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Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is an aggressive tumor with a high
mortality rate because of the limited systemic and locoregional treatment modalities. The development and progression of
HCC depend on epigenetic changes that result in the activation or inhibition of some signaling pathways. The mTOR
signaling pathway is essential for many pathophysiological processes and is considered a major regulator of cancer. In-
creasing evidence has shown that epigenetics plays a key role in HCC biology by regulating the mTOR signaling pathway.
Therefore, epigenetic regulation through the mTOR signaling pathway to diagnose and treat HCC will become a very

promising strategy.

1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most common
malignancy in men and the seventh most common malig-
nancy in women worldwide and results in more than
700,000 deaths each year [1-3]. Further deterioration of
HCC can be prompted by failure of early diagnosis, lack of
effective therapeutic targets, and inadequate surveillance.
Therefore, the development of novel diagnostic methods and
the identification of novel targets for therapeutic interven-
tion are urgently needed for the diagnosis and treatment of
HCC [4].

Epigenetics is a heritable phenomenon that affects gene
expression without altering the DNA sequence [5]. Epige-
netics has been found to regulate gene expression mainly
through four mechanisms: DNA methylation, histone
modification, chromatin remodeling, and noncoding RNA
regulation [6, 7]. Aberrant epigenetic regulation plays an
important role in the development of human malignancies,
including HCC. Therefore, better understanding of the
abnormal epigenetic regulations in HCC may provide new

options for the diagnosis and treatment of HCC. In addition,
epigenetics also regulates signaling pathways such as the NF-
kB, RAF/MEK/ERK, JAK-STAT, Wnt, Notch, and MAPK as
well as mTOR pathways [8-10]. Moreover, alterations in
these signaling pathways can lead to changes in the bio-
logical traits of HCC cells to some extent [11]. Among these
signaling pathways, the mTOR signaling pathway plays an
important role in affecting HCC progression.

mTOR is involved in multiple signaling pathways that
regulate cell proliferation, autophagy, and apoptosis in vivo
[12]. There are two main mTOR signaling pathways: the
classical PI3K/Akt/mTOR signaling pathway and the LKB1/
AMPK/mTOR signaling pathway. Mutation, activation, and
silencing of mTOR upstream genes, thereby regulating the
mTOR pathway, affect the development process of HCC [7].
In addition, mTOR can also regulate protein synthesis by
phosphorylating downstream target proteins p70s6k kinase
(e. g, 6K1 and 4EBP1), which then regulate mRNA trans-
lation [13]. Therefore, changes in upstream and downstream
genes of mTOR leading to dysregulation of mTOR signaling
pathway will affect the progression of HCC. More than 70%
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of cancers are known to result in hyperactivation of mTOR.
mTOR inhibitors have thus been widely studied for their use
in cancer treatment, and some of these inhibitors (e. g.,
rapamycin, everolimus, doxorubicin, and sorafenib) are
used for the treatment of HCC. However, clinical studies
have shown that mTOR inhibitors have some limitations,
such as low bioavailability and toxicity, and some cancers
eventually acquire drug resistance [14-16]. Based on the
limited efficacy of mTOR inhibitors, other novel drugs
targeting mTOR need to be identified. Several mTOR in-
hibitors are currently under investigation for the treatment
of HCC, and although many preclinical and clinical trial
studies have been conducted, these inhibitors have not been
applied. Therefore, the discovery of novel regulators of
mTOR may become a new therapeutic target for HCC.

In a review, we systematically summarize information
regarding the regulation of the mTOR signaling pathway by
factors mutated in epigenetic inheritance for the diagnosis
and treatment of HCC (Figure 1).

2. ncRNAs

Noncoding RNA (ncRNA) refers to RNA that does not
encode proteins [17]. Advances in sequencing technologies
have led to the discovery of many ncRNA species, some of
which are highly conserved, such as microRNAs (miRNAs),
ultraconserved regions of transcription [18] and circRNAs
(circRNAs), as well as ncRNAs that are not conserved be-
tween other species, such as long noncoding RNAs
(IncRNAs) [19]. Studies have demonstrated that ncRNAs
regulate cellular processes and pathways in developmental
and pathological contexts [20]. In human diseases, partic-
ularly cancer, deregulated expression of ncRNAs can lead to
changes in signaling pathways that can affect tumor de-
velopment. Research has shown that ncRNAs are key players
in human carcinogenesis and therefore may play potential
roles in the diagnosis and treatment of cancer.

