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Ectopic Dpp signaling promotes
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EGFR signaling in the Drosophila
PR, testis
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Stem cell competition could select the fittest stem cells and potentially control tumorigenesis.
However, little is known about the underlying molecular mechanisms. Here, we find that ectopic
Decapentaplegic (Dpp) signal activation by expressing a constitutively active form of Thickveins (Tkv*)
in cyst stem cells (CySCs) leads to competition between CySCs and germline stem cells (GSCs) for niche

. occupancy and GSC loss. GSCs are displaced from the niche and undergo differentiation. Interestingly,

. we find that induction of TkvA results in elevated expression of vein, which further activates Epidermal

. Growth Factor Receptor (EGFR) signaling in CySCs to promote their proliferation and compete GSCs
out of the niche. Our findings elucidate the important role of Dpp signaling in regulating stem cell
competition and tumorigenesis, which could be shed light on tumorigenesis and cancer treatment in
mammals.

Tissue homeostasis is maintained by adult stem cells, which constantly divide and supply newly differentiated
. cells to replace dying or damaged cells. Increasing evidence shows that fittest stem cells are constantly selected
* through stem cell competition, which is critical for organ development and tissue homeostasis'~°. Moreover, stem
- cell competition is found to be implicated in tumorigenesis”®. However, the underlying molecular mechanisms of
stem cell competition are poorly understood.
: The Drosophila testis is an ideal system to study stem cell maintenance, differentiation, and competition®-*%.
- A group of non-dividing somatic cells, termed the hub, resides at the apex of the Drosophila testis'*?>?. About
: 5-9 GSCs closely attach to the hub via adhesion molecules. Another group of somatic stem cells, termed CySCs,
attach to the hub by their cellular extensions'®!>132¢. The hub serves as the stem cell niche and expresses Unpaired
(Upd), which activates the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling
in GSCs and CySCs to control their maintenance**>*. GSCs undergo asymmetric divisions, producing new GSCs
and differentiating gonialblasts (GBs). The GBs are engulfed by two somatic cyst cells, generated from asymmetric
. CySC divisions. The GBs undergo four rounds of mitotic division with incomplete cytokinesis before differen-
© tiation. The somatic cyst cells grow without further division to encapsulate the germline cells with their cellular
. extensions throughout spermatogenesis!>!1%17:2627:4041 CySCs are also critical for GSC maintenance, therefore,
CySCs together with the hub define the niche for GSCs**>3342,

Bone Morphogenetic Protein (BMP) and Hedgehog (Hh) signaling play important roles in the maintenance
 of GSCs and CySCg?0-21:22429:30:43-46 The hub and the early cyst cells produce two BMP ligands, Glass bottom
. boat (Gbb) and Dpp***. Short-range BMP signaling is critical for GSC maintenance and differentiation. BMP
. production and diffusion within the niche must be tightly controlled to ensure localized BMP signaling inside
: the niche, while ectopic BMP signaling outside of the niche leads to aberrant GSC proliferation and differentia-
. tion*>*77>2, Our recent study found that Tkv functions as ligand sink to spatially restrict Dpp signaling within the
© testis niche®®. However, it remains unknown whether ectopic Dpp signaling in CySCs has any role in stem cell

regulation.
: CySCs and GSCs often compete for niche occupancy, making the Drosophila testis an excellent model to study
. the underlying mechanisms controlling stem cell competition. Stem cell competition selects fittest stem cells for
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Figure 1. Ectopic expression of tkv® in CySCs leads to GSC loss. (a) 587" control testis. GSCs (white
arrowheads) and CySCs (yellow arrowhead) are indicated. (b) c587* > tkv* testis. The hub is surrounded

by CySCs (yellow arrowheads), and no germline cells can be observed (white arrowhead). (¢) Quantification
of the number of GSCs per testis in control and ¢587* > tkv“ testes. n=10-15 testes. (d) Quantification of
the number of CySCs with their cell body attaching to the hub in control and c587 > tkv“* testes. n=10-15
testes. (e) CySC MARCM clones in FRT control. GSCs (white arrowheads) and GFP-marked CySCs (yellow
arrowhead) are indicated. (f) tkv“A-expressing CySC MARCM clones. Some GFP-marked tkv“* CySCs (yellow
arrowheads) tightly attach to the hub, and the number of GSCs per testis is greatly reduced (white arrowhead).
(g) Quantification of the number of GSCs per testis in testes carrying FRT control and tkv® MARCM clones.
n=10 testes. (h) Quantification of the number of CySCs with their cell body attaching to the hub in testes
carrying FRT control and tkv“A MARCM clones. n = 10 testes. mean & SEM is shown. **p < 0.01. GFP in green,
Vasa in red, Fas3 in yellow, blue indicates DAPI staining for DNA. Scale bars: 10 pm.

