
sensors

Article

Transfer of Learning from Vision to Touch: A Hybrid Deep
Convolutional Neural Network for Visuo-Tactile 3D Object
Recognition

Ghazal Rouhafzay 1,* , Ana-Maria Cretu 2 and Pierre Payeur 1

����������
�������

Citation: Rouhafzay, G.; Cretu,

A.-M.; Payeur, P. Transfer of Learning

from Vision to Touch: A Hybrid Deep

Convolutional Neural Network for

Visuo-Tactile 3D Object Recognition.

Sensors 2021, 21, 113. https://doi.

org/10.3390/s21010113

Received: 14 November 2020

Accepted: 23 December 2020

Published: 27 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
ppayeur@uottawa.ca

2 Department of Computer Science and Engineering, Université du Québec en Outaouais, Gatineau,
QC J8X 3X7, Canada; Ana-Maria.Cretu@uqo.ca

* Correspondence: grouh050@uottawa.ca

Abstract: Transfer of learning or leveraging a pre-trained network and fine-tuning it to perform new
tasks has been successfully applied in a variety of machine intelligence fields, including computer
vision, natural language processing and audio/speech recognition. Drawing inspiration from neuro-
science research that suggests that both visual and tactile stimuli rouse similar neural networks in the
human brain, in this work, we explore the idea of transferring learning from vision to touch in the
context of 3D object recognition. In particular, deep convolutional neural networks (CNN) pre-trained
on visual images are adapted and evaluated for the classification of tactile data sets. To do so, we
ran experiments with five different pre-trained CNN architectures and on five different datasets
acquired with different technologies of tactile sensors including BathTip, Gelsight, force-sensing
resistor (FSR) array, a high-resolution virtual FSR sensor, and tactile sensors on the Barrett robotic
hand. The results obtained confirm the transferability of learning from vision to touch to interpret 3D
models. Due to its higher resolution, tactile data from optical tactile sensors was demonstrated to
achieve higher classification rates based on visual features compared to other technologies relying
on pressure measurements. Further analysis of the weight updates in the convolutional layer is
performed to measure the similarity between visual and tactile features for each technology of tactile
sensing. Comparing the weight updates in different convolutional layers suggests that by updating a
few convolutional layers of a pre-trained CNN on visual data, it can be efficiently used to classify
tactile data. Accordingly, we propose a hybrid architecture performing both visual and tactile 3D
object recognition with a MobileNetV2 backbone. MobileNetV2 is chosen due to its smaller size and
thus its capability to be implemented on mobile devices, such that the network can classify both
visual and tactile data. An accuracy of 100% for visual and 77.63% for tactile data are achieved by the
proposed architecture.

Keywords: 3D object recognition; transfer learning; machine intelligence; convolutional neural
networks; tactile sensors; force-sensing resistor; Barrett Hand

1. Introduction

Literature from neuroscience confirms that visual and haptic object recognition rely
on similar processes in terms of categorization, recognition and representation [1]. Many
researchers suggest the possibility that a shared neural circuitry in the human brain is
trained to do both [2–4]. The cortical areas in the ventral and dorsal streams of the brain are
consistently activated for visual as well as haptic data processing [5]. Moreover, in many
cases, humans are able to haptically recognize objects for which they have learned their
characteristics by only using vision. As such, this paper aims to test these assumptions in a
realistic scenario for a robotic haptic 3D object recognition task.
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Haptic perception differs from tactile perception in the sense that it refers to both
kinaesthetic data acquired from joints and muscles, as well as tactile data sensed by
mechanoreceptors in human skin, including pressure, torsion, vibration, roughness and
force. Most of the robotic arms available in laboratories for haptic object manipulation are
equipped with a variety of sensors supplying different sorts of information considered as
haptic data. Robot joint angles, finger angles, temperature signals, pressure signals [6,7] and
tactile images obtained as 2D arrays [8–10] presenting the texture and local characteristics
of object surface are some examples. According to neuroscience research, haptic object
processing itself relies on at least two different neural pathways, one interpreting local
geometrical properties and the other the material properties of objects such as hardness,
roughness, compliance and temperature [5]. The first neural pathway is possibly a point
of convergence between vision and touch [5]. In this work, we only consider tactile data
capturing local geometrical properties of objects and, in compliance with other works
in the literature, refer to them as tactile images. Tactile images usually require a prior
feature extraction step before further processing and classification. Despite the success of
traditional feature extraction techniques such as 2D wavelet transform [11] and contourlet
transform [12,13] for feature extraction from tactile images, training a deep neural network
architecture to learn to extract features from tactile images remains a topic of interest in the
deep learning era [13,14].