2.1. MiRNAs and HCC. MiRNAs are a diverse family of
highly conserved ncRNAs with sizes that range from ap-
proximately 18 to 25 nucleotides. MiRNAs pair by complete
or incomplete base complementation with the 3’ untrans-
lated region of mRNA. This pairing leads to the degradation
or inhibited translation of the target mRNA, with subse-
quent effects on protein expression. MiRNAs participate in
the processes of cell growth, differentiation, development,
proliferation, apoptosis, and metabolism [21, 22]. MiRNAs
also play an important role in the physiological and path-
ological processes of cancer, including HCC. In recent years,
a large number of studies have shown that the expression
levels of miRNAs in HCC are upregulated or downregulated
to varying degrees, suggesting that they play a role in various
biological processes such as growth, proliferation, and ap-
optosis of HCC cells [23-26]. Therefore, miRNAs are very
promising targets in the diagnosis and treatment of HCC.

2.1.1. MiRNA Regulation of the PI3K/AKT/mTOR Signaling
Pathway in HCC. HCC is the third leading cause of cancer-
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related death worldwide, and its incidence continues to rise.
Although cirrhosis underlies most cases of HCC, many
molecular pathways are closely associated with HCC car-
cinogenesis [27]. For example, activation or upregulation of
the PI3K/AKT/mTOR signaling pathway can affect the
occurrence and development of tumors [28]. The deregu-
lation of this pathway has been shown to result from the
deregulation of miRNAs. In HCC induced by mTOR sig-
naling, the expressions of some miRNAs are decreased, and
upregulation of these miRNAs is required to inhibit HCC
development, while some miRNAs are increased in HCC
(Table 1). A total of sixteen miRNAs (miR-1914 [29], miR-
192-5p [30], miR-486-5p [31], miR-601 [32], miR-132 [33],
miR-1207-5p [34], miRNA-133b [35], miR-144-3p [36], miR-
26a [37], miR-21 [38], miR-199a-3p [39, 40], miR-758-3p
[41], miR-494 [42], miR-125a [43], miR-345 [44], and miR-
29a-3p [45]) have been identified as downregulated in HCC.
Three miRNAs (miR-9-5p [46], miR-300 [47], and miR-181a
[48]) were identified as upregulated in HCC.

2.1.2. MiRNA Regulation of Other mTOR Signaling Pathways
in HCC. In addition to miRNA-mediated regulation of the
classical PI3K/AKT/mTOR signaling pathway, miRNAs can
also affect HCC development through other mTOR sig-
naling pathways.

In HCC, upregulation of miR-18a and miR-25 is asso-
ciated with poor patient survival and promotion of HCC cell
line proliferation. Sanchez-Mejias et al. [49] analyzed the
predicted targets of some miRNAs and validated SOCS5 as a
bonafide target of miR-18a and miR-25. Furthermore, the
authors demonstrated that the SOCS5/miR-18a/miR-25 axis
inhibits HCC development by regulating downstream
mTOR signaling.

Zhou et al. [50] found that miR-100 downregulation was
closely related to the development of HC. MiR-100 reduces
the protein level of angiopoietin 2 (Angpt2) by targeting
mTOR and blocking the mTOR-p70S6K signaling pathway,
which in turn inhibits the formation of encapsulated tumor
clusters (VETC), thereby eliminating VETC-dependent
metastasis of HCC cells. These results indicate miR-100 as a
new target for antimetastatic therapy of HCC.

Meanwhile, the experimental results of Dong et al. [51]
showed that miR-223 could inhibit cell growth and promote
apoptosis in HepG2 and Bel-7402 hepatoma cell lines and
screened a novel miR-223 target, the Ras-related protein
Rab-1 (Rabl). MiR-223 mediates mTOR signaling pathway
inactivation by targeting Rabl, thereby inhibiting tumori-
genesis and promoting HCC apoptosis. Therefore, miR-223
could be a potential therapeutic target for the treatment of
HCC.

These studies indicate miRNAs can affect the progres-
sion of liver cancer by regulating the mTOR signaling
pathway and provide a new approach for the diagnosis and
treatment of liver cancer.