tissue homeostasis, and is potentially implicated in tumorigenesis'~. Previous studies found that CySCs compete
with each other and with GSCs for niche occupancy. The mutant stem cell and its descendants with increased
competitiveness will outcompete wild type stem cells*®1>1619.244654 Tn the Drosophila testis, CySC-GSC competi-
tion is first revealed in socs36E mutant, the negative regulator of JAK/STAT signaling'S. Recent studies found that
several signaling pathways, including Hh, Hippo (Hpo), and EGFR/Mitogen-activated protein kinase (MAPK),
regulate stem cell competition'>!244654 However, the underlying mechanisms controlling stem cell competition
are not fully understood.

In this study, we investigate whether additional factors regulate stem cell competition in the testis niche.
Interestingly, we find that ectopic expression of tkv* in CySCs results in competition between CySCs and GSCs
for niche occupancy and GSC loss. We demonstrate that CySC-GSC competition observed in tkv“4-expressing
testis is caused by enhanced expression of the EGF vein (vn), which in turn activates EGFR/MAPK signaling in
CySCs to promote CySCs to outcompete GSCs. Our data elucidate a novel mechanism of stem cell competition,
which may shed light into the development of potential clinical treatment for cancer.

Results

Ectopic expression of tkvt in CySCs leads to CySC-GSC competition and GSC loss.  In order
to search for new regulators of stem cell competition, we performed a large-scale screen using a ¢587* driver
(c587Gal4, UAS-GFP; esg-lacZ, tubGal80%) (data not shown)*. ¢587Gal4 is strongly expressed in CySCs and
somatic cyst cells of the Drosophila testis (Fig. 1a). Our recent data show that Tkv acts as receptor trap to restrain
Dpp signaling within the niche®. Surprisingly, we found that when a constitutively active form of tkv (tkv®) was
expressed in CySCs (c587" > tkv©4), all germline cells, including GSCs, were lost (Fig. 1b). The hub was tightly
surrounded by a group of somatic cells, instead of GSCs (Fig. 1b-d). These data indicate that ectopic expression
of tkv“* may cause CySC-GSC competition. The observed phenotype was resulted from systemic expression of
tkv© in all CySCs, we wondered whether ectopic expression of tkv“ in single CySC or only a portion of CySCs
could cause the same defect. We explored this possibility by using MARCM technique to generate CySC clones
expressing tkv4. Compared with FRT control CySC clones, we found that tkvA-expressing CySC clones tightly
attached to the hub, and the number of GSCs per testis was significantly decreased (Fig. 1e-h). These data indicate
that ectopic tkv® expression in CySCs causes stem cell competition.
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Mad (Mothers against dpp), a transducer of Dpp signaling, is phosphorylated when the Dpp pathway is
activated. Therefore, the accumulation of phosphorylated Mad (pMad) can be used as a read-out of Dpp path-
way activation?>>¢, Consistent with previous reports that ectopic expression of tkv“* induces ectopic Dpp
signaling activation***>, we found that Dpp signaling activation was greatly increased in the cyst cell lineage
of c587 > tkv“A testis, using pMAD as a readout (Supplementary Fig. 1). As Dpp signaling is highly activated
upon ectopic expression of tkv4 in CySCs (Supplementary Fig. 1), we examined whether the observed stem cell
competition phenotype was a consequence of ectopic Dpp signaling. We used various functional RNAi lines to
simultaneously deplete components downstream of Tkv in ¢587 > tkv testes®»”. Mad and Med (Medea) are
components downstream of Tkv in the Dpp signaling pathway. When these RNAi constructs were co-expressed
with tkv®4 in CySCs, we found that further removal of either Mad or Med could successfully suppress stem cell
competition observed in c587* > tkv“ testes (Supplementary Fig. 2). In these testes, GSCs were restored and
resided around the hub, and differentiating spermatogonia could be observed (Supplementary Fig. 2). These
data demonstrate that stem cell competition and GSC loss resulted from ectopic expression of tkv“4 in CySCs is a
consequence of ectopic Dpp signaling.