The fast advancement of deep learning-based computational architectures in recent
years has made these architectures a promising solution in many robotic and computer
vision tasks. Convolutional neural networks (CNN) are widely accepted as the artificial
counterpart of human vision for a variety of robotic applications. However, training a deep
CNN on tactile data from scratch is not easy due to the fact that deep learning requires
large datasets of sample data to develop an efficient model, while available tactile datasets
are of small size compared to image databases, due to the fact that tactile data acquisition
tends to be a difficult and time-consuming task. This motivates us to study the possibility
of transferring learning from visual data to tactile data using a pre-trained deep CNN
on visual data in order to recognize 3D objects using tactile data. On the other hand, a
collection of tactile sensors with different technology and working principles are nowadays
available on the market, each with its specific resolution and data architecture [15]. The
potential for the transfer of learning from visual data for each of these technologies is
questionable, thus motivating our interest in this research topic.

In this work, we take advantage of five different pre-trained deep CNN architectures,
including Alexnet, GoogLeNet, VGG16, Resnet50 and MobileNetV2. In a first experiment,
we finely tune the weights in all layers on tactile data in order to recognize 3D objects
based on these data. In a second experiment, we freeze the weights for all layers (i.e., we
set the learning rate for those layers to zero) and only finely tune the last three layers, such
that identical visual filters are applied to extract features from tactile data for the purpose
of classification. The framework is tested on four different technologies for tactile data
acquisition, including data coming from a GelSight sensor [16], a force-sensing resistor (FSR)
tactile sensor array [10], a BathTip tactile sensor [9] and from the tactile sensing electrodes
distributed across fingers available in the Barrett Hand [17]. The main contributions of
the work in this paper are the following: (1) Demonstrate how transferable visual features
are to tactile features for four different technologies of tactile sensors; (2) Measure the
similarity between visual and tactile features; (3) Determine which convolutional layers in
MobileNetV2 are most altered in order to allow for the transfer of the model to touch; and
based on that, (4) Propose a novel hybrid architecture to perform both visual and tactile 3D
object recognition.

The paper is structured as follows: Section 2 discusses the relevant works from the
literature. Further details about the adopted datasets and CNN architectures are provided
in Sections 3 and 4, respectively. Section 5 reports on the experimental setups. Results are
monitored and discussed in Section 6. Section 7 proposes a hybrid architecture to classify
both visual and tactile data. Section 8 concludes the work.
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2. Related Works

The literature on haptic object recognition comprises work related to haptic data
acquisition techniques as well as data processing and classification approaches. Inspired
by visuo-haptic integration in the human brain, many researchers devoted their research
efforts to the enhancement of robot sensing solutions by combining visual and tactile data.
It has now been demonstrated that direct integration of haptic and visual data can increase
object recognition rate [14,18]. Other research work suggests that visual data can contribute
as a data selection strategy to guide the process of haptic data acquisition [13,19].

Neural networks, especially in their deep version, are on a continuous pathway
of research progress and have found their application in both robot vision and touch
technologies. Luo et al. [8] propose a hybrid architecture based on deep convolutional
neural networks learning features from visual and tactile data separately. Maximum
covariance analysis is then employed to achieve a joint latent space. These features are
finally used for multiclass classification. Lee et al. [20] take advantage of generative
adversarial networks [21] to produce visual counterparts of tactile images captured by a
GelSight sensor. Comparing the generated visual data and real visual data confirms the
reliability of the generated data. In our previous research [13], we trained a 3D CNN on
sequences of tactile data captured by moving a tactile sensor around an object to classify
the corresponding object based on them. Gandarias et al. [22] train a similar architecture
on sequences of tactile data captured from deformable objects when subjected to different
pressures to successfully classify nine objects. Zheng et al. [23] train a fully convolutional
neural network to classify different materials using haptic textures and acceleration signals
acquired by moving a probe over the materials.