2.2. LncRNAs and HCC. Among the various types of
ncRNAs, IncRNAs have received increasing attention.
LncRNAs are defined as transcripts of more than 200



Canadian Journal of Gastroenterology and Hepatology 3
LncRNA
MirRNA
Ll
Target
DNA methylation / \ HCC
RN —— Gene Protein
mTOR
. _,/W/ — signaling —
Histone deacetylation é ﬁl pathway
Chromatin remodeling
nucleosome SWI/SNF
QLQ HSA DEXDc HELICc SnAC Bromodomair
AT
Ficure 1: Epigenetic regulation of the mTOR signaling pathway in HCC.
TaBLE 1: Dysregulated miRNAs in HCC.
MiRNAs Target Expression Reference

Sun et al. MiR-1914 GPR39 Downregulated [29]
Zhu et al. MiR-192-5p TRIP13 Downregulated [30]
Youness et al. MiR-486-5p IGF-1R Downregulated [31]
Song et al., Liu et al. MiR-601, miR-132 PIK3R3 Downregulated [32, 33]
Zhao et al. MiR-1207-5p FASN Downregulated [34]
Wang et al. MiR-133b EGFR Downregulated [35]
Wu et al. MiR-144-3p SGK3 Downregulated [36]
Sun et al. MiR-26a ST3GAL Downregulated [37]
Xia et al. MiR-21 PTEN Downregulated [38]
Callegari et al., Lou G et al. MiR-199a-3p mTOR pathway Downregulated [39, 40]
Jiang et al. MiR-758-3p mTOR pathway Downregulated [41]
Pollutri et al. MiR-494 mTOR pathway Downregulated [42]
Tang et al. MiR-125a mTOR pathway Downregulated [43]
Yu et al. MiR-345 IRF1 Downregulated [44]
Song et al. MiR-29a-3p Robol Downregulated [45]
Dong et al. MiR-9-5p KLF4 Upregulated [46]
Chang et al. MiR-300 FOXO1 Upregulated (47]
Chang et al. MiR-181a PTEN Upregulated (48]

nucleotides that lack protein-encoding ability [52].
LncRNAs regulate the expression of genes by epigenetic
regulation, transcriptional regulation, and posttranscrip-
tional regulation in the form of RNA [53]. Therefore,
IncRNAs have been shown to function as master regulators
of gene expression and can play critical roles in various
biological functions and disease processes in cancer, in-
cluding HCC [54]. The genome-wide expression pattern of
IncRNAs in HCC cells or tissues and their tissue-specific
expression characteristics have been found by a number of
studies, and IncRNAs hold promise as novel diagnostic
biomarkers and therapeutic targets for HCC [55].

2.2.1. LncRNAs Regulate the PI3K/Akt/mTOR Signaling
Pathway in HCC. With the development of next-generation
sequencing, more long noncoding RNAs (IncRNAs) were

found. Initially, IncRNAs were considered as “noisy” tran-
scripts or “dark matter” [56]. An increasing number of
studies have revealed the indispensable role of IncRNAs in
the dysregulation of signaling pathways in HCC [57]. The
impact of IncRNAs on the progression of HCC through the
PI3K/Akt/mTOR signaling pathway is relatively novel.
Upregulation or downregulation of PI3K/AKT/mTOR-re-
lated oncogenic IncRNAs contributes to aberrant expression
of transcriptional activators or oncoproteins, leading to
aberrant regulation of the PI3K/AKT/mTOR pathway in
HCC [58]. In addition, IncRNAs are aberrantly expressed in
liver cancer and are significantly associated with metastasis,
recurrence, prognosis, and chemoresistance of HCC [59].
Here, we summarize that 13 IncRNAs are dysregulated in
HCC through the PI3K/Akt/mTOR signaling pathway.
Twelve of the IncRNAs (IncRNA DCST1-AS1 [60], IncRNA
OGFRP1 [61], IncRNA TMPO-AS1 [62], IncRNA MALATI



[63, 64], IncRNA AK023948 [65], IncRNA HAGLROS [66],
IncRNA CDKN2B-AS1 [67], IncRNA SNHGI16 [68],
IncRNA CASC11 [69], IncRNA DUXAP10 [70], IncRNA
PICSAR [71], and IncRNA LINC00680 [72]) were upre-
gulated in HCC, while IncRNA HULC [73] was down-
regulated in HCC (Table 2).

2.2.2. LncRNAs Modulate the Role of Other mTOR Signaling
Pathways in HCC. Several studies have shown that IncRNAs
also regulate other mTOR signaling pathways in liver cancer.
Ma and colleagues [74] found that abnormal expression of
the IncRNA HEIH was associated with HCC cell growth and
metastasis. HEIH was highly expressed in tumor tissue, and
HEIH reduction significantly reduced Huh7 and Hep3B
hepatoma cell viability, migration, and invasion and induced
apoptosis. MiR-199a-3p was identified as a downstream
effector of HEIH, and the functional effects of HEIH on
Huh7 and Hep3B cells were attenuated when the miR-199a-
3p expression was inhibited. In addition, reduced HEIH
inhibited the activation of mTOR signaling by upregulating
miR-199a-3p, indicating that HEIH may be a potential target
for HCC.