CySCs overproliferate and outcompete GSCs upon tkvA expression.  Next, we investigated the cell
identity of the cells in c587" > thkv“ testes. We first examined c587" > tkv“* testes using the Zth1 antibody, which
labels CySCs and early cyst cells. The number of Zfh1* cells was significantly increased compared to control tes-
tes, and CySCs tightly attached to the hub with their cell bodies, indicating that ectopic Dpp signaling in CySCs
promotes CySC proliferation (Fig. 2a-c; data not shown). We then examined these c587* > tkv® testes using
esg-lacZ, which was highly expressed in the hub and GSCs, and at low levels in CySCs (Fig. 2d). Interestingly, no
germline cells were observed in these testes (Fig. 2e,f). esg-lacZ could only be observed in the hub and CySCs, and
the number of esg-lacZ™" cells was dramatically increased (Fig. 2e,g). These data show that upon ectopic expression
of tkv®, CySCs continued to proliferate and occupied the whole niche, while the germline cells were completely
lost.

GSCs are competed out of the niche and undergo differentiation upon tkv‘4 expression. As
no germline cells were observed in these testes, we examined the fate of the germline cells, especially GSCs. The
complete disappearance of germline cells, especially GSCs, may be caused by differentiation or cell death. To
distinguish these two possibilities, we first performed time chase experiments. No differences were observed
between the control and c587 > tkv testes at 6 hours and 24 hours after the flies were shifted from 18°C to
29°C (Fig. 3; Supplementary Fig. 3). However, by the 2nd day, we found that some CySCs closely attached to
the hub with their cell bodies in the c587 > tkv“ flies, and the number of GSCs per testis was decreased (Fig. 3;
Supplementary Fig. 3). By the 3rd day after shifting, we found that the hub was closely associated by CySCs and
all GSCs were competed out of the niche (Fig. 3; Supplementary Fig. 3). As time lapsed, GSCs were pushed fur-
ther away from the hub by CySCs and underwent differentiation. By the 6th day, almost all germline cells were
terminally differentiated, and fully differentiated spermatids could be observed at regions near the hub (Fig. 3;
Supplementary Fig. 3). CySCs closely attached to the hub kept proliferating, resulting in accumulation of CySCs
(Fig. 3; Supplementary Fig. 3). On the contrary, we did not find any significant increase of GSC/germline cell
death (by active Caspase-3) in these testes (Supplementary Fig. 4). These data indicate that ectopic activation of
Dpp signaling in CySCs outcompetes GSCs from the niche by CySCs, and the outcompeted GSCs are lost due to
differentiation.

Ectopic Dpp signaling in CySCs promotes Vn expression. Previous report found that increased
expression of the adhesion protein integrin in socs36E mutant CySCs could promote CySC-GSC competi-
tion'®. We examined whether CySC-GSC competition observed in c587* > tkv* testes was due to elevated
expression of integrin. However, no obvious change in integrin levels was observed (by 3PS-integrin), indicat-
ing that CySC-GSC competition observed in ¢587* > tkv® testes is unlikely mediated by integrin molecules
(Supplementary Fig. 5).

Previous studies found that elevated EGFR signaling in socs36E- and Madm-deficient CySCs was responsible
for CySC-GSC competition'!. Activation of EGFR by its extracellular ligands triggers a signal transduction
cascade, mediated by the Ras/Raf/MEK cassette, which ultimately leads to dual phosphorylation and activation
of the mitogen-activated protein kinase/extracellularly regulated kinase (MAPK/ERK), therefore, phosphorylated
ERK (pERK) can be used as a read-out of EGFR pathway activation®®. To investigate whether EGFR signaling is
responsible for CySC-GSC competition observed in ¢587 > tkv“A testes, we examined the activation of EGFR sig-
naling by detecting the levels of pERK in tkv“4-expressing CySCs. Interestingly, we found the levels of pERK was
significantly increased in tkv“A-expressing CySCs than those in the control, indicating that ectopic Dpp signaling
promotes the activation of EGFR signaling (Fig. 4a—c). To further confirm this, we examined the expression of
kekkon (kek), a primary downstream target of EGFR signaling. kek-lacZ is an enhancer trap that reflects endoge-
nous kek expression®. We found that kek-lacZ was expressed in the early cyst cells and differentiated cyst cells in
wild type testis (Fig. 4d). The expression pattern of kek-lacZ is similar to that of pERK, indicating that kek-lacZ
could be used as a readout of EGFR activation in testis (Fig. 4a,d)®*. We found tkv“4 induction significantly
enhanced the expression levels of kek-lacZ (Fig. 4e,f). These data show that ectopic Dpp signaling significantly
promotes EGFR signaling in the somatic cyst cells.