A number of recent research works are studying the transfer of learning from pre-
trained CNN architectures on images to tactile data. Alameh et al. [24] use seven different
pre-trained CNN architectures and finely tune the fully connected layer to classify 400
by 400 tactile images generated using tactile data from a 16 by 16 piezoelectric sensor.
Gandarias et al. [25] adopt CNN architectures for feature extraction from a database
of large-scale, high-resolution tactile images captured with a piezoresistive array. They
compare the results where a fully connected layer is employed to classify extracted features
by convolutional layers in a Resnet50 with the case where a support vector machine
follows features extracted using a VGG16 architecture. Resnet50 results in slightly higher
performance. Moreover, they customize three other CNN architectures, two with a different
number of convolutional layers and one by adding residual feedback and train them on
tactile data only. They conclude that the classification accuracy is essentially a function
of tactile image spatial resolution by running experiments on downsampled versions of
tactile images. In addition to the tactile features of their dataset at the texture level, the
large-scale of their tactile data leads to capturing the general shape of objects, which is a
leading characteristic for both visual and tactile object recognition.

Taking inspiration from neuroscience, which suggests a similarity between visual and
tactile features for form [26], shape processing [4] and possibly surface roughness [26], in
this work, by comparing data acquired from different technologies of tactile sensors, we
aim to reveal how compliant the extracted features from different tactile images (at the
texture level only) are with visual features and, as a consequence, how transferrable visual
features are to tactile data. Tactile images used in this work do not provide any information
about object shapes or their global form, which are the key characteristics in the object
recognition task. Further experiments are carried out to see how a hybrid network can
be developed to recognize 3D objects from both visual and tactile data. For this purpose,
we measure how weight values in convolutional layers of a CNN are updated while fine-
tuning the network on tactile data. A hybrid network is then proposed by introducing
additional convolutional layers for tactile data. The framework is tested on a dataset of 3D
models to recognize objects from visual and tactile data, where visual data are collected
using a Matlab virtual camera and tactile data are simulated by a sensor introduced in [26].
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Since visual data are not available for the other datasets studied in this paper, the hybrid
network is only developed and tested for the dataset of 3D object models (Section 3.3).

It is worth mentioning that previous works from the literature either train a CNN
from scratch or by transfer learning on tactile images to recognize objects only from touch,
while the main contribution of the current research is to study the links between vision and
touch in an attempt to converge the visual and tactile processing units in a robot.

3. Datasets and Data Processing

In this section, we present the four datasets that we have used to explore the possibility
of transfer learning from vision to touch and their underlying technology of tactile sensors.

3.1. ViTac Dataset

ViTac [8] is a dataset of visual and tactile data obtained from 100 pieces of clothes
with different materials and textures. A GelSight sensor is used to acquire tactile data, and
visual data are captured by a camera with its image plane perpendicular to the clothing
material. GelSight sensor is an optical tactile sensor using a piece of elastomeric gel with a
reflective membrane coat on top, which enables it to capture fine geometrical textures as
a deformation in the gel. A series of LEDs with RGB color illuminates the gel such that
a camera can record the deformation. In this study, we run experiments on 12 classes of
tactile data from the dataset, which is publicly available in [27].

3.2. VT-60 Dataset

VT-60 dataset [9] is an open-access dataset of tactile data captured using the BathTip [9]
tactile sensor. The BathTip sensor is another optical tactile sensor consisting of an elastic
silicone hemispherical membrane mounted at the end of the encasing of a digital camera.
Any deformation in the membrane in contact with objects is captured using the camera.
In comparison with the GelSight sensor, this sensor is less sensitive to fine tactile features.
The dataset includes data from 10 classes, namely, stapler, empty bottle, ball, soft toy, shoe,
box, mug, full bottle, bowl and can.

3.3. FSR Tactile Array and High-Resolution Simulated FSR Sensor

The FSR tactile sensor consists of a 16 by 16 array of force-sensing resistors, covered by
a protective elastic array and placed on an area of 6.5 cm2. In direct contact with an object,
the geometric profile captured by the elastic overlay of the sensor is first mapped into force
components through a profile-to-force transductor, and then the applied forces are mapped
into electrical signals to form a tactile image [10]. The FSR tactile sensor, as well as an
example of the acquired tactile image, are illustrated in Figure 1a,b. A virtual counterpart
of this sensor was also developed to simulate the acquisition of tactile data from 3D object
models [28] and allow to study the impact of tactile imprints’ quality and size as well as
to plan the real acquisition of data. The virtual sensor allows modifying both the number
of sensing elements and the distance between them. As such, it can be used to establish
experimental setups and proof of concept for various tasks prior to running experiments
with real sensors, which is, in general, long and tedious due to the need to move the robotic
arm carrying the tactile sensor and bring the sensor in contact with the object at multiple
locations. In order to simulate tactile images, as depicted in Figure 1c, we modeled the
surface of the sensor as a tangential plane to the object surface at the probing location,
shown in blue in the figure. This is justified by the fact that the quality of tactile imprints is
better when the imprint is captured in the direction of the local normal on the surface of
the object. Distances between the virtual object surface and sensing elements on the plane
are computed and normalized in the range of 0 to 1 to generate a tactile image similar to
the example in Figure 1d. Additional details about this virtual sensor are provided in [28].
Tactile imprints of a resolution of 128 by 128 are simulated for experiments in this paper.
The dataset from the simulated FSR sensor is collected from a set of 30 virtual objects in the
form of triangular meshes belonging to 6 classes, namely, bird, chair, hand, head, plane and
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quadruped. An equal number of tactile images is acquired from each object in the dataset,
and a split of 75/25 is used for training and testing.
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3.4. BiGS Dataset

