-640 through AF-20480) were created. Summary statistics and selection crite-

ria for all BWH cohorts are shown in S2 Appendix.

Results

PCLR linear evaluation compared to training from scratch

We trained PCLR on ECG representations extracted from B-640 through B-20480 to regress

age and classify sex, LVH, and AF (AF on AF-640 through AF-20480). Performance was evalu-

ated on B-test and AF-test. We built and trained a neural network with randomly initialized

weights for each of the four tasks and six training dataset sizes. To make the comparison fair,

we used the same ECG encoder as we used to train PCLR (Fig 4) followed by a linear fully con-

nected layer. Our overall approach is outlined in (Fig 6). In each classification task, the final

layer outputs two values and the model was trained using the categorical cross entropy. In age

regression, the linear layer outputs one value and the models were trained using the mean

squared error. For each task and each number of training labels, a grid search over learning

rates in {10−2, 10−3, 10−4} and dropout rates on the convolutional layers in {0, 0.1, 0.2} was

used to select the best model. All of the models were trained using the Adam optimizer until

the validation loss stops improving for five epochs, taking the checkpoint of the network with

the lowest validation loss for evaluation.

We found PCLR is better than a model trained from scratch for all four tasks we evaluated

up to at least 5,000 labeled training examples (Fig 7). PCLR was especially effective at sex classi-

fication, which may be because sex is a patient specific property that, in our population, is typi-

cally the same for all ECGs corresponding to a given patient. The connection between patient

contrastive learning and the performance on the four tasks is further explored in the Compari-

son to standard ECG features section. The fact that PCLR was able to perform well for LVH

Fig 6. Flowchart comparing training models on PCLR and training models from scratch.

https://doi.org/10.1371/journal.pcbi.1009862.g006
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classification (found in four percent of ECGs) and AF classification (found in five percent of

ECGs) indicates that PCLR can be useful in the presence of class imbalance.

PCLR compared to other pre-training approaches

We compared PCLR to three other approaches for extracting ECG representations. All three

comparison approaches trained on the same ECGs. The comparison models used the same

ECG encoder as in PCLR and thus also yielded 320 dimensional representations. These experi-

ments were designed to compare the effects of different pre-training objectives on the useful-

ness of the ECG representations.

Fig 7. Results of training from scratch vs. linear models trained on PCLR.

https://doi.org/10.1371/journal.pcbi.1009862.g007
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Ribeiro ECG encoder. Ribeiro et al. [8] trained a model to classify first degree AV block,

right bundle branch block, left bundle branch block, sinus bradycardia, atrial fibrillation, and

sinus tachycardia using 2,322,513 ECG records from 1,676,384 different patients. We

attempted to directly use the weights released by [8] and to train our own model with the same

architecture on data from MGH using the same six classification targets (details in S1 Appen-

dix). In the following experiments, the results of our version of the Ribeiro model are reported,

since it was uniformly better. This is likely because the MGH population is more similar to the

BWH population than the patient population used in [8]. We label linear evaluation of ECG

representations from the encoder with Ribeiro weights Ribeiro-R.

Convolutional auto encoder (CAE). Auto Encoders are a standard approach to extract-

ing compact representations of data. Others have found success applying CAEs to ECG data

for compression [30] and for pre-training for arrhythmia detection [31]. We built a CAE using

the ECG encoder by applying a series of transpose convolutions to the output of the ECG

encoder (architecture details in S3 Text). This approach led to faithful ECG reconstructions

(optimizer details and pre-training results in S1 Appendix).

Contrastive learning of cardiac signals (CLOCS). A class of methods based on SimCLR

to pre-train ECG models using ECG domain knowledge was developed by [6]. We trained the

same pre-training architecture used for PCLR with the approach [6] found most effective, con-

trastive multi-segment multi-lead coding (details in S1 Appendix). Contrastive multi-segment

multi-lead coding defines positive pairs as different sub-segments and different leads taken

from the same ECG. By comparing against CLOCS, we showed the trade offs of picking con-

trastive positive and negative pairs based on patient identity.

