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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- A counterpart of isospin SU(2) symmetry is predicted to exist in crystalline solids

- Such symmetry is realized in some collinear antiferromagnets in nonrelativistic limit

- CoNb3S6 is a representative material manifesting Dirac-like fermions with chirality
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Dirac semimetal is a phase of matter whose elementary excitation is
described by the relativistic Dirac equation. In the limit of zero mass, its par-
ity-time symmetry enforces the Dirac fermion in the momentum space,
which is composed of two Weyl fermions with opposite chirality, to be
non-chiral. Inspired by the flavor symmetry in particle physics, we theoreti-
cally propose a massless Dirac-like equation yet linking two Weyl fields with
the identical chirality by assuming SUð2Þ isospin symmetry, independent of
the space-time rotation exchanging the two fields. Dramatically, such sym-
metry is hidden in certain solid-state spin-1/2 systems with negligible spin-
orbit coupling, where the spin degree of freedom is decoupled with the lat-
tice. Therefore, the existence of the corresponding quasiparticle, dubbed as
flavor Weyl fermion, cannot be explained by the conventional (magnetic)
space group framework. The 4-fold degenerate flavor Weyl fermion mani-
fests linear dispersion and a Chern number of ± 2, leading to a robust
network of topologically protected Fermi arcs throughout the Brillouin
zone. For material realization, we show that the transition-metal chalco-
genide CoNb3S6 with experimentally confirmed collinear antiferromagnetic
order is ideal for flavor Weyl semimetal under the approximation of
vanishing spin-orbit coupling. Our work reveals a counterpart of the flavor
symmetry in magnetic electronic systems, leading to further possibilities
of emergent phenomena in quantum materials.

INTRODUCTION
The Dirac equation combines the two cornerstones of modern physics—quan-

tum mechanics and relativity. It is the first step toward the quantum field theory
that gives birth to the standard model of particle physics. It complies with the
Dirac quantum fields of spin-½ particles, furnishing particular irreducible repre-
sentations (irreps) of the Lorentz group. There are several manifestations of
the Dirac equation in condensedmatter systems, such as graphene,1 topological
insulators,2–4 Dirac semimetals (DSMs),5–7Weyl semimetals,8,9 and d-wave high-
temperature superconductors. The low-energy electronic structure of the Dirac
points in a three-dimensional (3D) DSM, i.e., 4-fold degenerate crossing points
formed by doubly degenerate linear bands, is well described by the massless
Dirac equation in the (3 + 1)D space-time.6,10 Investigations on 3D DSMs have
been largely confined to the field of nonmagnetic materials where inversion
symmetry P and time-reversal symmetry T coexist,6,11–14 ensuring the doubly
degenerate bands constituting the Dirac point. Later, candidates for DSM have
been extended to include magnetic materials with broken T but preserved PT
symmetry.15–17 Recent progress comprehensively conducts topological classifi-
cations of magnetic materials to identify topological nontrivial insulators and
semimetals by using the full magnetic space groups,18–21 which are also used
for the construction of k,pmodels in order to classify emergent quasiparticle ex-
citations in magnetic materials.22,23

A four-component Dirac field can be decomposed into two two-component
Weyl fields with opposite chirality in the limit of zero mass, implying that the
chirality of a massless Dirac fermion must be zero because the PT symmetry
forces the two branches of each doubly degenerate band to have opposite Berry
curvatures (Figure 1A). Hence, the Fermi arc surface states connecting two Dirac
points in a DSM are generally not topologically protected, unlike Weyl points (Fig-
ure 1B). These properties establish the current textbookGestalt underlying our un-
derstanding of Dirac physics.

Here, we propose the theory andmaterial realization of a newsemimetal phase
having Dirac-like 4-fold degenerate points formed by doubly degenerate bands,