The BiGS dataset [6] is a dataset of tactile data captured by a Barrett Hand while
grasping three different objects, namely a box, a ball and a cylinder. The robot hand has
three fingers, each equipped with impedance sensing electrodes. Electrode values are
sampled at 100 Hz, and these values can be interpreted and mapped to produce a tactile
image of size 7 by 3.

The BiGS dataset contains both success and failure in grasping cases. In the context
of this work, we only consider success cases since we use the data for the purpose of 3D
object recognition and success cases give data of better quality for this purpose. Initial
experimentation with the dataset demonstrated that deep CNNs trained on instantaneous
7 by 3 tactile images acquired while grasping failed to recognize the objects. We believe that
this is due to the low-resolution of tactile data. As such, in this work, in order to produce
higher resolution tactile images for the input of deep CNNs, we use the first 700 sampled
values of each electrode while grasping an object and reshape the resulting 7 by 3 by 700
array into a 70 by 70 RGB image (70 by 70 by 3). The appropriateness of using such an
approach for reshaping temporal data is confirmed in the literature for tactile data [24]. An
example of such a tactile image is illustrated in Figure 2a. Figure 2b illustrates an example
of an instantaneous (7 by 3) electrode reading from the Barrett Hand. Results reported in
Section 6 are all obtained using the 3 channel, 70 by 70 images.
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4. Transfer of Learning Using CNNs

Popular deep CNN architectures are constructed by a series of convolutional layers
following an image input layer. Several max-pooling layers can be introduced in between
the convolutional layers, with the purpose of both reducing the feature map size and
improving the translational invariance property of the network. Fully connected layers
at the end of the network are trained to map extracted features from inputs into classifi-
cation outputs. When training a CNN, weights and bias values in convolutional layers
are adjusted to extract relevant features from the dataset. Transfer learning is a frequently
used technique in deep learning, in which a pre-trained network is used as a starting
point for readaptation of the network to other tasks. It allows for the rapid progress of the
training process on new datasets, and it can improve the performance of the target network.
Transfer learning will only work if the features are general and suitable for both the base
task and target task [29]. In this work, inspired by neuroscience and in pursuit of recent
works on transferring learning from vision to touch [24,25], we study the transferability of
visual features to tactile features for different setups, different tactile sensor technologies
and different deep CNN architectures in order to subsequently recognize the 3D objects
based on tactile features. AlexNet [30], GoogLeNet [31], VGG 16 [32], Resnet50 [33] and
MobileNetV2 [34] are the five pre-trained CNN architectures that we chose for experimen-
tation in this work. AlexNet, proposed in 2012 and one of the precursors of deep CNNs
for transfer learning, consists of 25 layers, including 5 convolutional layers. Since then,
a variety of deep architectures were proposed to enhance its performance. GoogLeNet
allows applying convolutional masks of different sizes together with a max-pooling op-
eration in a single layer as an inception module. VGG16 adds up more layers and thus
consists of 13 convolutional and 3 fully connected layers. ResNet50 and its deeper versions
facilitate backpropagation of the gradient in CNNs and thus improve the performance of
very deep architectures by introducing the concept of residual feedbacks. MobileNetV2
offers comparable performance with other deep CNNs, but has a small size and can be
implemented even on mobile devices; hence it is much more suitable for robotic tasks.