Wei and colleagues [75] found significantly increased
HOTAIR expression in 84 HCC tissues compared with
nontumor tissues and determined the effect of HOTAIR on
HCC cell-regulated glucose metabolism by examining lac-
tate and glucose levels. The authors found that HOTAIR
promotes glycolysis by upregulating glucose transporter
isoform 1 (GLUT1) and activating mTOR signaling, while
downregulation of HOTAIR inhibits this effect. This study
revealed a new relationship between HOTAIR and glucose
metabolism in HCC cells and indicated HOTAIR as a new
target for the diagnosis and treatment of HCC.

Li et al. [76] found for the first time the upregulation of
IncRNA-OR3A4 in HCC tissues and cell lines and identified
OR3A4 as a promoter of HCC progression and angiogenesis.
OR3A4 regulates HCC proliferation, metastasis, and an-
giogenesis through AGGF1/AKT/mTOR. The authors
revealed that OR3A4 is a novel predicted target for HCC.

The IncRNA HIF1A-ASI is overexpressed in HCC tis-
sues and is associated with tumor size, TNM stage, and
lymph node metastasis. Hong et al. [77] found that HIF1A-
ASI promotes hepatocarcinogenesis by activating autophagy
through the HIF-1a/mTOR signaling pathway. The authors
showed that HIF1A-AS1 is involved in regulating the
progression of HCC and provided a potential direction for
future HCC treatment strategies.

These reports indicate that dysregulation of IncRNAs can
activate the mTOR signaling pathway to regulate the de-
velopment of HCC, taking the understanding and potential
use of IncRNAs in the diagnosis and treatment of liver
cancer patients to a new level.

2.3. CircRNAs and HCC. CircRNAs are a novel class of
ncRNAs characterized by a covalent closed-loop structure
without a 5’ cap structure or a 3’ polyA tail [78]. Since the
first discovery in viruses in the 1970s [79], circRNAs have
begun to attract much attention, and research has been
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focused on their biogenesis, characteristics, functional
mechanisms, and potential applications in clinical diagnosis
and treatment. CircRNAs regulate gene expression at the
transcriptional, posttranscriptional, and translational levels;
they also regulate alternative splicing, sponge miRNAs, and
sequester functional proteins. CircRNAs are involved in
many pathological processes such as Alzheimer’s disease,
diabetes, atherosclerosis, and glioma [80-83]. CircRNAs
play an important role in cancer growth, metastasis, re-
currence, and treatment resistance [84].

The relationship between circRNAs and HCC has be-
come a research hotspot in the past two years. CircRNAs
were shown to have important regulatory roles in HCC
development, and progression. In HCC, some circRNAs act
as oncogenes and can promote the proliferation and mi-
gration of cancer, while other circRNAs act as tumor sup-
pressors and can induce apoptosis of HCC cells. Although
some studies have demonstrated that circRNAs can affect
the progression of HCC, the roles of circRNAs on HCC
remain largely unknown [85]. Therefore, the functions and
mechanisms of circRNAs in HCC need to be further studied.

2.3.1. CircRNAs Modulate the mTOR Signaling Pathway in
HCC. CircRNA can affect the development and progression
of HCC through the mTOR signaling pathway [86]. For
example, Huang et al. [87] showed that circRNA-100338
activation of the mTOR signaling pathway through the
circRNA-100338/miR-141-3p/RHEB axis is closely related
to the poor prognosis of hepatitis B-related HCC. This study
makes the connection between circRNA-100338 and mTOR
signaling pathway in HCC cells and may provide a potential
therapeutic target for HCC.

Sun et al. [88] found that three circR-
NAs—circRNA0004001, circRNA 0004123, and circR-
NA0075792—were upregulated in HCC blood samples
using qRT-PCR. The expression of the three circRNAs was
positively correlated with TNM stage and tumor size, and
the three circRNA combination targeted a variety of
miRNAs to participate in the mTOR signaling pathway,
correlated with the development of liver cancer, and may be
valuable diagnostic biomarker for HCC.

Zheng et al. [89] found that hsa-circ-0079929 was
expressed at low levels in HCC. CircRNA-0079299 over-
expression inhibited HCC growth and delayed cell cycle
progression in vitro and in vivo but had no effect on cell
migration and apoptosis. The inhibition of HCC growth by
circRNA-0079299 is mediated by the PI3K/AKT/mTOR
signaling pathway.

Although few reports have shown that circRNAs play a
role in HCC through the mTOR signaling pathway, future
studies clarifying their role in HCC development may lead to
new approaches for the diagnosis and treatment of HCC.