yet a nonzero chirality, dubbed as flavor Weyl semimetal (WSM) (Figures 1C
and 1D). This is achieved by a massless four-component field in vacuum
furnishing chiral and four-dimensional (4D) irreps, connecting two Weyl fields
via a type of SUð2Þ flavor symmetry—analogous to the isospin symmetry relating
a proton and a neutron. Remarkably, such SUð2Þ isospin symmetry can be ob-
tained by spin space group—a type of expanded symmetry group compared
with the traditional magnetic space group—existing in magnetic materials with
negligible spin-orbit coupling (SOC).24,25 Such groups were originally applied to
describe the symmetry of magnons in Heisenberg Hamiltonian, while drawing
recent attention for the application in discovering new topological invariants
andmagnetic topological phases.26–28We show that the transition-metal chalco-
genide CoNb3S6 with a chiral crystal structure and collinear antiferromagnetic
(AFM) order is an ideal candidate for such flavor WSM. The resulting 4-fold
degenerate quasiparticles have Chern numbers C = ±2, manifesting a robust
network of topologically protected Fermi arcs throughout the surface Brillouin
zone. Furthermore, the modified band property and topology by the effects of
SOC indicate that the flavorWSM phase serves as a good starting point to under-
stand the topological nature of CoNb3S6.

RESULTS
Theory of Dirac-like fermion with chirality
In high-energy physics, a Dirac field is a four-component field with field opera-

tors furnishing a 4D irreducible representation of Lorentz group. Such a field is
non-chiral because P connects two 2D representations of proper orthrochronous
Lorentz group supporting two Weyl fields with opposite chirality. To construct a
chiral Dirac-like four-component field, one requires additional internal symmetries
(i.e., commute with space-time operations29) connecting two Weyl fields with
identical chirality. A famous type of internal symmetry in particle physics is the
isospin symmetry pairing a proton and a neutron forming an SUð2Þ doublet.29,30
In analogy, we can choose a condensed-matter counterpart of such SUð2Þ flavor
symmetry to construct amassless four-component fieldwith chirality, named fla-
vor Weyl field (see Note S1).
In condensed matter solids with elementary excitations (quasiparticles),

although spin is an internal degree of freedom of an electron, its rotational oper-
ations are completely locked to the rotations of the lattice owing to the relativistic
SOCeffect. However, the symmetry description of compounds composed of light
elements with negligible SOC requires decoupled spin and lattice operations,
forming symmetry groups called spin groups.24–26 We next show that the com-
bination of translation and spin rotation in certain magnetic compounds with
long-range magnetic order leads to a hidden SUð2Þ symmetry group, supporting
the emergence of flavor Weyl fermions.
We considered a collinear AFM system belonging to the type-IV Shubnikov

space group, as schematically shown in Figure 2A. We used a four-band model
with two orbitals separately located at sublattices A and B and the Neel vector
along the z axis to describe such a system. Three elements in the spin space
group were considered, including a 2-fold spin rotation perpendicular to the

magnetic moment followed by a fractional translation symmetry, u1=2x =

fUxðpÞ
����E��t1=2g, u1=2y and a spin rotation operation along magnetic moments

with an infinitesimal rotation angle, fUzðqÞjjEj0g, where UnðqÞ, represents pure
spin rotation q along n axis and t1=2 denotes the half translation along the z
axis (see Note S2). We can write the general form of the single-electron Hamilto-
nian asHðkÞ = Si;j = 0;x;y;zfijðkÞ tj 5 si , wheres and t operate on spin and sitede-
grees of freedom, respectively, and fijðkÞ represents real functions of k. After that,
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the elements can be represented as u1=2x = � ie� ik,t1=2tx 5 sx; u
1=2
y = �

ie� ik,t1=2 tx 5 sy , and fUzðqÞjjEj0g = t0 5 e� i qsz . We applied these symmetry
constraints to the Hamiltonian HðkÞ and obtained the following equation:

HðkÞ = d0ðkÞa0 +
X

i = 1;2;3

diðkÞai; (Equation 1)

whered0ðkÞ and diðkÞ represent real functions of k,a0 = t05s0 andai = ðtx 5

s0; ty 5 sz; tz 5 szÞ. Moreover, ai satisfies the anticommutation relation, fai;

ajg = 2di;j , which guarantees a 2-fold degeneracy. It permits the possible flavor
Weyl points occurring at generic momenta when diðkÞ = 0 for all i. Particularly,
the two Weyl cones, with the basis fjA;[D; jB;[Dg and fjB; YD ; jA; YDg, are
degenerate due to u1=2x symmetry.