5. Experimental Setup

For each dataset and each architecture, two networks are trained. The first network
replaces the last three layers (i.e., fully connected layer, followed by a SoftMax and classifica-
tion layers) of each architecture, its role being to adapt the network for specific classification
tasks according to the number of classes in each dataset. It uses the pre-trained CNNs on
ImageNet [35], a large and popular visual database frequently used for transfer learning, as
a start point and finely tunes the network weights in all layers on each tactile dataset. The
other network freezes the weight values of all CNN layers and only finely tunes the fully
connected layers for the classification of tactile data such that the same convolutional filters
employed to extract visual features are applied to extract tactile features. It is important
to clarify that both AlexNet and VGG 16 consist of three fully connected layers, while the
other networks studied in this work have a single, fully connected layer. As such, the
exact convolutional filters trained on ImageNet are applied to tactile datasets. In each case,
several networks are trained by finely tuning the learning rate (LR) to achieve the best
performance. A 75–25% split of data is used for training and testing. All grayscale tactile
images are transformed into three-channel images by assigning the gray values to the red
channel and zero-padding the green and blue channels. Our prior experimentation into
assigning grayscale images to all of the three RGB channels as well as to each of the three
channels separately while setting the other channels to zero demonstrated no significant
influence on the classification accuracy, so in the remaining of the paper, we padded the
green and blue channels with zeros. To prevent the networks from overfitting, training
data are augmented by random reflection, translation and scaling of the dataset using
the ImageDataAugmenter tool of Matlab. Training data are shuffled at every epoch. A
stochastic gradient descent with a momentum of 0.9 is used for training. All networks are
trained using MATLAB R2019a platform and on a single Nvidia GeForce RTX 2070 GPU
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card and using a large enough number of epochs such that no further improvement can be
seen in the learning curve. Since the number of object classes in the studied datasets is not
consistent, all the obtained classification accuracies (ACC) are also reported with respect to
a random guess ( 1

number of objects × 100), where the random guess is 10% for ViTac, 8.33%
for VT60, 16.67% for FSR array, and 33.3% for the BiGS dataset, respectively.

6. Classification Results and Discussion

Tables 1–5 report the performance of each network for the 5 studied databases in terms
of accuracy. For all types of tactile data, the network can learn the corresponding tactile
features at a certain level by finely tuning the convolutional layer weights. Similar to other
applications of deep learning, Resnet50 outperforms other architectures in all cases, which
is due to the deeper architecture of Resnet 50 as well as the presence of residual connections
facilitating the training process. MobileNetV2, with considerably smaller model size, is
demonstrated to offer a comparable performance to Resnet50 when the network weights
are finely tuned for tactile data. Similar to Resnet 50, MobileNetV2 takes advantage of
residual connections. The accuracy differences between MobileNetV2 and Resnet50 vary
between 0.59% and 3.33% for the finely tuned weights networks.

In the case of optical tactile sensors, i.e., BathTip (Table 1, column 4, ACC above
random guess) and GelSight (Table 2, column 4), features are more transferable from vision
to touch. This is demonstrated by the fact that CNNs trained on data from optical tactile
sensors succeed in achieving an accuracy of up to 82.88% and 90.64%, respectively, above
a random guess. The accuracy above a random guess is lower for other technologies,
i.e., 28.09% for an FSR array (Table 3, column 4), 65.23% for the simulated FSR of 128 by
128 tactile image resolution (Table 4, column 4) and 58.76% for the Barrett Hand (Table 5,
column 4). Even in the cases where the visual filters (convolutional layers with frozen
weights) are directly applied to optical tactile data (Tables 1 and 2, column 7), all networks
succeed to classify tactile data with a considerable margin above random guess, i.e., up to
55.34% for the BathTip sensor (VT-60 dataset), and 84.1% for the GelSight sensor (ViTAC
dataset). This confirms the idea that vision and touch share highly similar features at the
fine texture level. Among the studied technologies of tactile sensors in this work, only
optical tactile sensors are capable of capturing fine texture level features. For the FSR sensor
array, the accuracy value remains around a random guess with frozen weights (Table 3,
column 7), and only for simulated tactile data where the resolution and precision of the
sensor are increased; tactile data can become more distinguishable according to visual
features (Table 4, column 7). We believe the shortcoming of such tactile sensors is mainly
due to their low-resolution, which is also confirmed by the Barrett Hand dataset in its
initial form, i.e., 7 by 3 instantaneously electrode readings (Section 3.4).

Our prior experiments demonstrated that tactile images captured as instantaneous
values of impedance electrodes on Barrett Hand fingers are not classifiable using transfer
learning. All accuracies remained around random guess when a single image of size 7 by
3, as the one shown in Figure 2b, was used for classification. This can be both due to the
low-resolution of tactile images and the high similarity between the tactile properties of the
three objects contained in this dataset. When working with robotic arms, kinesthetic cues
such as finger angles to grasp the object tend to be more informative about the global shape
of objects. We succeeded in training CNNs on tactile images generated from sequences of
electrode values, as explained in Section 3.4. Results are reported in Table 5. Maximum
accuracy of 58.76% above a random guess is achieved for finely tuned CNNs on tactile
data and 49.99% with frozen weight CNNs.