Pre-training approaches comparison results. We applied linear evaluation to the output

of the encoder portion of PCLR and the three comparison models. The linear models were

trained on all BWH training sets, and evaluated on the BWH test set. PCLR had the best or

tied for the best performance in all tasks besides AF classification across all training dataset

sizes (Table 1). The particularly poor performance of Ribeiro-R in LVH classification could be

because LVH is read from ECGs using voltage amplitudes [27], which may not be necessary to

learn for rhythm classification. Similarly, CLOCS was designed with rhythm classification in

mind, and it may be enough to distinguish whether leads belong to the same ECG or come

from different subsections of the same ECG based on rhythm.

Comparison to standard ECG features

We compared using PCLR to using seven standard features extracted from the ECG: HR, PR

interval, QRS duration, QT interval, P-axis, R-axis, and T-axis, which is another default

approach for a clinician researcher. The comparison was made in LVH and sex classification

and age regression. We cannot compare on AF classification, because some of the ECG fea-

tures are undefined in AF. We trained linear and XGBoost [32] models on the seven ECG

features on all BWH training sets, and evaluated on the BWH test set. The linear model hyper-

parameters were optimized using the same grid search over a range of regularization strengths

as the PCLR linear models. The XGBoost hyperparameters were selected using grid search

over maximum depths of 2, 4, and 6, and numbers of estimators of 50, 100, and 200. Across all

three tasks, PCLR was substantially better (Fig 8). These results show the advantage of using

learned representations over hand designed features.

Discussion

We compared PCLR to many of the options available for ECG modeling when there are few

training labels: training a new model from scratch, using hand designed features of the ECG,
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and pre-training models with different pre-training objectives. By comparing across four dif-

ferent tasks with different biological underpinnings, we evaluated the generalizability of the

approaches evaluated. PCLR yielded large performance increases compared to training from

scratch with limited training data across all four tasks, which demonstrates the relevance of the

patient contrastive learning objective for ECG modeling. PCLR was also almost always the best

option for pre-training and had the most consistent performance across the four tasks. The

Table 1. Performance metrics of the ECG encoder methods.

task n training labels Ribeiro-R CAE CLOCS PCLR

LVH (f1 score) 640 0.14 ± 0.02 0.25 ± 0.02 0.19 ± 0.02 0.36 ± 0.02

1280 0.19 ± 0.02 0.37 ± 0.02 0.18 ± 0.02 0.43 ± 0.02

2560 0.27 ± 0.03 0.33 ± 0.02 0.19 ± 0.02 0.44 ± 0.02

5120 0.28 ± 0.02 0.41 ± 0.03 0.20 ± 0.02 0.47 ± 0.02

10240 0.33 ± 0.03 0.43 ± 0.03 0.23 ± 0.02 0.46 ± 0.03

20480 0.29 ± 0.03 0.49 ± 0.03 0.27 ± 0.03 0.47 ± 0.03

age (r2) 640 0.33 ± 0.01 0.24 ± 0.01 0.41 ± 0.01 0.56 ± 0.01

1280 0.36 ± 0.01 0.29 ± 0.01 0.43 ± 0.01 0.57 ± 0.01

2560 0.38 ± 0.01 0.32 ± 0.01 0.47 ± 0.01 0.58 ± 0.01

5120 0.40 ± 0.01 0.34 ± 0.01 0.49 ± 0.01 0.59 ± 0.01

10240 0.41 ± 0.01 0.35 ± 0.01 0.50 ± 0.01 0.60 ± 0.01

20480 0.42 ± 0.01 0.36 ± 0.01 0.51 ± 0.01 0.60 ± 0.01

sex (f1 score) 640 0.72 ± 0.00 0.77 ± 0.00 0.77 ± 0.00 0.84 ± 0.00

1280 0.74 ± 0.00 0.78 ± 0.00 0.78 ± 0.00 0.86 ± 0.00

2560 0.75 ± 0.00 0.79 ± 0.00 0.78 ± 0.00 0.87 ± 0.00

5120 0.76 ± 0.00 0.80 ± 0.00 0.78 ± 0.00 0.86 ± 0.00

10240 0.77 ± 0.00 0.80 ± 0.00 0.79 ± 0.00 0.87 ± 0.00

20480 0.77 ± 0.00 0.80 ± 0.00 0.80 ± 0.00 0.87 ± 0.00

AF (f1 score) 640 n/a 0.20 ± 0.02 0.68 ± 0.02 0.60 ± 0.02

1280 n/a 0.23 ± 0.02 0.76 ± 0.01 0.61 ± 0.02

2560 n/a 0.24 ± 0.02 0.78 ± 0.01 0.64 ± 0.02

5120 n/a 0.28 ± 0.02 0.79 ± 0.01 0.65 ± 0.02

10240 n/a 0.26 ± 0.02 0.79 ± 0.01 0.69 ± 0.02

20480 n/a 0.24 ± 0.02 0.80 ± 0.01 0.70 ± 0.02

Bold results indicate the best model with a fixed task and number of training labels. The best models are picked using 1,000 bootstraps of the test data. The performance

ranges are ± one standard deviation of the bootstrapped performances.