3. DNA Methylation

DNA methylation is an important epigenetic modification
that occurs mainly at the CpG islands of DNA and involves
either hypermethylation or hypomethylation. Aberrant
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TaBLE 2: Dysregulated IncRNAs in HCC.

LncRNA Target Expression Reference
Li et al. LncRNA DCST1-AS1 mTOR pathway Upregulated [60]
Chen et al. LncRNA OGFRP1 mTOR pathway Upregulated [61]
Guo et al. LncRNA TMPO-AS1 FOXK1 Upregulated [62]
Peng et al. LncRNA MALATI PI3k3’ noncoding region Upregulated [63]
Malakar et al. LncRNA MALATI TCF7L2 Upregulated [64]
Ye et al. LncRNA AK023948 mTOR pathway Upregulated [65]
Wei et al. LncRNA HAGLROS MiR-5059/AGLROS axis Upregulated [66]
Zheng et al. LncRNA CDKN2B-AS1 Let-7c-5p/NAP1L1 axis Upregulated [67]
Zhong et al. LncRNA SNHG16 p62 Upregulated [68]
Han et al. LncRNA CASC11 PTEN Upregulated [69]
Sun et al. LncRNA DUXAP10 GRP39 Upregulated [70]
Liu et al. LncRNA PICSAR MiR-588 Upregulated [71]
Shu et al. LncRNA LINCO00680 AKT3 Upregulated [72]
Xin et al. LncRNA HULC PTEN Downregulated [73]

DNA methylation in cancer has been heralded as a prom-
ising target for the development of powerful diagnostic,
prognostic, and predictive biomarkers [90]. For example,
Abeni et al. [10] found that oncogene hypermethylation led
to activation of mTOR signaling and inhibited tumor
progression after sorafenib treatment. In addition, Liu et al.
[91] found that the BCLB gene is methylated in HCC.
Hypermethylated BCLB, which induces both apoptosis and
autophagy in HCC cells through the AMPK-mTOR sig-
naling cascade, plays a role in cancer suppression and has
therapeutic implications for HCC patients.

3.1. Histone Modification. Histone modifications, as a class
of epigenetic regulatory mechanisms that regulate gene
expression, have received increasing attention because their
modification pattern changes are closely related to the de-
velopment of a variety of malignancies [92]. For example,
cell differentiation and organismal development and ab-
normal modifications of histones contribute to diseases such
as cancer [93]. Zhang et al. [94] found that acetazolamide
(SIRT1), a NAD+-dependent histone deacetylase, exerts
antioncogenic effects in HCC through the AMPK-mTOR
pathway in the context of mutant p53. Wang et al. [95] found
that inhibition of histone methyltransferase 3 (SMYD3)
resulted in reduced AKT/mTOR signaling activity, which
triggered deleterious effects on bladder cancer cells. In
addition, Makarevi¢ et al. [96] found that decreased acet-
ylation of H3 and H4 promotes prostate cancer cell de-
velopment by activating the mTOR signaling pathway in
prostate cancer. Sun et al. [97] found that inhibition of
mTOR signaling enhanced trichostatin A and promoted
histone acetylation in gastric cancer cell lines. To date, there
have been no reports on the role of histone methylation and
acetylation in liver cancer through the mTOR signaling
pathway.

4. Chromatin Remodeling

The SWI/SNF complex, originally discovered in yeast 20
years ago, is a family of multi-subunit complexes that use the
energy of ATP hydrolysis to remodel nucleosomes.

Chromatin remodeling processes mediated by the SWI/SNF
complex are essential for the regulation of gene expression in
a variety of cellular processes, including differentiation and
proliferation [98]. Many studies have found that the chro-
matin SWI/SNF complex plays an important role in ma-
lignant tumors. Zhou and his team [99] discovered
SMARCDI, a subunit of the SWI/SNF complex, as a
promising prognostic predictor that promotes liver cancer
growth through the mTOR pathway.

5. Conclusions and Perspectives

Multiple studies have demonstrated that epigenetic changes
play an important role in the development and progression
of HCC. The mTOR pathway is involved in the growth and
proliferation of HCC cells, and epigenetic regulation
through mTOR signaling will affect HCC progression. As
supported by increasing evidence, epigenetic regulators
through the mTOR signaling pathway as ideal therapeutic
targets for HCC are a potent future research direction.
Although there have been major breakthrough in epigenetics
in the treatment of HCC, some questions remain unan-
swered. For example, studies linking histone methylation
and acetylation with the mTOR signaling pathway are
scarce. Future studies should pursue this research direction
to expand the exploration of strategies for HCC treatment
targeting the mTOR pathway.
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