To better interpret the influence of tuning networks on classification accuracies,
Figure 3 visualizes the accuracy differences between networks with finely tuned weights
and frozen weights for each dataset.
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Table 1. Classification results for VT-60 dataset. All networks are trained on a minimum batch of size 16 and for 20 epochs.

Fine-Tuned Weightson Tactile Data Frozen Weight Networks

CNN LR ACC ACC above Random Guess LR ACC ACC above Random Guess

AlexNet 1 × 10−4 82.99% 72.99% 1 × 10−5 32.43% 22.43%
GoogLeNet 5 × 10−4 87.56% 77.56% 1 × 10−5 41.10% 31.10%

VGG16 1 × 10−4 85.70% 75.70% 1 × 10−5 41.04% 31.04%
ResNet50 1 × 10−4 92.29% 82.29% 1 × 10−4 65.34% 55.34%

MobileNetV2 1 × 10−4 92.88% 82.88% 5 × 10−5 55.45% 45.45%

Table 2. Classification results for ViTac dataset. All networks are trained on a minimum batch of size 16 and for 10 epochs.

Fine-Tuned Weightson Tactile Data Frozen Weight Networks

CNN LR ACC ACC above Random Guess LR ACC ACC above Random Guess

AlexNet 1 × 10−4 96.77% 88.44% 1 × 10−4 70.50% 62.17%
GoogLeNet 0.001 97.25% 88.92% 1 × 10−4 72.21% 63.88%

VGG16 1 × 10−4 94.09% 85.76% 1 × 10−4 56.95% 48.62%
ResNet50 1 × 10−4 98.97% 90.64% 1 × 10−4 92.43% 84.1%

MobileNetV2 1 × 10−4 96.77% 88.44% 1 × 10−4 89.27% 80.94%

Table 3. Classification results for tactile data collected by 16 by 16 force-sensing resistor (FSR) array. All networks are
trained on a minimum batch of size 16 and for 10 epochs.

Fine-Tuned Weightson Tactile Data Frozen Weight Networks

CNN LR ACC ACC above Random Guess LR ACC ACC above Random Guess

AlexNet 1 × 10−5 36.19% 19.52% 1 × 10−5 17.14% 0.47%
GoogLeNet 1 × 10−5 39.57% 22.9% 1 × 10−5 17.62% 0.95%

VGG16 1 × 10−5 38.57% 21.9% 1 × 10−5 19.52% 2.96%
ResNet50 1 × 10−5 44.76% 28.09% 1 × 10−5 24.29% 7.62%

MobileNetV2 1 × 10−5 41.43% 24.76% 1 × 10−5 20.48% 3.81%

Table 4. Classification results for simulated 128 by 128 FSR tactile data. All networks are trained on a minimum batch of
size 16 and for 10 epochs.

Fine-Tuned Weightson Tactile Data Frozen Weight Networks

CNN LR ACC ACC above Random Guess LR ACC ACC above Random Guess

AlexNet 2 × 10−4 63.81% 47.14% 1 × 10−4 28.57% 12.2%
GoogLeNet 0.005 79.52% 62.85% 1 × 10−4 35.24% 18.57%

VGG16 5 × 10−4 74.76% 58.09% 1 × 10−4 34.76% 18.09%
ResNet50 1 × 10−4 81.9% 65.23% 1 × 10−4 52.38% 35.71%

MobileNetV2 5 × 10−4 78.57% 61.9% 1 × 10−4 43.81% 27.14%

Table 5. Classification results for BiGS data set. All networks are trained on a minimum batch of size 16 and for 10 epochs.

Fine-Tuned Weightson Tactile Data Frozen Weight Networks

CNN LR ACC ACC above Random Guess LR ACC ACC above Random Guess

AlexNet 1 × 10−4 85.24% 51.94% 1 × 10−5 72.98% 39.68%
GoogLeNet 0.001 83.57% 50.27% 1 × 10−5 72.14% 38.84%

VGG16 1 × 10−4 89.69% 56.39% 1 × 10−4 74.09% 40.79%
ResNet50 0.001 92.06% 58.76% 0.001 83.29% 49.99%

MobileNetV2 0.001 90.67% 57.37% 1 × 10−4 72.01% 38.71%
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fine-tuned weights.