While Equation 1 does not have SUð2Þ rotation symmetry of the Neel vector,
there is a hidden SUð2Þ symmetry protecting the flavor WSM phase. To elucidate
this, we show the existence of a symmetry groupwith the group elementswritten
as expð� iqn ,rÞ, where q, n and r represent the rotation angle, rotation axis, and
three-vector of the generators of SUð2Þ group, respectively. The generators can

be constructed proportional to the representations of u1=2x , u1=2y , and

fUzðpÞjjEj0g, i.e., r =
�
1
2tx 5 sx;

1
2tx 5 sy ;

1
2t0 5 sz

�
. Since ri satisfies Pauli

algebra, the group fexpð� iqn ,rÞg is isomorphic to an SUð2Þ symmetry group.
Such an SUð2Þ symmetry transforms the two Weyl cones fjA;[D; jB;[Dg and
fjB;YD;jA;YDg, to their arbitrary linear combinations, as shown in Figure 2B. Since
the Hamiltonian Equation 1 can be diagonalized into spin-up and spin-down
blocks, such SUð2Þ group mixes spin-up and spin-down Weyl fermions to their
linear combinations. This implies that the spin-up and spin-down Weyl fermions
must have the samechirality, rendering the role of the SUð2Þ symmetry as isospin
symmetry connecting two Weyl fields with the same chirality.

The SUð2Þ symmetry transforms spin and sublattice degrees of freedom
simultaneously, leading to two degenerate states with distinct spatial wave func-
tions differentiated by a sublattice transformation. Consequently, the surface
spectra could be either nondegenerate or degenerate, depending on whether
the surfaces break the sublattice transformation symmetry u1=2x (Figure 1D).
Thus, the SUð2Þ symmetry presented in our spinful model is drastically different
from the trivial SUð2Þ spin rotation in nonmagnetic materials without SOC, which
also supports charge-2Weyl fermions by directlymultiplying the spin index onto a
spinless Weyl model.31 Moreover, the flavor WSM protected by hidden SUð2Þ

A B

C D

Figure 1. Schematics of the Dirac semimetal (DSM)
and flavor Weyl semimetal (flavor WSM) (A) A Dirac
point can be viewed as the superposition of two Weyl
points with opposite chirality in a DSM. Such super-
position is generally obtained by the space-time PT
symmetry. (B) The surface states of the DSM are
adiabatically connected to topologically trivial surface
states. The green points denote the Dirac points. (C) A
flavor WSM hosts 4-fold degenerate points composed
of twoWeyl points with identical chirality, protected by
a hidden SUð2Þ symmetry group (analogous to the
isospin symmetry in particle physics). (D) The surface
states of flavor WSM are robust owing to the protec-
tion of chiral charges. The surface states on the sur-
faces that preserve the SUð2Þ symmetry are 2-fold
degenerate connecting two flavor Weyl points with
opposite chirality. However, the surface states on the
surfaces with a broken SUð2Þ symmetry group split
into two spin-polarized branches, resembling con-
ventional topological insulators or semimetals.

symmetry under the regime of spin group has
two distinct features compared with DSMs: (1)
Nonzero even Chern number (e.g., C = ±2n).
Recall that PT symmetry in DSMs guarantees
two degenerate Weyl cones with opposite
chirality, leading to a zero Chern number. In
contrast, fexpð� iqn ,rÞg ensures that the
degenerate states have the same Berry curva-
ture. (2) The flavor Weyl point exists in such

collinear AFM systems without the protection of any additional symmetry except
u1=2x . A perturbation toHðkÞ—that does not break u1=2x orUzðqÞ—typically shifts the
position of the flavor Weyl point without opening a gap, resembling the case of
Weyl semimetals.

Material realization: CoNb3S6

To realize flavor WSM in realistic materials, we first summarize the required
conditions as following design principles: (1) collinear AFM order, (2) broken P
and PT symmetry, and (3) presence of fT��t1=2g symmetry. We note that (1)

and (3) ensure the presence of spin-group symmetry u1=2x=y and UzðqÞ without

SOC. Based on these principles, we propose that the chiral transition-metal chal-
cogenide CoNb3S6 is a representative flavor WSM that hosts flavor Weyl points
around the Fermi level. Based on these principles, we survey magnetic database
in Bilbao server and find 443 crystallinematerials (out of 1,605 entries) that could
host SUð2Þ isospin symmetry; 62 of them could have flavor Weyl points when
turning off SOC (seeNote S4 for the full list and the calculation of anothermaterial
candidate GdCuSn). Among them, transition-metal chalcogenide CoNb3S6 is a
representative flavor WSM that hosts flavor Weyl points around the Fermi level.
Figure 3A shows that CoNb3S6 crystallizes in the chiral space group P6322.