We then explored how EGFR signaling was activated by ectopic tkv“ expression. We reasoned that some
components of the EGFR signaling pathway may be transcriptional upregulated by the activated MAD/MED
complex, which in turn activate EGFR signaling. We thus investigated whether ectopic tkv“* expression pro-
motes the transcription of EGFs. We examined the expression of EGFs (Spitz (Spi) and Vein (Vn)) in the tes-
tis using their enhancer traps. Consistently, we found that spi was expressed in the germline cells (by spi-lacZ)
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Figure 2. Ectopic expression of tkv* in CySCs leads to CySC overproliferation and CySC-GSC competition. (a)
CySCs (by Zth1, red, white arrowheads) in ¢587* control testis. (b) CySCs (white arrowheads) in ¢587 > tkv©A
testis. (¢) Quantification of the number of Zth17 cells in control and c587* > tkv©A testes. n = 10-15 testes. (d) esg-
lacZ (bylacZ, red) in ¢587" control testis. esg-lacZ is highly expressed in the hub (red arrowhead and asterisk) and
the early germline cells (GSCs and GBs) (white arrowheads), and weakly expressed in CySCs (yellow arrowhead).
(e) esg-lacZ (red) in c587" > tkv® testis. No germline cells can be observed. esg-lacZ can only be observed in the
hub (red arrowhead and asterisk) and CySCs (yellow arrowheads). (f) Quantification of the number of esg-lacZ*
germline cells in control and ¢587% > tkv® testes. n=10-15 testes. (g) Quantification of the number of esg-lacZ*
early cyst cells in control and c587* > tkv testes. n=10-15 testes. mean & SEM is shown. **p < 0.01. GFP in
green, blue indicates DAPI staining for DNA. Scale bars: 10 pum.

(Supplementary Fig. 6)°'. While vn was expressed in the early somatic cyst cells, including CySCs (by vn-lacZ)
(Fig. 4g)'71°. As tkv® was ectopically expressed in CySCs, therefore, we focused on v# for further examination.
To explore the relationship between ectopic Dpp signaling and vn expression, we examined the expression levels
of vn in ¢587" > tkv* testes. We found vn expression was markedly increased upon tkv“ induction (Fig. 4h,i).
These data suggest that ectopic Dpp signaling promotes vn expression, which in turn induces elevated EGFR
signaling in the early cyst cells.

Ectopic Vn/EGFR/MAPK signaling is responsible for CySC-GSC competition. Therefore, we
addressed whether elevated vn expression was responsible for CySC-GSC competition observed in c587* > tkv©A
testes. When ectopically expressed in CySCs (c587 > vnfP), we found that vnE? overexpression resulted in
CySC-GSC competition, which mimics c587% > tkv“A testes (Fig. 5a-d). Consistently, the number of GSCs per
testis was significantly reduced in c587% > vnf?” testes (Fig. 5a-c), and the number of CySCs tightly attaching to
the hub was greatly increased in ¢587* > vn®? testes compared with that of control testes (Fig. 5b,d). These data
indicate that elevated vn expression promotes CySC-GSC competition. Furthermore, we found that expression of
a constitutively active form of Ras (Ras¥!?) also resulted in CySC-GSC competition and GSC loss, phenocopying
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Figure 3. GSCs are competed out of the niche by CySCs and differentiated in c587* > tkv“A testis. Time chase
experiment is carried out to trace the fate of GSCs. Time points examined are indicated. The hub is marked

by white asterisk, GSCs are indicated by yellow arrowheads, and CySCs by white arrowheads. CySCs begin to
closely attach to the hub on the 2" day at 29 °C from 18 °C. The hub is closely associated by CySCs on the 3¢
day after shifting, and all GSCs are competed out of the niche by CySCs and undergo differentiation (white
arrowhead). Germline cells move further away from the hub and undergo differentiation by the 6" day. Almost
all the spermatogonia are terminally differentiated, and fully differentiated spermatids can be observed (yellow
arrowhead). GFP in green, blue indicates DAPI staining for DNA. Scale bars: 10 pum.