To further analyze the feature extraction process in different networks, we also mea-
sure how much weight values in convolutional layers are modified from the base networks
(trained on ImageNet) to extract features from tactile data. For this purpose, for each
CNN, we first normalize the weight values of each convolutional layer to values between
0 and 1, and then we measure the weight differences between each convolutional layer
of the network with frozen weights and the corresponding convolutional layer in the
fine-tuned network. The average normalized weight squared differences are computed for
each network and each dataset. Results are reported in Figure 4. In this section, Figures 3
and 4 are jointly interpreted to draw conclusions from experiments.
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One can notice that in the BiGs dataset, shown in green in Figures 3 and 4, in spite of the
large weight updates required to adapt the network for tactile data classification (Figure 4),
the progress in accuracy rates is relatively low (Figure 3), which means that the loss
function cannot be efficiently minimized. For the two tactile datasets using optical sensors,
shown in blue and orange in Figures 3 and 4, the weight updates are relatively low (except
for Alexnet and VGG16 on the VT-60 dataset), confirming that the difference between
convolutional filters to extract visual and tactile features is low, and thus suggesting that
extracted features are similar.

It is important to note that, in spite of having the best performance, Resnet50 shows in
most cases the smallest updates both in weights and accuracy values. The reason can be
found in the deep architecture of Resnet50 that allocates smaller weight updates to each
layer, and thus, the average normalized weight differences are lower.

In deep CNN architectures, convolutional layers with larger kernels are usually placed
in earlier layers to extract general features from data, such as color and edges, and are not
particular to a specific dataset [28]. Features from the later layers, closer to the output, are
of higher level and are mostly updated to adapt the network to achieve a specific task.

Relying on the MobileNetV2 architecture, which can be implemented on mobile
devices, we studied which convolutional layers in MobileNetV2 are mostly updated
to transfer learning from vision to touch. For this purpose, we measured the average
difference between corresponding convolutional layer weights for each convolution or
grouped convolution layer. Measuring the weight updates in MobileNetV2 suggests that
convolutional layers at earlier layers are more altered while tuning the network weights on
tactile data. Knowing which convolutional layers are mostly altered to adapt a pre-trained
CNN for classification of tactile data can be useful to generate a hybrid CNN architecture
handling both visual and tactile sensing in such a way that further layers can be added
in parallel to a base network with fine-tuned weights to perform tactile object recognition.
Such an architecture is developed and tested in Section 7.

7. Hybrid Deep Architecture for Object Recognition

Comparison of weight updates in MobileNetV2 on tactile data suggests that the early
layers play a decisive role in the performance of the network and need to be tuned on tactile
data. To make sure that the layers we are freezing in order to develop the hybrid neural
network will lead to the best possible performance, a number of MobileNetV2 networks
are trained and tested with a different heuristic combination of frozen layers (both early
layers and final layers of the network). Obtained classification accuracies are reported in
Table 6.

Table 6. Classification accuracy of MobileNetV2 with an overall of 154 layers on tactile data for
different frozen layers.

Classification Accuracy Frozen Layers

43.81% All layers frozen
62.86% 1:150
64.29% 1:144
68.10% 1:134
65.71% 10:150
74.29% 10:144
68.57% 16:138
77.63% 18 to 139
78.57% No frozen layer

One can notice that freezing the layers 18 to 139 of the network while fine-tuning
weights of the remaining layers results in the closest possible accuracy to the case where
the weights of all layers in the network are tuned on the tactile data. MobileNetV2 consists
of sixteen so-called “convolutional building blocks” [34]. Layer 17 is the last layer of the
first convolutional block from which a residual connection directly adds the output of this



Sensors 2021, 21, 113 11 of 15

layer with the output of the second residual block. Our empirical experiments suggest
that only the first and the last convolutional building blocks need to be tuned on tactile
data to achieve the maximum accuracy in classification. A similar setup on visual data
gives a 100% accuracy, which is equal to the case where the weights are tuned on visual
data. These results also confirm the experiments from the previous section, suggesting that
tuning of the weights of the early layers, i.e., layers 1 to 17, of the network is pivotal for
transfer learning to tactile data.

Accordingly, the hybrid network illustrated in Figure 5 is developed by stitching
different layers of two MobileNetV2 architectures trained on visual and tactile data with
layers 18 to 139 frozen. This hybrid architecture is developed in Matlab R2020a platform
using the Deep Network Designer. It is worth mentioning that in this paper, we address all
layers according to their labeling in Matlab Deep Network Designer.