32

It has an AFM order with magnetic moments directed along a crystal axis within
the a-b plane below the Neel temperature, TN , of �26 K.33 This structure corre-
sponds to the type-IV magnetic space group PB21212 (No. 18.22). It has one
2-fold rotation along the x axis fUxðpÞjjCxðpÞj0g, two screw rotations
fUyðpÞ

����CyðpÞ
��tðb+ cÞ=2g and fUzðpÞ

����CzðpÞ
��tðb+ cÞ=2g, and nonsymmorphic

time-reversal fT��tða+ bÞ=2g, as per the notation of spin space groups. Some sym-
metry operations beyond the conventional magnetic space group, including
fEjjCxðpÞj0 g and fTUnðpÞjjEjj0 g ðn = cos4by + sin4bz; 4˛ ð0; p�Þ, are

permitted without SOC, forming the spin space group PB
121

121
12Nm1 (see

Note S3).

In contrast to the previous calculations using nonmagnetic or alternative AFM
configurations,34,35 we adopt the experimental magnetic configuration observed
by neutron scattering.33 The band structure calculation (Figure 3C) shows that
CoNb3S6 is a metal with multiple hole pockets near the G point, consistent
with the experiments showing holes as major system carriers (see materials
and methods for details about density functional theory [DFT] calculation).34

The symmetry properties guarantee the following topological features that
appear in the band structure. First, the spin space group does not have P.
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However, it has u1=2z = fUzðpÞ
����E�� tða+ bÞ=2g and fUxðqÞjjEj0g, ensuring doubly

degenerate bands for flavor WSM. Second, the 2-fold spatial rotations decoupled
to spin rotations—fEjjCxðpÞj0g, fE

����CyðpÞ
��tða+ cÞ=2g and fE����CzðpÞ

��tða+ cÞ=2g—
commute with u1=2z along the G � X, G � Y , and G � Z lines, ensuring that
the two degenerate energy bands have identical rotation eigenvalues on the
high-symmetry lines. Therefore, the three 2-fold rotation operations can provide
additional protection for flavor Weyl points. We note that although CoNb3S6 be-
longs to chiral space group, implying that all point-like degeneracies are chiral fer-
mions, the occurrence of flavorWeyl nodes does not require a chiral space group
in general.36

Remarkably, there are multiple flavor Weyl points around the Fermi level and
four flavor Weyl points at �0.7 eV above the Fermi level. The latter points are
located along G � X and G � Y lines. We found that the crossing bands along
these high-symmetry lines have opposite eigenvalues of fEjjCxðpÞj0g or
fE����CyðpÞ

��tða+ cÞ=2g, indicating that the flavor Weyl points are protected by C2

rotation. The Berry curvature calculation (see Figure 3D) shows that the two
Weyl points along (�XÞ � G � X act as the source of Berry curvature, and
the other two act as the drain, manifesting their chiral nature. Further calculation
of theWilson loop showed that theChern number over a spherical surface around
a Weyl point along G � XðYÞ was �2 (+2) (see Figure S1). Therefore, we name
the flavor Weyl points along G � XðYÞ as N1;N2 (P1;P2). We obtained the Dirac-

like k,p Hamiltonian in the following by applying the symmetry operations, u1=2z ,
UxðqÞ and fT��jCzðpÞjtðb+ cÞ=2g, to the low-energy Hamiltonian near N1:

HðkÞ = ða0 + a1kxÞtx5s0 + ða3kzÞty5sx + ða4kxÞtz5sx (Equation 2)

The results of our DFT calculation can be used to obtain the parameters of
Equation 2, giving rise to an anisotropic Dirac cone. By implementing the spin
rotation e� i1=2ðp=2Þsy to Equation 2 (transforming sx terms into sz terms), the
Hamiltonian is block-diagonalized into two Weyl Hamiltonians of the same
chirality.