| (2019) 9:6118 | https://doi.org/10.1038/541598-019-42630-y


https://doi.org/10.1038/s41598-019-42630-y

*%

¢587* control 7d . c587%>tkveA7d c ™

.
5 * ¢
e o
v".‘ 3
» y

2500

2000

~ »
N
2 : " T A

4

1000 4

Fluorescence intesity of pERK
g g
8 8
——

" control  tkv°A

3000

—h

2500

%
2000
1500
1000
0

control  tkvCA

d 587",kek-lacZ e c587%,kek-lacZ>tkvCA
g control 7d 7d

% | <
Py
-
A

Fluorescence intesity of kek-lacZ

g
8

c587,vn-lacZ
control 7d

3000

%%

lacZ

2500

N
8
S
8

2
38
—

Fluorescence intesity of vn.
2
8
8

a
8
° 8

control  tkv**
Figure 4. Ectopic Dpp signaling in CySCs promotes vn expression. (a) EGFR signaling activation (by pERK,
red) in ¢587"control testis. pERK signal is mainly observed in the early cyst cells (white arrowheads). (b) EGFR
signaling is highly activated in the somatic cyst cells of c587* > tkv testis. (¢) Quantification of fluorescence
intensity of pERK in control and c587" > tkv® testes. n=10. (d) EGFR signaling activation (by kek-lacZ, red)
in ¢587" control testis. kek-lacZ is expressed in the somatic cyst cells (white arrowheads). (e) kek-lacZ is highly
expressed in c587% > tkv“A testis. (f) Quantification of the fluorescence intensity of kek-lacZ in control and
587" > thv“A testes. n = 10. (g) vn expression (by vn-lacZ, red) in ¢587" control testis. vn-lacZ is expressed at
low levels in the early cyst cells (white arrowheads). (h) vn-lacZ is highly expressed in c587" > tkv©4 testis. (i)
Quantification of the fluorescence intensity of vn-lacZ in control and c587 > tkv® testes. n=10. mean + SEM
is shown. **p < 0.01. GFP in green, blue indicates DAPI staining for DNA. Scale bars: 10 pum.

tkv©A expression (data not shown). These data indicate that CySC-GSC competition observed in c587* > tkv®4
testes is likely a consequence of ectopic EGFR/MAPK signaling.

To further confirm that elevated Vn/EGFR/MAPK signaling is responsible for CySC-GSC competition
observed in ¢587% > tkv“ testes, we performed suppression experiments. No obvious defects was caused when
vn was depleted in CySCs using a shRNA (TH03149.N) (Fig. 5f). When vn was compromised in c587 > tkv©A
testes using this shRNA, the observed CySC-GSC competition and GSC loss defects were almost completely
suppressed (Fig. 5e-g). The number of GSCs per testis and the number of CySCs tightly attaching to the hub were
almost completely reverted by simultaneous knockdown of vn (Fig. 5a-d). These results indicate that ectopic
vn expression is responsible for CySC-GSC competition observed in c587% > tkv testes. To further confirm
our conclusion, we targeted EGFR itself for suppression assay. As EGFR signaling is essential for spermatogonia
differentiation, we selected a weak dsRNA against egfr (JF01368) to inhibit EGFR signaling'”*”62. Knockdown
of egfr using this dsRNA resulted in no obvious defects (Fig. 5h). We found that the observed CySC-GSC com-
petition and GSC loss defects were almost completely suppressed by simultaneous induction of this dsRNA in
587" > tkv©A testes (Fig. 5e,h,i). Consistently, the number of GSCs per testis and the number of CySCs tightly
attaching to the hub were almost completely suppressed by co-inhibition of egfr (Fig. 5¢,d). Together, these data
demonstrate that ectopic Vn/EGFR/MAPK signaling is responsible for CySC-GSC competition and GSC loss
resulted from tkv“* expression in CySCs.