In order to produce a network with two input streams, we set an image input layer
of size 224 by 224 by 6 followed by two custom-designed splitting layers separating the
two input streams, i.e., visual and tactile inputs. The initial input to the network is in the
form of a 6-channel image of size 224 by 224. The first three channels are allocated to RGB
values of visual data, and the last three channels contain tactile data. If a visual image is
to be classified, the tactile channels are set to zero and vice versa. The image input layer
normalizes the input data using z-score, where the mean and standard deviation of each
data channel is extracted and set from the initially trained networks. The input data passes
through layers 2 to 17 of the associated MobileNetV2 layers trained on visual/tactile data.
Two custom switch-scale layers, as illustrated in Figure 5, are introduced to eliminate the
output of layers 2 to 17 for the stream that is not supposed to participate in classification
(i.e., the stream with the input from zero-channels). The switch-scale layer takes two inputs.
Input 1 is the output of the splitter layer, and input 2 takes the activations from Layer
17 of the MobileNetV2. The variance across each of the three-channel data from input
1 is measured to determine if the data for that stream corresponds to the zero channels.
If the variances for all three channels are equal to zero, which means the data are from
zero-channels, a zero array of the size of the activations at layer 17, i.e., 56 by 56 by 24, is
generated and multiplied with the activations from layer 17 (i.e., input 2 of the switch-scale
Layer). Otherwise, an array of ones of size 56 by 56 by 24 is used to keep the activations
from layer 17 unchanged. The output of the two streams is then summated and passed
through layers 18 to 139 with frozen weights. From layer 140 to the final layer, i.e., layer
154, as illustrated in Figure 5, the information passes through two parallel paths with finely
tuned weights on the corresponding data for classification purposes. It is worth mentioning
that the stitched network is only used for prediction purposes, and the weights remain
unchanged. The hybrid network outputs an accuracy of 100% on visual object recognition
and an accuracy of 77.63% on tactile data while achieving a compression ratio of 1.4284
(i.e., two separate networks occupy the memory of 16,644 KB while the hybrid network has
a size of 11,652 KB). It is worth mentioning that this performance is comparable with the
case where all layers of MobileNetV2 are tuned on tactile data (i.e., 78.57%) and is 34.76%
higher than the case where all layers of the network are frozen. Figure 6a,b depicts the
confusion matrix of the hybrid visuotactile object recognition architecture on visual and
tactile data where the objects 1 to 6 correspond to classes: bird, chair, hand, head, plane
and quadruped, respectively from the dataset described in Section 3.3.
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8. Conclusions and Future Work

In this paper, we studied the possibility of transferring learning from vision to touch
using deep CNN architectures, validating the idea that visual and tactile data share similar
features at certain levels. The idea is tested on different types of tactile sensors capturing
local geometry of objects and using five state-of-the-art pre-trained CNNs. Optical tactile
sensors, due to their higher resolution, respond better to transfer of learning from vision,
and they succeed in achieving accuracy up to 90.64% above random guess. We believe that
the resolution of tactile data has a pivotal role in tactile object recognition. Increasing the
resolution of a 16 by 16 FSR array to 128 by 128 by simulation results in average growth
of 35.60% in classification accuracy. Similarly, preprocessing tactile images from a Barrett
Hand to generate 70 by 70 images yields a 92.06% accuracy for the classification of three
objects. Transfer learning from vision to touch can help to merge visual and tactile sensory
circuitry in autonomous robots and to develop a dual learning strategy to train them for
both visual and tactile understanding. Further analysis is carried out to identify which
convolutional layers are more altered in MobileNetV2 architecture to adapt the network
for tactile data classification. Our experiments suggest that the convolutional weights
in the first and the last convolutional building blocks in the architecture of MobileNetv2
have a decisive role in classification accuracy. Based on this investigation, a hybrid CNN
architecture with visual and tactile input streams is developed with fine-tuned weights
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for each task at the first and the last convolutional building blocks and domain invariant
features at intermediate layers of the network to classify both visual and tactile data from a
dataset of 3D models. Extra layers are introduced to control the flow of information for
each source of sensory input. Accuracies of 100% and 77.63% are achieved, respectively, for
object recognition by vision and touch. The accuracy value achieved for tactile data with
the proposed architecture is 34.76% above the case where a pre-trained MobileNetV2 on
visual data with frozen weights is used for object recognition by touch.

These findings can contribute to assimilating the sensory perception in robots to
human cognition by converging visual and tactile processing units. Future work of the
current study will consist of improving the current hybrid visual and tactile model with
additional components of tactile sensing such as high-frequency vibration and temperature
and thus expanding the hybrid network for more data processing tasks.
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