The topological charges of the flavor WSM imply the existence of Fermi arc
surface states connecting twoflavorWeyl pointswithopposite chirality. However,
flavor Weyl points with opposite chirality are not connected by any symmetry
owing to the lack of inversion, roto-inversion and their combinationswithT. There-
fore, we found an energy difference of 87meV between P1 andN1. Moreover, fla-

vorWeyl points, P1 and P2 (N1 andN2), are connected by a 2-fold spatial rotation.
Hence, they are located at the same energy. There are two disconnected electron
Fermi pockets, separately enclosing P1 and P2, and two disconnected hole
pockets, separately enclosingN1 andN2, for the (001) surfacewhenFermi energy
exists between the two. Every electron pocket is connected to a hole pocket by a
branch of Fermi arc surface states due to the enclosure of the different topolog-
ical charges in electron and hole pockets, forming a network across the Brillouin
zone (see Figure 4A). Interestingly, the surface states are also doubly degenerate
because fUzðpÞ

����E��tða+ bÞ=2g is preserved on this surface (and so as the hidden
SUð2Þ symmetry), in sharp contrast to the conventional topological insulators or
DSMs where the surface bands are spin-polarized and nondegenerate. The
degenerate Fermi arc surface states are split into two branches for the (100) sur-
face with broken symmetry of fUzðpÞ

����E��tða+ bÞ=2g, as shown in Figure 4B. The
various Fermi arc surface states are robust against perturbations, maintaining
the collinear A-type AFMorder in the absence of SOC. On the contrary, topological
protection for the surface states on the conventional DSM does not exist.37

The Chern number of a 2D slice in the Brillouin zone changed in themultiples of
2 because the flavorWeyl points have chiralities of ±2. Figure 4C shows that the
Chern number of the slice perpendicular to the x axis changes as a function of ky .
The Chern number calculated on slice near G—between flavor Weyl points with
opposite chirality—is ±2. The result is consistent with the Berry curvature calcu-
lation (Figure 3D), where Berry curvature flows from N1 and N2 to P1 and P2. Fig-
ure 4D shows the corresponding edge states with two branches of chiral surface
states connecting the conduction and valence bands that are doubly degenerate
at SUð2Þ-preserved edge and nondegenerate at SUð2Þ-broken edge, further vali-
dating the interplay between the Weyl points and the hidden SUð2Þ symmetry.
Wenote that the energies of the flavorWeyl pointsP1;2 andN1;2 (�0.7 eV) depend
on the U value (3 eV) of Co-3d electrons we adopt for correlation effects. When U
is set to 1 eV, the energies of these points shift to�0.5 eV,whose Fermi arc states
might be observed by angle-resolved photoemission spectroscopy.

Effects of SOC
While SOC is a universal relativistic property existing in all materials, for

most materials, even with strong SOC, e.g., 10 to 100 meV, its influence
on the electronic structure is still limited compared with those caused by ex-
change splitting and crystal field, etc. Therefore, we can take the SOC-free
Hamiltonian, which is described by spin-group symmetry, as a good starting
point to understand magnetic materials with SOC by treating SOC as a

A B

Figure 2. Hidden SUð2Þ symmetry in antiferromagnetic materials (A) The magnetic
lattice with collinear antiferromagnetic order allows spin-group symmetry operations,
fUxðpÞ

��jEjt1=2g and fUzðqÞjjEj0g without spin-orbit coupling, leading to two degenerate
Weyl cones with the basis fjA;[D; jB;[Dg and fjB; YD ; jA; YDg and an SUð2Þ symmetry
group expð� iqn ,rÞ (see the main text). (B) Bloch sphere of the SUð2Þ symmetry group,
transforming the basis of a Weyl cone fjA;[D; jB;[Dg (blue arrow) to any linear
combinations (up to a phase factor) fajA;[D+ bjB; YD; ajB;[D+ bjA; YDg, and trans-
forming fjB; YD; jA; YDg (red arrow) to an orthogonal one f � b�jA;[D+
a�jB; YD; � b�jB;[D+a�jA; YDg. The basis transformation under the rotation axis (gray
line) n = ðcosðuÞ; sinðuÞ; 0Þ and rotation angle q are also shown. The mixing coefficients
are a = cos½q =2� and b = � isin½q =2�e� iu .

A

C D

B

Figure 3. Crystal and bulk electronic properties of CoNb3S6 (A) The crystal structure of
CoNb3S6. (B) Bulk and surface Brillouin zones of CoNb3S6. (C) The band structure of
CoNb3S6 without spin-orbit coupling. There are two flavor Weyl points at �0.7 eV above
the Fermi level,N1 andP1 , and another two flavorWeyl points,N2 andP2 (not shown), that
are connected to N1 and P1 through 2-fold rotation. (D) Distribution of in-plane compo-
nents of thetrace of Berry curvature tensor on kz = 0 plane, where N1/ N2 and P1/ P2

denote the source and sink, respectively.
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perturbation that breaks certain spin-group symmetries. Specifically, since
the flavor Weyl points are charge-2 monopoles of Berry curvature, the
sub-Hilbert space on a spherical surface encircling a flavor Weyl point
should be a Chern insulator with Chern number ± 2, which cannot be
changed under any sort of symmetry-breaking perturbation, unless a gap-
closing occurs in this sub-Hilbert space. Therefore, when SOC is included,
although doubly degenerate bands split due to the broken SUð2Þ isospin
symmetry, the flavor Weyl point undergoes a phase transition to a twin-
pair of conventional Weyl points with the same chirality rather than being
gapped immediately.