Discussion
Fittest stem cells are selected through stem cell competition in the niche to maintain tissue homeostasis. However,
the mechanisms underlying stem cell competition remain largely unknown. Here, we reveal that cell-autonomous
activation of Dpp signaling in CySCs results in CySC-GSC competition and GSC loss, which is mediated by ele-
vated Vi/EGFR/MAPK signaling. The mechanism we uncovered may be general features of stem cell systems in
regulating stem cell competition>?>¢,

Stem cell competition emerges as a mechanism to select fit stem cells and control tumorigenesis'~. Stem cell
competition takes place in three steps. The competitive stem cells first become more fit, before they move and
anchor to a defined niche, followed by proliferation and outcompetition of neighboring stem cells. However, the
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Figure 5. Ectopic Vn/EGFR/MAPK signaling is responsible for CySC-GSC competition and GSC loss

in c587" > thv©A testes. (a) c587" control testis. (b) 587" > vn? testis. Note that most GSCs (red, white
arrowheads) are competed out of the niche by CySCs (yellow arrowheads). (¢) Quantification of the number

of GSCs per testis in the testis with indicated genotype. n=10-15 testes. (d) Quantification of the number

of CySCs with their cell body attaching to the hub per testis with indicated genotypes. n=10-15 testes. (e)
c587" > tkv©A testes. (f) c587 > ynRNAi testes (HMS00004). No obvious defects are observed when this shRNA
is induced. (g) Stem cell competition observed in c¢587 > tkv® testis is almost completely suppressed by
simultaneous expression of this sShRNA against vn. (h) c587" > egfr®4i testes. The induction of this weak egfrtN4i
line (JF01368) in CySCs does not cause any obvious defects. (i) Stem cell competition observed in c587* > tkv©A
testis is greatly suppressed by co-expression of this egfr*™4. mean & SEM is shown. **p < 0.01. GFP in green,
Vasa in red, Fas3 in yellow, blue indicates DAPI staining for DNA. Scale bars: 10 pm.

detailed mechanisms underlying stem cell competition in the Drosophila testis are poorly understood. Elucidating
the mechanisms controlling stem cell competition will help to develop potential clinic treatments for cancer. The
testis niche supports two groups of stem cells: GSCs and CySCs, making it an excellent model to study stem cell
competition regulation. Previous studies found that CySCs compete with each other and with GSCs for niche
occupancy'>!®146 Mutations that confer increased competitiveness to CySCs result in outcompetition of wild
type resident stem cells by the mutant stem cells and their descendants. The first identified regulator of niche com-
petition is Socs36E, a negative feedback inhibitor of the JAK/STAT pathway. The competitive behavior of socs36E
mutant CySCs was first attributed to increased JAK/STAT signaling'®. However, it was recently found that the
competitiveness of socs36E mutant CySCs is likely due to elevated MAPK signaling'®. Stem cell competition also
occurs among CySCs, it was reported that CySCs with increased Hh or Yorkie (Yki) activity displaced neighbor-
ing wildtype CySCs from the niche before they outcompeted neighboring wild type GSCs, indicating that both
intra- (CySC-CySC) and inter-lineage (CySC-GSC) competitions take place in the testis*. It was recently reported
that Slit-Robo signaling only regulates intra-lineage competition among CySCs>*.

Ectopic Dpp signaling in CySCs results in CySC-GSC competition for niche anchoring and GSC loss (Fig. 1).
We found that ectopic Dpp signaling leads to elevated Vn expression, which in turn activates EGFR/MAPK sig-
naling in CySCs to promote their proliferation and ability to outcompete GSCs for niche occupancy (Figs 4 and
5). Ectopic expression of vz in CySCs results in CySC-GSC competition, which mimics c587 > tkv“4. However,
the GSC loss and the CySC overproliferation phenotype in c587" > vn? is not as severe as the latter. The dif-
ferences may be caused by the vn” line used in this study, which may not produce sufficient vn transcripts as
that of tkv“ expression. Nevertheless, the observed CySC-GSC competition upon tkv“ expression is almost
completely suppressed by compromising EGFR signaling (Fig. 5). Our study here demonstrate that the niche
signals must be tightly controlled to prevent CySC-GSC competition, thereby maintaining niche homeostasis.
Interestingly, a recent study found that the novel tumor suppressor Mlf1-adaptor molecule (Madm) regulates
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CySC-GSC competition'®. They found that Madm regulates CySC-GSC competition by suppressing the expres-
sion of integrin and EGFR ligand Vn'®. Although tkv“* induction promotes vz expression, we found that, unlike
loss of madm, tkv“ induction does not affect integrin expression levels, suggesting that the downstream events
regulating stem cell competition in tkv®4 and madm~'~ CySCs are not identical (Supplementary Fig. 5). It is
established that EGFR/MAPK signaling is required in the somatic cyst cells for their proper differentiation and
engulfment of the developing germline cells!”*”%2. From recent studies on socs36E, Madm, and our study on tkv©4,
we can conclude that EGFR/MAPK signaling in CySCs also plays a pivotal role in regulating CySC-GSC competi-
tion'>". It will be interesting to investigate why BMP signaling is kept from being over-activated in CySCs under
physiological conditions, and how different input signals are converged on the EGFR/MAPK signaling pathway
to regulate CySC-GSC competition, which will help to understand the regulation of stem cell competition, tissue
homeostasis, and tumorigenesis.