https://doi.org/10.1371/journal.pcbi.1009862.t001

Fig 8. Comparison against standard ECG features.

https://doi.org/10.1371/journal.pcbi.1009862.g008
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results show that PCLR is a generalist approach which can be applied without needing finetun-

ing. Furthermore, PCLR was designed to only require linear models to use for new tasks. By

using the model weights we released, the computational cost of PCLR is running inference and

then training linear models, which is significantly cheaper than training a model from scratch.

We can use the framework for understanding contrastive learning presented in [33] to

understand the effectiveness of PCLR. To make contrastive approaches as effective as possible,

pairs, pairs for the contrastive learning task should be chosen so that each element of the pair

shares features relevant to the downstream task, and does not share irrelevant features. They

call this the “InfoMin” principle. In the PCLR pre-training objective, the features that are gen-

eralizably shared between pairs of ECGs are features realted to sex, genetics, and slowly pro-

gressing health states. The InfoMin principle thus explains why PCLR representations were

effective for sex and LVH classification, which tend to be stable over time. Age also is on aver-

age not very different between patients’ ECGs, which were taken on average 262 days apart in

the training data. PCLR’s AF detection performance may be partially explained by the genetic

features which contribute to AF [34]. On the other hand, PCLR may have a disadvantage at

detecting AF in patients with paroxysmal AF, since the presence of AF will be inconsistent in

ECGs from such patients.

Conclusion

The application of deep learning to clinical datasets that have a few labeled training examples

raises a number of issues. Fruitful application of neural networks to these data often requires

the use of additional methods to mitigate the effects of small sample sizes. Consequently, the

application of deep learning in the regime of limited training data in health care has required

researchers with both in depth knowledge of machine learning and deep domain specific

knowledge. Unfortunately, however, few researchers have both.

Here we developed a contrastive learning approach, PCLR, which helps resolve this gap.

PCLR corresponds to a relatively low dimensional representation of high dimensional 12-lead

ECG data. A key aspect of the approach is that these representations are constructed in a man-

ner to ensure that different ECGs, which arise from the same patient, are more similar to one

another relative to ECG-representations arising from different patients. This is a unique-to-

health-care self-supervised approach for building useful representation of rich medical data.

We demonstrated that PCLR is performant, expressive, and practical for clinical researchers to

use across a variety of tasks. We also outlined the regimes where PCLR is the most performant

approach to adopt.

The success of PCLR suggests that building patient-centered representations of multi-

modal health care data, not just ECGs, is an important direction of future research. For exam-

ple, one could consider merging the patient identity component of PCLR with the joint echo-

cardiogram-text modeling of [16]. Such an approach could lead to unified representations of

patients’ heart health from echo-cardiograms, ECGs, and other cardiology data modalities.

Supporting information

S1 Text. PCLR pre-training model architecture. The text was produced using the tensorflow

2.3 keras model summary function. All activations are ReLU, and all convolutions have filter

size of 16.

(TXT)

S2 Text. PCLR minibatch pre-training procedure in Python 3.6.

(PY)
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S3 Text. CAE architecture. The text was produced using the tensorflow 2.3 keras model sum-

mary function.

(TXT)

S1 Appendix. Pre-training details of PCLR, Ribeiro model, CLOCS model, and CAE

model.

(PDF)

S2 Appendix. Cohort selection processes and characteristics of MGH and BWH.

(PDF)

S1 Fig. Reconstruction of lead I of an ECG by the CAE. The ECG shown was randomly

selected from the MGH validation data.

(TIFF)

S1 Data. Every model’s predictions and the truth values of the test data. Fig 7, Table 1, and

Fig 8 were produced using S1_Data.csv, which contains predictions and truth labels for each

model and task.

(CSV)
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