We next study the modification of band dispersions in CoNb3S6, which de-
pends on the specific bands and wavevectors, by turning on SOC. Figure 5A
shows that the energy bands contributing to flavor Weyl points P1;2 and N1;2

havemoderate spin splitting about 20meV, while Figure 5D shows that most en-
ergy bands near the Fermi level have relatively small spin splitting (<10 meV) in
the presence of SOC. Thus, the SOC effects of the flavor Weyl points have two
different manifestations, i.e., a twin-pair of Weyl points or fully gapped. For P1;2

and N1;2 (Figure 5A), because of the small energy gap around the loop in the Bril-
lion zone passing these flavor Weyl points in the absence of SOC, SOC is large
enough to gap these Weyl points. However, despite the gapped phase and
spin-split surface states, the features of Fermi arc still resemble those without
SOC, as shown in Figures 5B and 5C. The difference is that the Fermi arc surface
states are now trivial rather than nontrivial, connecting an electron (hole) pocket
with an electron (hole) pocket. Recall the successful measurement of the Fermi
arc states in DSMs, such spin-group-induced feature could also be visible for
experiments. For flavor Weyl points near the Fermi level (Figure 5D), small spin
splitting causes some flavor Weyl points to split into twin-pair Weyl points rather
than being gapped, as shown in Figures 5E and 5F. The spin splitting at the Weyl
points is only�3meV, which is a small perturbation to the flavorWeyl points pro-
tected by spin group.38–41

Overall, even if SOC effect is generally not negligible in CoNb3S6, the flavor
WSMphases can still be considered as a starting point to understand its topolog-
ical nature that cannot be fully described by magnetic space group. Interestingly,
the SOC-free approximation of the flavor symmetry studied here also makes a
nice analogy to the flavor symmetry in particle physics, which is also an approx-
imatesymmetry. Recall that isospin symmetry is good enough in prediction of the
possibility and rates of nuclear reaction when the masses of the two particles,
e.g., proton (938.27MeV) and neutron (939.57MeV), are similar, spin-group sym-
metry protects degeneracies, topological charges, and surface states of certain
topological materials when SOC is weak.42

DISCUSSION
Wediscuss the possible experimental phenomena associated with flavorWeyl

fermions. First, flavorWSMmanifests unique and robust surface states enforced
by topological charges. OnSUð2Þ preserved surfaces, the surface stateswould be
Weyl-like, while on SUð2Þ breaking surfaces, the surface states would be Dirac-
like. In contrast, robust surface states of DSMs are rare except for specific
nonsymmorphic symmetries to protect the surface states.37,43 Owing to the pro-
tection of topological charge, even if sizable SOC exists, flavor Weyl points could
be split into a twin-pair of conventional Weyl points with the same chirality rather
than being gapped immediately. These characteristics are potentially observable
by angle-resolved photoemission spectroscopy.
More importantly, the robust Fermi arc surface states of flavorWSMpotentially

lead to unexplored emergent transport and optical properties. For example, the
flavor Weyl points of opposite chirality in CoNb3S6 do not lie at the same energy,
possibly leading to a large and quantized response to circularly polarized light.44

A C

B D

Figure 4. Protected topological surface states of flavor WSM CoNb3S6 (A and B) Iso-
energy surface states connect electron pockets and hole pockets, separately enclosing
flavor Weyl points with opposite chirality on (001) and (100) surfaces of CoNb3S6. (C) The
transition of Chern number defined on 2D slices in the Brillouin zone perpendicular to the y
axis as a function of momentum ky . (D) Chiral edge states of the 2D slice (ky = 0.1 (2p= b))
with Chern number of 2. Doubly degenerate edge bands are found in SUð2Þ-preserved
edge, while spin-polarized nondegenerate edge bands are found in SUð2Þ-broken edge.
The notations are defined as G1 = G+P X1 = X +P, G2 = G+ P, and Z2 = Z + P,
where P = 1

5 ðY � GÞ.