Materials and Methods

Fly lines and cultures.  Flies were maintained on standard corn-meal cultural media at 25°C. To inactivate
Gal80", flies were shifted to 29°C, and transferred to new vials every day and dissected at specific time points
as indicated. Information about alleles and transgenes used can be found in FlyBase and as noted: ¢587Gal4,
UAS-GFP, esg-lacZ, tubGal80" (c587"), UAS-tkv??>3P (tkv©t), UAS-mad®4' (GL01527, GLV21013, JF01263,
JF01264, NIG 12399R-1, and 12399R-2), UAS-med®™4i (JF02218 and GL01313), kekBB!*? (kek-lacZ, gift from
Zhaohui Wang), spi*®**’ (spi-lacZ, gift from Rongwen Xi), vn?'’# (vn-lacZ, gift from Rongwen Xi), UAS-vnRN4i
(THO03149.N, Tsinghua University), UAS-egfr®¥4 (JF01368), vntFe3352! (BL58498), UAS-wfN4/ (BL33613 and
HMS00004) (from TRiP at Harvard Medical School)®.

RNAi knock down and overexpression experiments. To examine gene function in CySCs, 587
(c587Gal4, UAS-GFP, esg-lacZ, tubGal80") was used. Crosses were maintained at 18 °C. Progeny with the proper
genotypes was collected 1-2 days after eclosion and maintained at 29 °C before examination. UAS-dsRNA and
UAS-shRNA transgenic flies were used.

MARCM clone analyses. CySC MARCM clones were generated by heat shock treatment®. 1-3 days old
adult flies were heat-shocked at 37 °C for 60 minutes for 2 consecutive days. Flies were maintained at 25°C and
transferred to new vials every day. The clones were assayed at indicated time points after clone induction (ACI).

Immunostainings and fluorescence microscopy. For fluorescent immunostainings, testes were dis-
sected in 1 x PBS, and fixed in 4% paraformaldehyde for 25 min at room temperature. Testes were washed with
1 x PBT (0.1% Triton X-100 in 1 x PBS) for 3 times, 5min each, and blocked with 3% BSA for 45 min. The
samples were incubated with primary antibodies overnight at 4°C. The following antibodies were used: mouse
mAb anti-Fas3 (7G10, 1:50, developed by Corey S. Goodman, Developmental Studies Hybridoma Bank (DSHB)),
mouse mADb anti-3PS-integrin (CE.6G11, 1:50, developed by D. Brower, DSHB), rabbit anti-Vasa (d-260, Santa
Cruz, 1:200), rabbit anti-Zfh1 (1:5000, a generous gift from Ruth Lehmann, and 1:8000, generated in our
lab)*3, rabbit anti-3-galactosidase (1:5000, Cappel), mouse anti-3-galactosidase (1:1000, Cell Signaling), rabbit
anti-pMAD?3 (1:300, Epitomics), rabbit anti-active Caspase-3 (1;200, Abcam), and rabbit anti-pERK (p-p44/42,
1:200, Cell Signaling). Primary antibodies were detected by fluorescent-conjugated secondary antibodies
(Jackson ImmunoResearch Laboratories). Secondary antibodies were incubated at room temperature for 2 hrs.
After secondary antibody staining, DAPI (0.1 pg/ml, Sigma-Aldrich) was added to the samples for 45 min at
room temperature. Mounting medium (2.5% DABCO in 70% glycerol) was added to the samples. All images were
captured under a Zeiss inverted confocal microscope (780) and were further processed using Adobe Photoshop
and Ilustrator.

Data Availability

The number of GSCs and CySCs was counted manually. For fluorescence intensity of pERK and lacZ, all images
were taken under the same confocal settings. Image Pro Plus 5.0 software was used to measure fluorescence inten-
sity of pERK and lacZ (using the measure/count function). Statistical analysis was performed using the Student’s
t-test. PEMS 3.1 software was used for SEM analyses. The graphs were generated using SigmaPlot 10.0 software,
and further modified using Adobe Photoshop and Illustrator.
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