A B C

D E F

Figure 5. Effects of spin-orbit coupling on energy
bands (A) Band structure around the energies of N1

and P1 . (B and C) Iso-energy topological surface
stateswithout SOC (B) andwith SOC (C). The energy is
set between those of N1 and P1 . (D) Band structure
around the Fermi level. (E and F) Zoom-in bands of a
flavor Weyl point without SOC (E) and with SOC (F).
The coordinate of points labeled are A = ð0:5;
0:2572; 0Þ;A0 = ð0:5; 0:2575; 0Þ; d = ð0:05; 0; 0Þ.
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Furthermore, the net anomalous Hall conductivity and spin Hall conductivity in
CoNb3S6 should be zero owing to the presence of fT����E��t1=2g symmetry and

fTjjUnðpÞj0g symmetry. However, breaking fT����E��t1=2g symmetry and
fTjjUnðpÞj0g symmetry through the small SOC effect and small tilting of mag-
netic moments may lead to a large anomalous Hall conductance because of
the uncompensated Berry curvature and multiple Fermi arcs emerging from
the charge-2 flavor Weyl points. It has been observed in CoNb3S6, accompanied
by small out-of-plane components of the magnetic moments.34

Poincare symmetry is generally broken in solid-state lattices, while certain crys-
talline symmetries such as nonsymmorphic symmetry are absent in high-energy
physics. Because of these differences, there are various types of quasiparticle
excitation in condensed matter physics that do not have counterparts in high-en-
ergy physics, including 3-, 6- or 8-fold degenerate points,45,46 line-like,47–49 chain-
like,50,51 and plane-like band crossings,52 etc. Besides, there are also emergent
quasiparticles composed of two Weyl points of opposite chirality, like Dirac fer-
mions, but with different velocities, indicating that energy bands around the
4-fold degenerate points are generally nondegenerate.53,54 We note that such
quasiparticles sometimes are also attributed to a type of DSMwith a looser defi-
nition, which allows band splitting around Dirac points.5 In addition, previous liter-
ature also reported four-component Weyl fermions with nonzero Chern number
± 2 or ±4, in both electron5,22,23,55–57 and phonon systems.58,59 We note that the
main difference between these quasiparticles and the flavor Weyl fermions in the
presented work is 2-fold. First, these quasiparticles are stabilized by the little
groups with high-order rotation operations or the little groups with nonsymmor-
phic symmetry operations. Therefore, these elementary excitations can only
appear at specific high-symmetry momenta of the Brillouin zone. However, the
flavor Weyl points can appear at generic momenta. This property implies the
emergence of dense flavorWeyl pointswithin a small energy range, possibly lead-
ing to stronger topological effects. Second, the previously studied 4-fold degen-
erate points with nonzero Chern number inevitably have nondegenerate energy
bands away from the high-symmetry points. Therefore, they do not strictly fulfill
themassless four-component equation in quantum field theory. However, our fla-
vor WSM model was derived from the quantum field theory perspective with
doubly degenerate dispersions around the Dirac-like points, stabilized by the hid-
den SUð2Þ isospin symmetry.

MATERIALS AND METHODS
The first-principles calculations were carried out using projector-augmented-wave (PAW)

method60, implemented in Vienna ab initio simulation package (VASP)61 within the frame-

work of density-functional theory62,63. Contributions of exchange and correlation effects

were accounted by the generalized gradient approximation (GGA) with the Perdew-Burke-

Ernzerhof (PBE) formalism64,65. An energy cut off of 520 eV is used in our calculations.

The whole Brillouin-zone was sampled by 5 3 8 3 4 Monkhorst-Pack grid66 for all cells.

Due to the local magnetic moments contributed from 3d electrons in Co atoms, GGA+U

approach67within the Dudarev scheme68 is applied andwe set the U onCo to be 3 eV, which

produces local magnetic moments of 2.2 mB consisting well with the experiments69. A tight-

binding Hamiltonian is obtained base on maximally localized Wannier functions70,71 of Co-

3d, Nb-4d, S-3porbitals, fromwhich the topological surface states, Berry curvature andChern

number are calculated. The iterativeGreen’s function implemented inWannierTools package

is used for surface states calculations72.
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